A Novel Nature-Inspired Optimization Algorithm: Grizzly Bear Fat Increase Optimizer
Abstract
:1. Introduction
2. Grizzly Bear Fat Increase Optimization Algorithm
2.1. GBFIO Algorithm Theory
2.1.1. Phase 1: Finding Plants, Honey, Shellfish, Corpses, and Fishing Rivers
2.1.2. Phase 2: Hunting Phase and Safeguarding Cubs from Being Hunted
2.1.3. Phase 3: Fishing
2.2. Pseudo-Code and Execution Procedure of the Proposed GBFIO Algorithm
3. Results and Discussion
3.1. Benchmark Functions
3.2. Results
3.2.1. Assessment of UB Functions
3.2.2. Assessment of HDMM Functions
3.2.3. Assessment of FDMM Functions
3.2.4. Assessment of RSB Functions
3.3. Statistical Analysis
3.4. Comparison-Based Achieved Rank
3.5. Sensitivity Analysis
3.6. Comparison-Based Maximum Number of Objective Function Calculation Times
3.7. Comparison of the Proposed GBFIO Algorithm with Other Optimization Algorithms for Shifted and Rotated Unconstrained CEC2017 Test Functions
4. GBFIO in Engineering Problem
4.1. TCSD Problem
Minimize | ||
Subject to: | (25) | |
Variable range: |
4.2. WBD Problem
Minimize | ||
Subject to: | (26) | |
Variable range: |
4.3. PVD Problem
Minimize | ||
Subject to: | (28) | |
Variable range: |
4.4. SRD Problem
Minimize | ||
Subject to: | (29) | |
Variable range: |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
clc clear all pack %%%%%%%%%% n is dimension of objective function n = 30; %%%%%%%%%% Define the Range of Variables Xmax = ones(1,n) ×100; Xmin = ones(1,n)*(−100); %%%%%%%%%% n is the Population Size N = 150; %%%%%%%%%% Maximum Numbe od Iteration Iter_max = 500; %%%%%%%%%% Define the GBFIO prameters f = 2.5; eta = 1.25; Zeta = 0.3; fishing_number = 25; %%%%%%%%%% Generate the Initial Populations for i = 1:N Ipop(i,:) = rand(1,n).*(Xmax − Xmin) + Xmin; cost(i,:) = sum(Ipop(i,:).^2); end %%%%%%%%%% Sort the Initial Populations Based on Cost Function Ipop_mix = [Ipop,cost]; Ipop_sort = sortrows(Ipop_mix,n + 1); %%%%%%%%%% Specify the Fish, Honey, Body, Shell, and Plants Fish = Ipop_sort(1,:); Honey = Ipop_sort(2,:); Body = Ipop_sort(3,:); Shell = Ipop_sort(4,:); Plants = Ipop_sort(5,:); %%%%%%%%%% Start the Iterationa for Updating Populations for iter = 1:Iter_max for i = 1:N %%%%%%%%%% Start the Searching Phase r1 = rand(1,n); deltax_fish = (2.*r1.*( (r1).^0.5)).*(Fish(1,[1:n]) − Ipop(i,:)); deltax_honey = (r1.*((r1).^0.5)).*(Honey(1,[1:n]) − Ipop(i,:)); deltax_body = (0.5.*r1.*((r1).^0.5)).*(Body(1,[1:n]) − Ipop(i,:)); deltax_shell = (0.25.*r1.*((r1).^0.5)).*(Shell(1,[1:n]) − Ipop(i,:)); deltax_plants = (0.125.*r1.*((r1).^0.5)).*(Plants(1,[1:n]) − Ipop(i,:)); Xnew_search = Ipop(i,:) + deltax_fish + deltax_honey + deltax_body + deltax_shell + deltax_plants; Xnew_search = min(Xnew_search,Xmax); Xnew_search = max(Xnew_search,Xmin); cost_S = sum(Xnew_search.^2); %%%%%%%%%% Update the Population if cost_S < cost(i,1) Ipop(i,:) = Xnew_search; cost(i,1) = cost_S; end %%%%%%%%%% End the Searching Phase %%%%%%%%%% Start the Hunting Phase %%%%% Start the Hunting Phase: Bear Hunting Ipop_mix = [Ipop,cost]; Ipop_sort = sortrows(Ipop_mix,n + 1); Prey = Ipop_sort(1,:); A = (f*(1-iter/Iter_max)).*(2.*rand(1,n) − 1); D = abs(((2.*rand(1,n)).*Ipop(i,:))-(rand(1,n).*Prey(1,[1:n]))); X_hunt = Ipop(i,:)-A.*D; X_hunt = min(X_hunt,Xmax); X_hunt = max(X_hunt,Xmin); cost_hunt = sum(X_hunt.^2); %%%%% Start the Hunting Phase: Coyote Hunting L = randperm(N); LL = find(L~ = i); LLL = L(LL); J1 = LL(1); J2 = LL(2); J3 = LL(3); I_child = [Ipop(J1,:),cost(J1,1);Ipop(J2,:),cost(J2,1);Ipop(J3,:),cost(J3,1)]; I_chsort = sortrows(I_child,n + 1); A1 = (eta*(1-iter/Iter_max)).