The Modified Sparrow Search Algorithm with Brown Motion and Levy Flight Strategy for the Class Integration Test Order Generation Problem
Abstract
:1. Introduction
- A MSSA is developed, which combines the initialization of the good point set strategy, the discoverer learning strategy of Brownian motion, the follower learning strategy of Levy flight, and the optimal solution random wandering strategy. To our best knowledge, this is the first time to introduce SSA to solve the CITO problem.
- The model of the MSSA to generate CITO is proposed, which includes four modules: the static analysis module of the software system to be tested, the class test order mapping module, the MSSA running module, and the optimal Sparrow mapping module.
- Experiments are conducted on nine open-source Java systems to demonstrate the superiority of the MSSA.
2. Background
2.1. CITO Generation Issue
2.2. Background Concepts
2.3. The Basic Sparrow Search Algorithm
Algorithm 1: Pseudo-code of the BSSA |
3. Methodology
3.1. The Initialization Strategy Based on Good Point Set
Algorithm 2: Pseudo-code for initializing population with a good point set |
3.2. Brownian Motion and the Levy Flight Strategy
3.2.1. Brownian Motion and Levy Flight
3.2.2. The Discoverer Learning Strategy Based on Brownian Motion
3.2.3. The Follower Learning Strategy Based on Levy Flight
3.3. The Optimal Solution Random Wandering Strategy
Algorithm 3: Pseudo-code for random wandering optimal solution |
3.4. Construction of the Fitness Function
3.5. The Modified Sparrow Search Algorithm for the Class Integration Test Order Generation Model
- (1)
- The static analysis module of the software system to be tested
- (2)
- The class test order mapping module
Algorithm 4: Pseudo-code for mapping the class test order to the individual position |
- (3)
- The MSSA running module
Algorithm 5: Pseudo-code of the MSSA |
- (4)
- The optimal sparrow mapping module
Algorithm 6: Pseudo-code for mapping the individual position to the class test order |
4. Experiments
4.1. Experimental Subjects
4.2. Experiment Settings
4.3. Experimental Results and Analysis
4.3.1. The Overall Stubbing Complexity
4.3.2. Attribute Complexity
4.3.3. Method Complexity
4.3.4. Convergence Speed
4.3.5. Running Time
4.3.6. Complexity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AO | Aquila optimizer |
AOA | Arithmetic optimization algorithm |
CITO | Class integration test order |
SSA | Sparrow search algorithm |
MSSA | Modified sparrow search algorithm |
GA | Genetic algorithm |
PSO | Particle swarm optimization algorithm |
SA | Simulated annealing algorithm |
GE | Grammatical evolution |
EMSSA | Enhanced multi-strategy SSA |
SCA | Sine cosine algorithm |
BSSA | Basic sparrow search algorithm |
BM | Brownian motion |
LF | Levy flight |
LOC | Lines of code |
CS | Cuckoo search algorithm |
FA | Firefly algorithm |
BA | Bat algorithm |
HHO | Harris hawk optimization algorithm |
SAO | Smell agent optimization |
SD | Standard deviation |
SIR | Software-artifact infrastructure repository |
References
- Huo, X.; Li, M. On cost-effective software defect prediction: Classification or ranking? Neurocomputing 2019, 363, 339–350. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Chen, C.; Liu, Z.; Wang, S.; Wang, Q. Software testing with large language models: Survey, landscape, and vision. IEEE Trans. Softw. Eng. 2024, 50, 911–936. [Google Scholar] [CrossRef]
