Biological Attachment Systems and Biomimetics—In Memory of William Jon P. Barnes
1. Introduction to the Special Issue
2. Dedication
Conflicts of Interest
References
- Büscher, T.H.; Gorb, S.N. Physical constraints lead to parallel evolution of micro-and nanostructures of ani-mal adhesive pads: A review. Beilstein J. Nanotechnol. 2021, 12, 725–743. [Google Scholar] [CrossRef] [PubMed]
- Aldred, N.; Clare, A.S. Mechanisms and principles underlying temporary adhesion, surface exploration and settlement site selection by barnacle cyprids: A short review. In Functional Surfaces in Biology; Gorb, S.N., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 43–65. [Google Scholar] [CrossRef]
- Miller, P.L. The structure and function of the genitalia in the Libellulidae (Odonata). Zool. J. Linn. Soc. 1991, 102, 43–73. [Google Scholar] [CrossRef]
- Gorb, S.N. Attachment Devices of Insect Cuticle; Springer Science & Business Media: Dordrecht, The Netherlands, 2001; 305p. [Google Scholar] [CrossRef]
- Büscher, T.H.; Gorb, S.N. Convergent Evolution of Animal Adhesive Pads. In Convergent Evolution. Fascinating Life Sciences; Bels, V.L., Russell, A.P., Eds.; Springer: Cham, Germany, 2023; pp. 257–287. [Google Scholar] [CrossRef]
- Spolenak, R.; Gorb, S.N.; Arzt, E. Adhesion design maps for bio-inspired attachment systems. Acta Biomater. 2005, 1, 5–13. [Google Scholar] [CrossRef]
- Fakhari, S.; Belleannée, C.; Charrette, S.J.; Greener, J. A microfluidic design for quantitative measurements of shear stress-dependent adhesion and motion of Dictyostelium discoideum cells. Biomimetics 2024, 9, 657. [Google Scholar] [CrossRef] [PubMed]
- Seabra, S.; Zenleser, T.; Grosbusch, A.L.; Hobmayer, B.; Lengerer, B. The involvement of cell-type-specific glycans in Hydra temporary adhesion revealed by a lectin screen. Biomimetics 2022, 7, 166. [Google Scholar] [CrossRef]
- Xi, P.; Qiao, Y.; Cong, Q.; Cui, Q. Experimental study on the adhesion of Abalone to surfaces with different morphologies. Biomimetics 2024, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Gorb, S.N.; Büscher, T.H. Characterization of morphologically distinct components in the tarsal secretion of Medauroidea extradentata (Phasmatodea) using cryo-scanning electron microscopy. Biomimetics 2023, 8, 439. [Google Scholar] [CrossRef] [PubMed]
- Grohmann, C.; Cohrs, A.-L.; Gorb, S.N. Underwater attachment of the water-lily leaf beetle Galerucella nymphaeae (Coleoptera, Chrysomelidae). Biomimetics 2022, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Goetzke, H.H.; Burrows, M.; Federle, W. Mantises Jump from Smooth Surfaces by Pushing with “Heel” Pads of Their Hind Legs. Biomimetics 2025, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Büscher, T.H.; Gorb, S.N. Convergent evolution of adhesive properties in leaf insect eggs and plant seeds: Cross-kingdom bioinspiration. Biomimetics 2022, 7, 173. [Google Scholar] [CrossRef] [PubMed]
- Lyashenko, I.A.; Popov, V.L.; Borysiuk, V. Indentation and detachment in adhesive contacts between soft elastomer and rigid indenter at simultaneous motion in normal and tangential direction: Experiments and simulations. Biomimetics 2023, 8, 477. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Xiao, K.; Li, L.; Zhang, Y.; Zhang, X.; Chen, D.; Xue, L. The influence of temperature on anisotropic wettability revealed by friction force measurement. Biomimetics 2023, 8, 180. [Google Scholar] [CrossRef] [PubMed]
- Gonen, M.; Kasem, H. Effect of the mechanical properties of soft counter-faces on the adhesive capacity of mushroom-shaped biomimetic microstructures. Biomimetics 2023, 8, 327. [Google Scholar] [CrossRef] [PubMed]
- van den Boogaart, L.M.; Langowski, J.K.A.; Amador, G.J. Studying stickiness: Methods, trade-offs, and perspectives in measuring reversible biological adhesion and friction. Biomimetics 2022, 7, 134. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Ma, S.; Zhou, F. Bioinspired interfacial friction control: From chemistry to structures to mechanics. Biomimetics 2024, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Kappl, M.; Kaveh, F.; Barnes, W.J.P. Nanoscalefriction and adhesion of tree frog toe pads. Bioinspir. Biomim. 2016, 11, 035003. [Google Scholar] [CrossRef] [PubMed]
- Iturri, J.; Xue, L.; Kappl, M.; García-Fernández, L.; Barnes, W.J.P.; Butt, H.-J.; del Campo, A. Torrent frog-inspired adhesives: Attachment to flooded surfaces. Adv. Funct. Mater. 2015, 25, 1499–1505. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Büscher, T.H.; Gorb, S.N. Biological Attachment Systems and Biomimetics—In Memory of William Jon P. Barnes. Biomimetics 2025, 10, 220. https://doi.org/10.3390/biomimetics10040220
Büscher TH, Gorb SN. Biological Attachment Systems and Biomimetics—In Memory of William Jon P. Barnes. Biomimetics. 2025; 10(4):220. https://doi.org/10.3390/biomimetics10040220
Chicago/Turabian StyleBüscher, Thies H., and Stanislav N. Gorb. 2025. "Biological Attachment Systems and Biomimetics—In Memory of William Jon P. Barnes" Biomimetics 10, no. 4: 220. https://doi.org/10.3390/biomimetics10040220
APA StyleBüscher, T. H., & Gorb, S. N. (2025). Biological Attachment Systems and Biomimetics—In Memory of William Jon P. Barnes. Biomimetics, 10(4), 220. https://doi.org/10.3390/biomimetics10040220