*(2.*rand(1,n) − 1); A2 = (eta*(1-iter/Iter_max)).*(2.*rand(1,n) − 1); D1 = abs(((2.*rand(1,n)).*I_chsort(2,[1:n])) − (rand(1,n).*I_chsort(1,[1:n]))); D2 = abs(((2.*rand(1,n)).*I_chsort(3,[1:n])) − (rand(1,n).*I_chsort(1,[1:n]))); X_ch = Ipop(i,:) − (A1.*D1 + A2.*D2); X_ch = min(X_ch,Xmax); X_ch = max(X_ch,Xmin); cost_ch = sum(X_ch.^2); %%%%%%%%%% Update the Population G = rand(1,1); if G < 0.75 if cost_hunt < cost(i,1) Ipop(i,:) = X_hunt; cost(i,1) = cost_hunt; end else if cost_ch < cost(i,1) Ipop(i,:) = X_ch; cost(i,1) = cost_ch; end end %%%%%%%%%% End the Hunting Phase %%%%%%%%%% Start the Fishing Phase for kk = 1:fishing_number Z = Zeta*(1 − iter/Iter_max)*cos(2*pi*rand(1,1)); X_fish = (1 + Z).*Ipop(i,:); X_fish = min(X_fish,Xmax); X_fish = max(X_fish,Xmin); cost_fishing = sum(X_fish.^2); %%%%%%%%%% Update the Population if cost_fishing < cost(i,1) Ipop(i,:) = X_fish; cost(i,1) = cost_fishing; end end %%%%%%%%%% Specify the Fish, Honey, Body, Shell, and Plants for Ipop_mix = [Ipop,cost]; Ipop_sort = sortrows(Ipop_mix,n + 1); Fish = Ipop_sort(1,:); Honey = Ipop_sort(2,:); Body = Ipop_sort(3,:); Shell = Ipop_sort(4,:); Plants = Ipop_sort(5,:); end %%%%%%%%%% Specify the Parameters of Convergence Curve Convergence_Curve(iter,1) = iter; Convergence_Curve(iter,2) = Ipop_sort(1,n + 1); end %%%%%%%%%% Print the Best Soultion Best = Ipop_sort(1,:) plot(Convergence_Curve(:,1),Convergence_Curve(:,2)) |
References
- Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Chapter 10—Metaheuristic algorithms: A comprehensive review. In Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 185–231. [Google Scholar] [CrossRef]
- Dehghani, M.; Hubálovský, Š.; Trojovský, P. Cat and mouse based optimizer: A new nature-inspired optimization algorithm. Sensors 2021, 21, 5214. [Google Scholar] [CrossRef] [PubMed]
- Theodorakatos, N.P.; Babu, R.; Theodoridis, C.A.; Moschoudis, A.P. Mathematical models for the single-channel and multi-channel PMU allocation problem and their solution algorithms. Algorithms 2024, 17, 191. [Google Scholar] [CrossRef]
- Theodorakatos, N.P.; Moschoudis, A.P.; Lytras, M.D.; Kantoutsis, K.T. Research on optimization procedure of PMU positioning problem achieving maximum observability based on heuristic algorithms. AIP Conf. Proc. 2023, 2872, 120032. [Google Scholar]
- GhasemiGarpachi, M.; Dehghani, M.; Aly, M.; Rodriguez, J. Multi-Objective Improved Differential Evolution Algorithm-Based Smart Home Energy Management System Considering Energy Storage System, Photovoltaic, and Electric Vehicle. IEEE Access. 2025, 13, 89946–89966. [Google Scholar] [CrossRef]
- Zamani, H.; Nadimi-Shahraki, M.H.; Mirjalili, S.; Soleimanian Gharehchopogh, F.; Oliva, D. A critical review of moth-flame optimization algorithm and its variants: Structural reviewing, performance evaluation, and statistical analysis. Arch. Comput. Methods Eng. 2024, 31, 2177–2225. [Google Scholar] [CrossRef]
- Pardalos, P.M.; Mavridou, T.D. Simulated annealing. In Encyclopedia of Optimization; Springer International Publishing: Cham, Switzerland, 2024; pp. 1–3. [Google Scholar]
- Hansen, P.; Mladenović, N.; Todosijević, R.; Hanafi, S. Variable neighborhood search: Basics and variants. EURO J. Comput. Optim. 2017, 5, 423–454. [Google Scholar] [CrossRef]
- Resende, M.G.; Ribeiro, C.C. Greedy randomized adaptive search procedures: Advances and extensions. In Handbook of Metaheuristics, Part of the Book Series: International Series in Operations Research & Management Science; Springer: Cham, Switzerland, 2019; Volume 272, pp. 169–220. [Google Scholar]