- Zhang, M.; Keung, J.W.; Xiao, Y.; Kabir, M.A. Evaluating the effects of similar-class combination on class integration test order generation. Inf. Softw. Technol. 2021, 129, 106438. [Google Scholar] [CrossRef]
- Meng, F.; Wang, Y.; Yu, H.; Zhu, Z. Devising optimal integration test orders using cost-benefit analysis. Front. Inf. Technol. Electron. Eng. 2022, 23, 692–714. [Google Scholar] [CrossRef]
- Kung, D.C.; Gao, J.; Hsia, P.; Toyoshima, Y.; Chen, C. On regression testing of object-oriented programs. J. Syst. Softw. 1996, 32, 21–40. [Google Scholar] [CrossRef]
- Le Traon, Y.; Jeron, T.; Jezequel, J.M.; Morel, P. Efficient object-oriented integration and regression testing. IEEE Trans. Reliab. 2000, 49, 12–25. [Google Scholar] [CrossRef]
- Hewett, R.; Kijsanayothin, P. Automated test order generation for software component integration testing. In Proceedings of the 2009 IEEE/ACM International Conference on Automated Software Engineering, Auckland, New Zealand, 16–20 November 2009; pp. 211–220. [Google Scholar] [CrossRef]
- Sakovich, N.; Aksenov, D.; Pleshakova, E.; Gataullin, S. MAMGD: Gradient-based optimization method using exponential decay. Technologies 2024, 12, 154. [Google Scholar] [CrossRef]
- Dhiman, G. SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl.-Based Syst. 2021, 222, 106926. [Google Scholar] [CrossRef]
- Alhijawi, B.; Awajan, A. Genetic algorithms: Theory, genetic operators, solutions, and applications. Evol. Intell. 2024, 17, 1245–1256. [Google Scholar] [CrossRef]
- Gad, A.G. Particle swarm optimization algorithm and its applications: A systematic review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- Bahnam, B.S.; Dawwod, S.A.; Younis, M.C. Optimizing software reliability growth models through simulated annealing algorithm: Parameters estimation and performance analysis. J. Supercomput. 2024, 80, 16173–16201. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Salawudeen, A.T.; Mu’azu, M.B.; Sha’aban, Y.A.; Adedokun, A.E. A Novel Smell Agent Optimization (SAO): An extensive CEC study and engineering application. Knowl.-Based Syst. 2021, 232, 107486. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Wang, X.; Chen, R.; Zhang, M. An optimization algorithm applied to the class integration and test order problem. Soft Comput. 2019, 23, 4239–4253. [Google Scholar] [CrossRef]
- Assunção, W.K.G.; Colanzi, T.E.; Vergilio, S.R.; Pozo, A. A multi-objective optimization approach for the integration and test order problem. Inf. Sci. 2014, 267, 119–139. [Google Scholar] [CrossRef]
- Guizzo, G.; Fritsche, G.M.; Vergilio, S.R.; Pozo, A.T.R. A hyper-heuristic for the multi-objective integration and test order problem. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11 July 2015. [Google Scholar] [CrossRef]
- Mariani, T.; Guizzo, G.; Vergilio, S.R.; Pozo, A.T. Grammatical evolution for the multi-objective integration and test order problem. In Proceedings of the Genetic and Evolutionary Computation Conference 2016, Denver, CO, USA, 20 July 2016. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Ding, Y.; Yuan, G.; Liu, J.; Lu, D.; Qian, J. Generating optimal class integration test orders using genetic algorithms. Int. J. Softw. Eng. Knowl. Eng. 2022, 32, 871–892. [Google Scholar] [CrossRef]