- Al-Betar, M.A.; Aljarah, I.; Awadallah, M.A.; Faris, H.; Mirjalili, S. Adaptive β-hill climbing for optimization. Soft Comput. 2019, 23, 13489–13512. [Google Scholar] [CrossRef]
- Hoos, H.H.; Stϋtzle, T. Stochastic local search. In Handbook of Approximation Algorithms and Metaheuristics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018; pp. 297–307. [Google Scholar]
- Prajapati, V.K.; Jain, M.; Chouhan, L. Tabu search algorithm (TSA): A comprehensive survey. In Proceedings of the 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE), Jaipur, India, 7–8 February 2020; pp. 1–8. [Google Scholar]
- Voudouris, C.; Tsang, E.P.; Alsheddy, A. Guided local search. In Handbook of Metaheuristics; Springer: Boston, MA, USA, 2010; pp. 321–361. [Google Scholar]
- Koutsoukis, N.C.; Manousakis, N.M.; Georgilakis, P.S.; Korres, G.N. Numerical observability method for optimal phasor measurement units placement using recursive Tabu search method. IET Gener. Transm. Distrib. 2013, 7, 347–356. [Google Scholar] [CrossRef]
- Shehab, M.; Abualigah, L.; Al Hamad, H.; Alabool, H.; Alshinwan, M.; Khasawneh, A.M. Moth–flame optimization algorithm: Variants and applications. Neural Comput. Appl. 2020, 32, 9859–9884. [Google Scholar] [CrossRef]
- Opara, K.R.; Arabas, J. Differential Evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2019, 44, 546–558. [Google Scholar] [CrossRef]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A comprehensive survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Kramer, O.; Kramer, O. Genetic Algorithms; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Guo, W.; Chen, M.; Wang, L.; Mao, Y.; Wu, Q. A survey of biogeography-based optimization. Neural Comput. Appl. 2017, 28, 1909–1926. [Google Scholar] [CrossRef]
- Slowik, A.; Kwasnicka, H. Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 2020, 32, 12363–12379. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, H.; Chugh, T.; Guo, D.; Miettinen, K. Data-driven evolutionary optimization: An overview and case studies. IEEE Trans. Evol. Comput. 2018, 23, 442–458. [Google Scholar] [CrossRef]
- Yang, X.S.; Hossein Gandomi, A. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef]
- Hussien, A.G.; Amin, M.; Wang, M.; Liang, G.; Alsanad, A.; Gumaei, A.; Chen, H. Crow search algorithm: Theory, recent advances, and applications. IEEE Access 2020, 8, 173548–173565. [Google Scholar] [CrossRef]
- Ranjan, R.K.; Kumar, V. A systematic review on fruit fly optimization algorithm and its applications. Artif. Intell. Rev. 2023, 56, 13015–13069. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, D. A systematic review on firefly algorithm: Past, present, and future. Arch. Comput. Methods Eng. 2021, 28, 3269–3291. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Assiri, A.S.; Hussien, A.G.; Amin, M. Ant lion optimization: Variants, hybrids, and applications. IEEE Access 2020, 8, 77746–77764. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Guerrero-Luis, M.; Valdez, F.; Castillo, O. A review on the cuckoo search algorithm. In Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications, Studies in Computational Intelligence; Castillo, O., Melin, P., Eds.; Springer: Cham, Switzerland, 2021; Volume 940, pp. 113–124. [Google Scholar]
- Meraihi, Y.; Gabis, A.B.; Mirjalili, S.; Ramdane-Cherif, A. Grasshopper optimization algorithm: Theory, variants, and applications. IEEE Access 2021, 9, 50001–50024. [Google Scholar] [CrossRef]
- Kaveh, A.; Farhoudi, N. A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 2013, 59, 53–70. [Google Scholar] [CrossRef]