- Borner, L.; Paech, B. Integration test order strategies to consider test focus and simulation effort. In Proceedings of the 2009 First International Conference on Advances in System Testing and Validation Lifecycle, Porto, Portugal, 20–25 September 2009. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Liu, G.; Shu, C.; Liang, Z.; Peng, B.; Cheng, L. A modified sparrow search algorithm with application in 3d route planning for UAV. Sensors 2021, 21, 1224. [Google Scholar] [CrossRef]
- Yue, X.; Ma, G.; Gao, X.; Lu, Y. A sparrow search algorithm with intelligent weight factors and mutation operators and applications to image classification. J. Intell. Fuzzy Syst. 2022, 43, 3627–3653. [Google Scholar] [CrossRef]
- Fang, Q.; Shen, B.; Xue, J. A new elite opposite sparrow search algorithm-based optimized LightGBM approach for fault diagnosis. J. Ambient Intell. Humaniz. Comput. 2023, 14, 10473–10491. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Lin, Y.; Pan, N.; Fu, Q.; Chen, L.; Yang, J. Demand-Side electricity load forecasting based on time-series decomposition combined with kernel extreme learning machine improved by sparrow algorithm. Energies 2023, 16, 7714. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y. Improved sparrow search algorithm with the extreme learning machine and its application for prediction. Neural Process. Lett. 2022, 54, 4189–4209. [Google Scholar] [CrossRef]
- Ma, J.; Hao, Z.; Sun, W. Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems. Inf. Process. Manag. 2022, 59, 102854. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhu, D.; Wang, F. A learning sparrow search algorithm. Comput. Intell. Neurosci. 2021, 2021, 3946958. [Google Scholar] [CrossRef]
- Yan, S.; Yang, P.; Zhu, D.; Zheng, W.; Wu, F. Improved sparrow search algorithm based on iterative local search. Comput. Intell. Neurosci. 2021, 2021, 6860503. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, B.; Wu, H.; Han, M. A novel modified sparrow search algorithm based on adaptive weight and improved boundary constraints. In Proceedings of the 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), Chengdu, China, 23–26 April 2021. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, S. A stochastic configuration network based on chaotic sparrow search algorithm. Knowl.-Based Syst. 2021, 220, 106924. [Google Scholar] [CrossRef]
- Wu, R.; Huang, H.; Wei, J.; Ma, C.; Zhu, Y.; Chen, Y.; Fan, Q. An improved sparrow search algorithm based on quantum computations and multi-strategy enhancement. Expert Syst. Appl. 2023, 215, 119421. [Google Scholar] [CrossRef]
- Levy, O.; Feitelson, D.G. Understanding large-scale software systems–structure and flows. Empir. Softw. Eng. 2021, 26, 48. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Y.; Yuan, G.; Jiang, S.; Dai, W. Progress on class integration test order generation approaches: A systematic literature review. Inf. Softw. Technol. 2023, 156, 107133. [Google Scholar] [CrossRef]
- Gharehchopogh, F.S.; Namazi, M.; Ebrahimi, L.; Abdollahzadeh, B. Advances in sparrow search algorithm: A comprehensive survey. Arch. Comput. Methods Eng. 2023, 30, 427–455. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B. Good point set based genetic algorithm. Chin. J. Comput. 2001, 24, 917–922. [Google Scholar]
- Khoshtarash, H.; Siavashi, M.; Ramezanpour, M.; Blunt, M.J. Pore-scale analysis of two-phase nanofluid flow and heat transfer in open-cell metal foams considering Brownian motion. Appl. Therm. Eng. 2023, 221, 119847. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Ding, S.; Liang, D.; He, H. A novel particle swarm optimization algorithm with Lévy flight and orthogonal learning. Swarm Evol. Comput. 2022, 75, 101207. [Google Scholar] [CrossRef]
- Mas’ud, A.A.; Salawudeen, A.T.; Umar, A.A.; Aziz, A.S.; Shaaban, Y.A.; Muhammad-Sukki, F.; Musa, U. A Quasi oppositional smell agent optimization and its levy flight variant: A PV/Wind/battery system optimization application. Appl. Soft Comput. 2023, 147, 110813. [Google Scholar] [CrossRef]
- Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential evolution: A review of more than two decades of research. Eng. Appl. Artif. Intell. 2020, 90, 103479. [Google Scholar] [CrossRef]
- Briand, L.C.; Feng, J.; Labiche, Y. Using genetic algorithms and coupling measures to devise optimal integration test orders. In Proceedings of the 14th International Conference on Software Engineering and Knowledge Engineering, Ischia, Italy, 15 July 2002. [Google Scholar] [CrossRef]
- Peng, H.; Zeng, Z.; Deng, C.; Wu, Z. Multi-strategy serial cuckoo search algorithm for global optimization. Knowl.-Based Syst. 2021, 214, 106729. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.G.; Burrage, K.; Tian, Y.C.; Lawson, B.; Ding, Z. An improved firefly algorithm for global continuous optimization problems. Expert Syst. Appl. 2020, 149, 113340. [Google Scholar] [CrossRef]
- Rauf, H.T.; Malik, S.; Shoaib, U.; Irfan, M.N.; Lali, M.I. Adaptive inertia weight bat algorithm with sugeno-function fuzzy search. Appl. Soft Comput. 2020, 90, 106159. [Google Scholar] [CrossRef]
- Khrissi, L.; El Akkad, N.; Satori, H.; Satori, K. Clustering method and sine cosine algorithm for image segmentation. Evol. Intell. 2022, 15, 669–682. [Google Scholar] [CrossRef]
- Qiao, L.; Liu, K.; Xue, Y.; Tang, W.; Salehnia, T. A multi-level thresholding image segmentation method using hybrid arithmetic optimization and harris hawks optimizer algorithms. Expert Syst. Appl. 2024, 241, 122316. [Google Scholar] [CrossRef]
- Yue, Y.; Cao, L.; Lu, D.; Hu, Z.; Xu, M.; Wang, S.; Li, B.; Ding, H. Review and empirical analysis of sparrow search algorithm. Artif. Intell. Rev. 2023, 56, 10867–10919. [Google Scholar] [CrossRef]
Generic Stubs | Specific Stubs |
---|---|
B | B for A |
D | D for A |
D for B |
System | Description | Classes | Dependencies | Cycles | LOC |
---|---|---|---|---|---|
Elevator | Classic elevator scheduling algorithm | 12 | 27 | 23 | 934 |
SPM | Security patrol monitoring | 19 | 72 | 1178 | 1198 |
ATM | Automated teller machine | 21 | 67 | 30 | 1390 |
DEOS | Operating system kernel simulator | 25 | 73 | 520 | 2215 |
ANT | A Java based build tool | 25 | 83 | 654 | 4093 |
Email tool | 39 | 61 | 38 | 2276 | |