- Dubey, M.; Kumar, V.; Kaur, M.; Dao, T.P. A systematic review on harmony search algorithm: Theory, literature, and applications. Math. Probl. Eng. 2021, 2021, 5594267. [Google Scholar] [CrossRef]
- Oladejo, S.O.; Ekwe, S.O.; Akinyemi, L.A.; Mirjalili, S.A. The deep sleep optimiser: A human-based metaheuristic approach. IEEE Access. 2023, 11, 83639–83665. [Google Scholar] [CrossRef]
- Zou, F.; Chen, D.; Xu, Q. A survey of teaching–learning-based optimization. Neurocomputing 2019, 335, 366–383. [Google Scholar] [CrossRef]
- He, S.; Wu, Q.H.; Saunders, J.R.. Group search optimizer: An optimization algorithm inspired by animal searching behavior. IEEE Trans. Evol. Comput. 2009, 13, 973–990. [Google Scholar] [CrossRef]
- Kaveh, A.; Kaveh, A. Imperialist competitive algorithm. In Advances in Metaheuristic Algorithms for Optimal Design of Structures; Springer: Cham, Switzerland, 2017; pp. 353–373. [Google Scholar]
- Erol, O.K.; Eksin, I. A new optimization method: Big bang–big crunch. Adv. Eng. Softw. 2006, 37, 106–111. [Google Scholar] [CrossRef]
- Abedinpourshotorban, H.; Shamsuddin, S.M.; Beheshti, Z.; Jawawi, D.N. Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm Evol. Comput. 2016, 26, 8–22. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Hashemi, A.; Dowlatshahi, M.B.; Nezamabadi-Pour, H. Gravitational search algorithm: Theory, literature review, and applications. In Handbook of AI-Based Metaheuristics; CRC Press: Boca Raton, FL, USA, 2021; pp. 119–150. [Google Scholar]
- Kaveh, A.; Kaveh, A. Water evaporation optimization algorithm. In Advances in Metaheuristic Algorithms for Optimal Design of Structures; Springer: Cham, Switzerland, 2017; pp. 489–509. [Google Scholar]
- Kaveh, A.; Motie Share, M.A.; Moslehi, M. Magnetic charged system search: A new meta-heuristic algorithm for optimization. Acta Mech. 2013, 224, 85–107. [Google Scholar] [CrossRef]
- Formato, R.A. Central force optimization: A new deterministic gradient-like optimization metaheuristic. Opsearch 2009, 46, 25–51. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [Google Scholar] [CrossRef]
- Zitouni, F.; Harous, S.; Maamri, R. The solar system algorithm: A novel metaheuristic method for global optimization. IEEE Access 2020, 9, 4542–4565. [Google Scholar] [CrossRef]
- Kashan, A.H. A new metaheuristic for optimization: Optics inspired optimization (OIO). Comput. Oper. Res. 2015, 55, 99–125. [Google Scholar] [CrossRef]
- Kiran, M.S. TSA: Tree-seed algorithm for continuous optimization. Expert Syst. Appl. 2015, 42, 6686–6698. [Google Scholar] [CrossRef]
- Beşkirli, A.; Dağ, İ.; Kiran, M.S. A tree seed algorithm with multi-strategy for parameter estimation of solar photovoltaic models. Appl. Soft Comput. 2024, 167, 112220. [Google Scholar] [CrossRef]
- Ong, K.M.; Ong, P.; Sia, C.K. A carnivorous plant algorithm for solving global optimization problems. Appl. Soft Comput. 2021, 98, 106833. [Google Scholar] [CrossRef]
- Beşkirli, A.; Dağ, İ. I-CPA: An improved carnivorous plant algorithm for solar photovoltaic parameter identification problem. Biomimetics 2023, 8, 569. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.S. Flower pollination algorithm for global optimization. In International Conference on Unconventional Computing and Natural Computation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249. [Google Scholar]
- Ehteram, M.; Seifi, A.; Banadkooki, F.B. Sunflower optimization algorithm. In Hellenic Conference on Artificial Intelligence; Springer Nature Singapore: Singapore, 2022; pp. 43–47. [Google Scholar]
- Zitouni, F.; Harous, S.; Mirjalili, S.; Mohamed, A.; Bouaicha, H.A.; Mohamed, A.W.; Limane, A.; Lakbichi, R.; Ferhat, A. The Walking Palm Tree algorithm: A new Metaheuristic Algorithm for Solving Optimization Problems. In Proceedings of the International Conference on Advanced Intelligent Systems for Sustainable Development (ICEIS 2024), Aflou, Algeria, 26–27 June 2024. [Google Scholar]
- Chu, S.C.; Feng, Q.; Zhao, J.; Pan, J.S. BFGO: Bamboo forest growth optimization algorithm. J. Internet Technol. 2023, 24, 314. [Google Scholar]
- Dalirinia, E.; Jalali, M.; Yaghoobi, M.; Tabatabaee, H. Lotus effect optimization algorithm (LEA): A lotus nature-inspired algorithm for engineering design optimization. J. Supercomput. 2024, 80, 761–799. [Google Scholar] [CrossRef]
- Mergos, P.E.; Yang, X.S. Flower pollination algorithm with pollinator attraction. Evol. Intell. 2023, 16, 873–889. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Hubálovský, Š. GMBO: Group mean-based optimizer for solving various optimization problems. Mathematics 2021, 9, 1190. [Google Scholar] [CrossRef]
- Dehghani, M.; Bornapour, S.M.; Sheybani, E. Enhanced Energy Management System in Smart Homes Considering Economic, Technical, and Environmental Aspects: A Novel Modification-Based Grey Wolf Optimizer. Energies 2025, 18, 1071. [Google Scholar] [CrossRef]
- Yang, X.S. Engineering Optimization: An Introduction with Metaheuristic Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Dehghani, M.; Bornapour, S.M. Smart Homes Energy Management: Optimal Multi-Objective Appliance Scheduling Model Considering Electrical Energy Storage and Renewable Energy Resources. Heliyon 2025, 11, e42417. [Google Scholar] [CrossRef] [PubMed]
- Shokri, M.; Niknam, T.; Mohammadi, M.; Dehghani, M.; Siano, P.; Ouahada, K.; Sarvarizade-Kouhpaye, M. A novel stochastic framework for optimal scheduling of smart cities as an energy hub. IET Gener. Transm. Distrib. 2024, 18, 2421–2434. [Google Scholar] [CrossRef]
- Shokri, M.; Niknam, T.; Sarvarizade-Kouhpaye, M.; Pourbehzadi, M.; Javidi, G.; Sheybani, E.; Dehghani, M. A Novel Optimal Planning and Operation of Smart Cities by Simultaneously Considering Electric Vehicles, Photovoltaics, Heat Pumps, and Batteries. Processes 2024, 12, 1816. [Google Scholar] [CrossRef]
- Alastair Fothergill and Keith Scholey (Directors), Bears, 2014, Disney Nature. Available online: https://www.imdb.com/title/tt2458776/ (accessed on 1 March 2024).
- MJLR McCoy (Directors). Grizzly Bears: The Drama of the Alaska Salmon Run. 2015. Available online: https://www.youtube.com/watch?v=HeEyJo838PA (accessed on 1 October 2024).
- Gunther, K.A.; Shoemaker, R.R.; Frey, K.L.; Haroldson, M.A.; Cain, S.L.; Van Manen, F.T.; Fortin, J.K. Dietary breadth of grizzly bears in the Greater Yellowstone Ecosystem. Ursus 2014, 25, 60–72. [Google Scholar] [CrossRef]
- Munro, R.H.; Nielsen, S.E.; Price, M.H.; Stenhouse, G.B.; Boyce, M.S. Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. J. Mammal. 2006, 87, 1112–1121. [Google Scholar] [CrossRef]
- Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [Google Scholar] [CrossRef]
- Li, X.; Engelbrecht, A.; Epitropakis, M.G. Benchmark Functions for CEC’2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization. RMIT University, Evolutionary Computation and Machine Learning Group, Australia, Tech. Rep. 2013 Mar. Available online: https://www.epitropakis.co.uk/content/benchmark-functions-cec2013-special-session-and-competition-niching-methods-multimodal (accessed on 1 June 2024).