BCEL | Byte code engineering library | 45 | 294 | 416,091 | 3033 |
DNS | Domain name system | 61 | 276 | 16 | 6710 |
Notepad | Code editor system | 65 | 141 | 227 | 2419 |
Number | Class | Number | Class |
---|---|---|---|
0 | ReceiptPrinter | 11 | WithdrawlTransaction |
1 | Display | 12 | DepositTransaction |
2 | Keyboard | 13 | TransferTransaction |
3 | CardReader | 14 | InquiryTransaction |
4 | OperatorPanel | 15 | GUILayout |
5 | EnvelopeAcceptor | 16 | QuestionDialog |
6 | CashDispenser | 17 | ATMMain |
7 | ATM | 18 | ATMApplet |
8 | Bank | 19 | Money |
9 | Session | 20 | Status |
10 | Transaction |
Class | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2 | 1 | |||||||||||||||||||
1 | 1 | ||||||||||||||||||||
2 | 2 | 1 | |||||||||||||||||||
3 | 2 | ||||||||||||||||||||
4 | 2 | 1 | |||||||||||||||||||
5 | |||||||||||||||||||||
6 | |||||||||||||||||||||
7 | 13 | 9 | 3 | ||||||||||||||||||
8 | 13 | 8 | |||||||||||||||||||
9 | 13 | 13 | 4 | ||||||||||||||||||
10 | 13 | 13 | 9 | 2 | |||||||||||||||||
11 | 13 | 13 | 9 | 1 | 2 | ||||||||||||||||
12 | 1 | 2 | |||||||||||||||||||
13 | 13 | 13 | 9 | 1 | 1 | ||||||||||||||||
14 | 13 | 13 | 9 | 1 | 1 | ||||||||||||||||
15 | |||||||||||||||||||||
16 | 13 | 13 | 9 | ||||||||||||||||||
17 | 1 | ||||||||||||||||||||
18 | 1 | ||||||||||||||||||||
19 | |||||||||||||||||||||
20 |
Class | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 4 | ||||||||||||||||||||
1 | |||||||||||||||||||||
2 | 1 | 1 | |||||||||||||||||||
3 | 2 | ||||||||||||||||||||
4 | 2 | 1 | |||||||||||||||||||
5 | |||||||||||||||||||||
6 | |||||||||||||||||||||
7 | 1 | 2 | 1 | 3 | |||||||||||||||||
8 | 7 | ||||||||||||||||||||
9 | 7 | 2 | 2 | 2 | 2 | 2 | |||||||||||||||
10 | 2 | 1 | 2 | ||||||||||||||||||
11 | 4 | 4 | 2 | 1 | |||||||||||||||||
12 | 4 | 4 | 2 | ||||||||||||||||||
13 | 3 | 3 | 2 | ||||||||||||||||||
14 | 2 | 3 | 2 | ||||||||||||||||||
15 | |||||||||||||||||||||
16 | 1 | ||||||||||||||||||||
17 | 1 | ||||||||||||||||||||
18 | 1 | ||||||||||||||||||||
19 | |||||||||||||||||||||
20 |
System | Attribute Dependencies | Method Dependencies | Total | ||||
---|---|---|---|---|---|---|---|
Maximum | Mean | Total | Maximum | Mean | Total | ||
Elevator | 4 | 1.62 | 34 | 25 | 6.32 | 158 | 192 |
SPM | 21 | 7.97 | 462 | 8 | 2.41 | 135 | 597 |
ATM | 13 | 6.59 | 277 | 7 | 2.39 | 86 | 363 |
ANT | 31 | 9.14 | 585 | 14 | 2.9 | 177 | 762 |
DEOS | 4 | 2.04 | 26 | 15 | 3.28 | 223 | 249 |
22 | 3.13 | 72 | 40 | 4.18 | 222 | 204 | |
BCEL | 8 | 2.52 | 454 | 4 | 1.55 | 369 | 823 |
DNS | 10 | 4.35 | 766 | 8 | 1.92 | 328 | 1094 |
Notepad | 8 | 1.88 | 102 | 37 | 1.74 | 181 | 283 |
Algorithms | Parameters |
---|---|
PSO | |
CS | |
FA | |
BA | |
SCA | |
HHO | |
BSSA | |
MSSA |
System | Statistics | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|---|
PSO | CS | FA | BA | SCA | HHO | BSSA | MSSA | ||
Elevator | Mean | 1.86 | 1.84 | 2.03 | 2.20 | 1.85 | 3.52 | 2.16 | 1.84 |
Best | 1.79 | 1.76 | 1.85 | 1.97 | 1.76 | 1.94 | 1.79 | 1.75 | |
Worst | 1.95 | 1.89 | 2.27 | 2.37 | 1.93 | 3.91 | 2.72 | 1.91 | |
SD | 0.05 | 0.04 | 0.09 | 0.13 | 0.04 | 0.54 | 0.06 | 0.04 | |
SPM | Mean | 3.75 | 3.37 | 4.03 | 4.88 | 3.82 | 3.61 | 4.04 | 3.45 |
Best | 3.40 | 2.99 | 3.35 | 4.05 | 3.58 | 2.99 | 3.52 | 3.23 | |