- de Barros, R.S.; Hidalgo, J.I.; de Lima Cabral, D.R. Wilcoxon rank sum test drift detector. Neurocomputing 2018, 275, 1954–1963. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Coello, C.A.; Montes, E.M. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inform. 2002, 16, 193–203. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications. Sensors 2022, 22, 855. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovský, P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 2023, 259, 110011. [Google Scholar] [CrossRef]
- Deb, K. Optimal design of a welded beam via genetic algorithms. AIAA J. 1991, 29, 2013–2015. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.S. Benchmark problems in structural optimization. In Computational Optimization, Methods and Algorithms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 259–281. [Google Scholar]
- Lin, M.H.; Tsai, J.F.; Hu, N.Z.; Chang, S.C. Design optimization of a speed reducer using deterministic techniques. Math. Probl. Eng. 2013, 2013, 419043. [Google Scholar] [CrossRef]
Start the GBFIO algorithm | |||||
Input initial parameters, variables, and constraints | |||||
Generate the initial population randomly within the range of variable values based on Equation (22) | |||||
Compute the objective function | |||||
For | |||||
For each population | |||||
Searching Phase | , , , , and are selected as the best top 5 members, receptively. | ||||
Calculate the new population based on the searching phase by Equations (1)–(11) | |||||
Compute the objective function | |||||
If the objective function of the new population < prior objective function | |||||
Updating the population | |||||
End if | |||||
Hunt and Care Phases | Hunt Phase | is chosen as the best member of the population | |||
Compute the new hunting population based on the hunting phase by Equations (12)–(14) | |||||
Care Phase | , , and are chosen as three random members (The best member of these 3 selected members is chosen as coyote, and the other 2 members are bear cubs) | ||||
Compute the entire new care population based on Equations (15)–(17) | |||||
Select Phase | Select the new population of the hunt and care phase based on Equation (18). | ||||
, else | |||||
End if | |||||
If the objective function of the new population < prior objective function | |||||
updating the population | |||||
End if | |||||
Fishing Phase | Each updated population is a bear that is fishing 25 times each day | ||||
For i = 1:25 | |||||
Compute the new fishing population by Equation (21) | |||||
Compute the new objective function | |||||
If the objective function of the new population < prior objective function | |||||
Updating the population | |||||
End if | |||||
End for | |||||
End for | |||||
Select the best member of the updated population as a solution | |||||
End the GBFIO algorithm |
Cost Function | Dimension | Range | |
---|---|---|---|
30, 100 | [−100, 100] | 0 | |
30, 100 | [−10, 10] | 0 | |
30, 100 | [−100, 100] | 0 | |
30, 100 | [−100, 100] | 0 | |