Worst | 4.16 | 3.80 | 4.99 | 6.37 | 4.19 | 4.08 | 4.56 | 3.89 | |
SD | 0.22 | 0.27 | 0.46 | 0.62 | 0.19 | 0.30 | 0.33 | 0.23 | |
ATM | Mean | 2.53 | 2.54 | 3.30 | 3.83 | 2.65 | 2.69 | 3.12 | 2.43 |
Best | 2.17 | 2.29 | 2.26 | 3.02 | 2.32 | 2.27 | 2.31 | 2.19 | |
Worst | 2.82 | 2.74 | 3.52 | 4.90 | 2.94 | 2.98 | 3.32 | 2.53 | |
SD | 0.16 | 0.12 | 0.17 | 0.44 | 0.18 | 0.21 | 0.25 | 0.11 | |
ANT | Mean | 2.59 | 2.45 | 2.99 | 3.41 | 2.39 | 2.55 | 2.78 | 2.54 |
Best | 2.16 | 2.14 | 2.13 | 2.69 | 2.17 | 2.31 | 2.54 | 2.27 | |
Worst | 2.79 | 2.65 | 2.92 | 4.36 | 2.57 | 2.82 | 3.01 | 2.76 | |
SD | 0.15 | 0.14 | 0.21 | 0.48 | 0.12 | 0.15 | 0.18 | 0.15 | |
DEOS | Mean | 3.81 | 3.63 | 4.32 | 4.94 | 3.71 | 3.86 | 4.02 | 3.59 |
Best | 3.28 | 3.20 | 3.96 | 4.18 | 2.92 | 3.33 | 3.79 | 3.33 | |
Worst | 4.18 | 4.02 | 4.84 | 5.39 | 4.05 | 4.46 | 4.27 | 3.86 | |
SD | 0.28 | 0.24 | 0.62 | 0.36 | 0.33 | 0.28 | 0.41 | 0.29 | |
Mean | 0.81 | 0.73 | 1.33 | 1.20 | 0.78 | 0.81 | 0.92 | 0.72 | |
Best | 0.66 | 0.65 | 1.10 | 1.05 | 0.70 | 0.62 | 0.68 | 0.54 | |
Worst | 0.89 | 0.81 | 1.85 | 1.43 | 0.91 | 0.92 | 1.03 | 0.76 | |
SD | 0.06 | 0.05 | 0.20 | 0.11 | 0.06 | 0.07 | 0.09 | 0.04 | |
BCEL | Mean | 11.62 | 11.29 | 11.75 | 11.98 | 11.14 | 11.16 | 11.37 | 10.50 |
Best | 10.90 | 10.45 | 11.00 | 11.98 | 10.71 | 10.33 | 10.94 | 9.82 | |
Worst | 11.98 | 11.95 | 13.63 | 11.98 | 11.59 | 11.98 | 11.98 | 11.18 | |
SD | 0.51 | 0.40 | 0.60 | 0.00 | 0.26 | 0.47 | 0.57 | 0.31 | |
DNS | Mean | 8.63 | 8.14 | 9.31 | 10.39 | 8.94 | 8.64 | 9.15 | 7.30 |
Best | 7.34 | 7.20 | 6.53 | 8.63 | 7.34 | 6.95 | 6.19 | 5.82 | |
Worst | 9.63 | 9.11 | 10.27 | 12.80 | 10.05 | 9.65 | 10.54 | 8.77 | |
SD | 0.73 | 0.70 | 0.86 | 1.57 | 0.76 | 0.75 | 0.91 | 0.63 | |
Notepad | Mean | 1.98 | 1.85 | 2.07 | 2.50 | 1.85 | 1.90 | 1.93 | 1.68 |
Best | 1.83 | 1.77 | 1.76 | 1.90 | 1.80 | 1.77 | 1.72 | 1.57 | |
Worst | 2.17 | 1.96 | 2.41 | 3.09 | 1.94 | 2.17 | 2.18 | 1.99 | |
SD | 0.10 | 0.07 | 0.24 | 0.30 | 0.04 | 0.15 | 0.23 | 0.14 |
Wilcoxon Rank-Sum-Test | MSSA vs. PSO | MSSA vs. CS | MSSA vs. FA | MSSA vs. BA | MSSA vs. SCA | MSSA vs. HHO | MSSA vs. BSSA |
---|---|---|---|---|---|---|---|
Elevator | + | = | + | + | + | + | + |
SPM | + | − | + | + | + | + | + |
ATM | + | + | + | + | + | + | + |
ANT | + | − | + | + | − | + | + |
DEOS | = | + | + | + | + | + | + |
+ | + | + | + | + | + | + | |
BCEL | + | + | + | + | + | + | + |
DNS | + | + | + | + | + | + | + |
Notepad | + | = | + | + | = | + | + |
+/−/=/gm | 8/0/1/8 | 5/2/2/3 | 9/0/0/9 | 9/0/0/9 | 7/1/1/6 | 9/0/0/9 | 9/0/0/9 |
System | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
PSO | CS | FA | BA | SCA | HHO | BSSA | MSSA | |
Elevator | [8, 9] | [9] | [9, 10] | [9, 11] | [9, 10] | [9, 19] | [9, 13] | [9, 9] |
SPM | [58, 89] | [49, 72] | [60, 103] | [68, 132] | [52, 111] | [63, 128] | [58, 110] | [48, 78] |
ATM | [30, 38] | [31, 39] | [35, 52] | [44, 74] | [40, 138] | [31, 149] | [38, 102] | [30, 37] |
ANT | [48, 76] | [47, 74] | [63, 95] | [55, 111] | [70, 105] | [50, 124] | [51, 103] | [45, 82] |
DEOS | [6, 12] | [7, 13] | [14, 31] | [8, 15] | [13, 29] | [10, 32] | [12, 22] | [6, 10] |
[7, 13] | [6, 10] | [8, 34] | [7, 21] | [11, 57] | [11, 44] | [8, 31] | [6, 15] | |