30, 100 | [−30, 30] | 0 | |
30, 100 | [−100, 100] | 0 | |
30, 100 | [−1.28, 1.28] | 0 |
Cost Function | Dimension | Range | |
---|---|---|---|
30, 100 | [−500, 500] | −418.9829 × Dimension | |
30, 100 | [−5.12, 5.12] | 0 | |
30, 100 | [−32, 32] | 0 | |
30, 100 | [−600, 600] | 0 | |
30, 100 | [−50, 50] | 0 | |
30, 100 | [−50, 50] | 0 |
Cost Function | Dimension | Range | |
---|---|---|---|
2 | [−65.53, 65.53] | 0.998 | |
4 | [−5, 5] | 0.0003 | |
2 | [−5, 5] | −1.0316 | |
2 | [−5, 5] | 0.398 | |
2 | [−5, 5] | 3 | |
3 | [0, 1] | −3.86 | |
; | |||
6 | [0, 1] | −3.22 | |
; | |||
4 | [0, 10] | −10.1532 | |
; | |||
4 | [0, 10] | −10.4029 | |
; | |||
4 | [0, 10] | −10.5364 | |
; |
Cost Function | Dimension | Range | |
---|---|---|---|
2 | [−2π, 2π] | −106.764537 | |
2 | [−100, 100] | 0.5 | |
20 | [−100, 100] | 0 | |
2 | [−10, 10] | −8.03985 | |
2 | [−10, 10] | 1.00 × 10−4 | |
40 | [−10, 10] | 0 | |
50 | [−11, 11] | 0 | |
40 | [−512, 512] | −955.6087 |
Dimension = 30 | Dimension = 100 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GBFIO | GWO | TLBO | DE | PSO | GBFIO | GWO | TLBO | DE | PSO | ||
Mean | 0 | 6.7809 × 10−217 | 1.3516 × 10−49 | 6.0160 × 10−18 | 0.35710 | 0 | 3.5371 × 10−99 | 2.384 × 10−3 | 0.83159 | 701.973 | |
SD | 0 | 0 | 5.6372 × 10−49 | 2.6217 × 10−18 | 0.17647 | 0 | 3.6119 × 10−99 | 0.0104 | 2.5849 | 135.75 | |
Best | 0 | 6.77 × 10−222 | 8.52 × 10−75 | 1.77 × 10−18 | 0.11052 | 0 | 9.02544 × 10−101 | 2.51064 × 10−55 | 6.86496 × 10−5 | 458.821 | |
Rank-1 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Rank-2 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Mean | 1.1907 × 10−316 | 1.1846 × 10−107 | 1.0374 × 10−7 | 2.9275 × 10−11 | 1.2999 | 4.57384 × 10−304 | 8.57316 × 10−55 | 2.34113 × 10−8 | 0.00242 | 33.54858 | |
SD | 0 | 2.1357 × 10−107 | 4.4653 × 10−7 | 6.7068 × 10−12 | 0.6894 | 0 | 1.1311 × 10−54 | 8.0351 × 10−8 | 4.0872 × 10−4 | 4.5074 | |
Best | 4.9766 × 10−319 | 2.3700 × 10−1104 | 3.2400 × 10−35 | 1.2200 × 10−11 | 0.4934 | 2.26229 × 10−305 | 1.37055 × 10−55 | 7.09498 × 10−34 | 0.00188 | 25.94422 | |
Rank-1 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Rank-2 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Mean | 0 | 1.5762 × 10−28 | 0.0048 | 2766 | 80.2736 | 0 | 49.0044 | 6250.7 | 293,331.1 | 13,741.9 | |
SD | 0 | 6.6136 × 10−28 | 0.0148 | 1.0682 × 10+3 | 42.7337 | 0 | 96.8952 | 9837.4 | 26,324 | 3896.1 | |
Best | 0 | 3.1200 × 10−35 | 4.4300 × 10−12 | 1170 | 29.9414 | 0 | 2.03276 | 12.08 | 248,065.9 | 8082.3 | |
Rank-1 | 1 | 2 | 3 | 5 | 4 | 1 | 2 | 3 | 5 | 4 | |
Rank-2 | 1 | 2 | 3 | 5 | 4 | 1 | 2 | 3 | 5 | 4 | |
Mean | 5.4237 × 10−297 | 1.1256 × 10−30 | 3.9335 | 2.4319 | 4.5026 | 1.84971 × 10−289 | 0.04655 | 10.44494 | 29.260 | 18.678 | |
SD | 0 | 3.0835 × 10−30 | 15.7455 | 1.6745 | 1.7914 | 0 | 0.0645 | 22.8253 | 5.2728 | 2.529 | |
Best | 7.6100 × 10−299 | 2.1400 × 10−33 | 2.3900 × 10−20 | 0.0113 | 1.4392 | 8.62841 × 10−293 | 0.0012 | 1.82061 × 10−10 | 21.312 | 13.140 | |
Rank-1 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 5 | 4 | |