BCEL | [78, 100] | [53, 111] | [72, 155] | [93, 140] | [116, 281] | [128, 347] | [66, 143] | [77, 96] |
DNS | [68, 106] | [73, 112] | [113, 154] | [122, 170] | [121, 502] | [154, 318] | [89, 150] | [71, 101] |
Notepad | [6, 12] | [5, 7] | [14, 66] | [9, 20] | [10, 26] | [13, 64] | [5, 22] | [5, 7] |
System | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
PSO | CS | FA | BA | SCA | HHO | BSSA | MSSA | |
Elevator | [18, 33] | [17, 25] | [20, 30] | [25, 34] | [17, 32] | [27, 125] | [19, 36] | [18, 26] |
SPM | [22, 32] | [20, 31] | [24, 37] | [30, 48] | [26, 45] | [30, 56] | [23, 41] | [19, 32] |
ATM | [11, 19] | [11, 15] | [13, 23] | [13, 27] | [14, 45] | [13, 36] | [12, 51] | [11, 18] |
ANT | [30, 42] | [33, 42] | [34, 51] | [36, 70] | [47, 74] | [40, 73] | [35, 67] | [31, 51] |
DEOS | [48, 61] | [43, 67] | [66, 126] | [55, 84] | [73, 109] | [64, 118] | [59, 117] | [40, 55] |
[24, 39] | [22, 34] | [38, 145] | [34, 57] | [71, 131] | [62, 129] | [27, 71] | [22, 34] | |
BCEL | [92, 109] | [96, 109] | [102, 121] | [109, 123] | [104, 198] | [99, 241] | [101, 139] | [90, 106] |
DNS | [59, 84] | [53, 74] | [80, 100] | [75, 114] | [92, 163] | [88, 152] | [61, 94] | [49, 68] |
Notepad | [60, 82] | [73, 78] | [67, 119] | [61, 94] | [80, 100] | [63, 100] | [66, 84] | [56, 72] |
System | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
PSO | CS | FA | BA | SCA | HHO | BSSA | MSSA | |
Elevator | 1.004 | 2.067 | 2.652 | 2.759 | 1.085 | 0.779 | 1.411 | 1.059 |
SPM | 2.489 | 4.816 | 6.335 | 8.159 | 2.668 | 1.826 | 3.578 | 2.936 |
ATM | 2.948 | 5.723 | 7.653 | 8.199 | 3.225 | 2.268 | 4.334 | 3.646 |
ANT | 4.189 | 8.011 | 9.422 | 11.874 | 4.560 | 3.149 | 6.406 | 5.286 |
DEOS | 4.225 | 8.037 | 9.678 | 11.720 | 4.602 | 3.108 | 6.448 | 5.372 |
9.975 | 19.495 | 22.876 | 28.365 | 10.958 | 7.608 | 8.949 | 6.416 | |
BCEL | 13.232 | 25.821 | 29.350 | 36.527 | 14.150 | 10.358 | 15.896 | 11.676 |
DNS | 24.306 | 47.800 | 60.892 | 72.791 | 26.141 | 17.212 | 25.000 | 17.174 |
Notepad | 27.413 | 52.760 | 61.349 | 78.079 | 29.509 | 24.475 | 31.210 | 28.234 |
Average | 9.976 | 19.392 | 23.356 | 28.719 | 10.766 | 7.865 | 11.470 | 9.089 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, C.; Zhou, Q.; Zhang, W.; Zhang, C. The Modified Sparrow Search Algorithm with Brown Motion and Levy Flight Strategy for the Class Integration Test Order Generation Problem. Biomimetics 2025, 10, 195. https://doi.org/10.3390/biomimetics10040195
Jiao C, Zhou Q, Zhang W, Zhang C. The Modified Sparrow Search Algorithm with Brown Motion and Levy Flight Strategy for the Class Integration Test Order Generation Problem. Biomimetics. 2025; 10(4):195. https://doi.org/10.3390/biomimetics10040195
Chicago/Turabian StyleJiao, Chongyang, Qinglei Zhou, Wenning Zhang, and Chunyan Zhang. 2025. "The Modified Sparrow Search Algorithm with Brown Motion and Levy Flight Strategy for the Class Integration Test Order Generation Problem" Biomimetics 10, no. 4: 195. https://doi.org/10.3390/biomimetics10040195
APA StyleJiao, C., Zhou, Q., Zhang, W., & Zhang, C. (2025). The Modified Sparrow Search Algorithm with Brown Motion and Levy Flight Strategy for the Class Integration Test Order Generation Problem. Biomimetics, 10(4), 195. https://doi.org/10.3390/biomimetics10040195