Rank-2 | 1 | 2 | 3 | 4 | 5 | 1 | 3 | 2 | 5 | 4 | |
Mean | 23.95 | 25.39 | 26.565 | 56.00 | 104.5487 | 95.195 | 95.981 | 16210.6 | 819.28 | 37,611.21 | |
SD | 0.2156 | 0.5166 | 0.9366 | 29.8059 | 90.8058 | 0.6437 | 0.8265 | 69351 | 1133.6 | 16,267 | |
Best | 23.5 | 24.2 | 25.5 | 22 | 29.1017 | 94.655 | 94.741 | 97.74243 | 193.38 | 14,952 | |
Rank-1 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 4 | 3 | 5 | |
Rank-2 | 2 | 3 | 4 | 1 | 5 | 1 | 2 | 3 | 4 | 5 | |
Mean | 6.8518 × 10−14 | 3.6905 × 10−6 | 2.2210 | 5.1145 × 10−19 | 0.0250 | 1.48247 | 2.97631 | 17.5878 | 0.197978 | 75.23681 | |
SD | 1.3656 × 10−13 | 1.0026 × 10−6 | 0.3736 | 2.1176 × 10−19 | 0.0161 | 0.5605 | 0.8961 | 0.9210 | 0.5238 | 16.0249 | |
Best | 8.8800 × 10−16 | 2.2100 × 10−6 | 1.3400 | 1.7900 × 10−19 | 0.0028 | 0.40982 | 1.74401 | 15.49978 | 4.10507 × 10−6 | 45.91405 | |
Rank-1 | 2 | 3 | 5 | 1 | 4 | 2 | 3 | 4 | 1 | 5 | |
Rank-2 | 2 | 3 | 5 | 1 | 4 | 2 | 3 | 4 | 1 | 5 | |
Mean | 3.2825 × 10−5 | 7.3435 × 10−4 | 0.0037 | 0.0086 | 0.0183 | 3.23462 × 10−5 | 7.33905 × 10−4 | 0.00203 | 0.00953 | 0.016165 | |
SD | 1.6191 × 10−5 | 2.8128 × 10−4 | 0.0067 | 0.0014 | 0.0067 | 9.7962 × 10−6 | 3.2896 × 10−4 | 0.00105 | 0.0025 | 0.0079 | |
Best | 1.1800 × 10−5 | 3.4100 × 10−4 | 3.9900 × 10−4 | 0.0063 | 0.0043 | 1.424679 × 10−5 | 2.95192 × 10−4 | 0.00049 | 0.00464 | 0.00688 | |
Rank-1 | 1 | 2 | 3 | 5 | 4 | 1 | 2 | 3 | 4 | 5 | |
Rank-2 | 1 | 2 | 3 | 5 | 4 | 1 | 2 | 3 | 4 | 5 |
Dimension = 30 | Dimension = 100 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GBFIO | GWO | TLBO | DE | PSO | GBFIO | GWO | TLBO | DE | PSO | ||
Mean | −9523.5 | −6978.5 | −4889.5 | −8886.4 | −6224 | −26,531 | −19,559 | −8781 | −12,239.7 | −18,962.5 | |
SD | 1754 | 1012.2 | 458.044 | 1480.3 | 838.1 | 6045.3 | 4135 | 966.5 | 640.7 | 2194 | |
Best | −11,400 | −8620 | −5770 | −11,800 | −7889.6 | −33,375.9 | −22,837.4 | −12,274 | −13,645.3 | −21,910.3 | |
Rank-1 | 1 | 3 | 5 | 2 | 4 | 1 | 2 | 5 | 4 | 3 | |
Rank-2 | 2 | 3 | 5 | 1 | 4 | 1 | 2 | 5 | 4 | 3 | |
Mean | 0 | 9.2655 | 158.015 | 86.585 | 29.3828 | 0 | 12.641 | 635.0103 | 697.644 | 258.951 | |
SD | 0 | 6.4682 | 38.4482 | 13.0317 | 6.7851 | 0 | 8.46656 | 323.53 | 29.469 | 30.445 | |
Best | 0 | 0 | 60.3 | 58.1 | 18.095 | 0 | 0.99759 | 1.52908 | 641.77 | 199.166 | |
Rank-1 | 1 | 2 | 5 | 4 | 3 | 1 | 2 | 4 | 5 | 3 | |
Rank-2 | 1 | 1 | 4 | 3 | 2 | 1 | 2 | 3 | 5 | 4 | |
Mean | 4.4400 × 10−15 | 7.1025 × 10−15 | 8.9155 | 5.2165 × 10−10 | 3.0216 | 4.44089 × 10−15 | 2.32703 × 10−14 | 12.8557 | 3.32459 × 10−2 | 7.9474 | |
SD | 7.8886 × 10−31 | 1.5372 × 10−15 | 8.1385 | 1.7844 × 10−10 | 0.7375 | 0 | 4.06627 × 10−15 | 8.85245 | 8.03283 × 10−2 | 0.65451 | |
Best | 4.4400 × 10−15 | 4.4400 × 10−15 | 4.4400 × 10−15 | 2.9400 × 10−10 | 1.5185 | 4.44089 × 10−15 | 1.50990 × 10−14 | 7.99361 × 10−15 | 9.87967 × 10−4 | 6.72938 | |
Rank-1 | 1 | 2 | 5 | 3 | 4 | 1 | 2 | 5 | 3 | 4 | |
Rank-2 | 1 | 1 | 1 | 2 | 3 | 1 | 3 | 2 | 4 | 5 | |
Mean | 0 | 0.0055 | 0.0197 | 0 | 0.2906 | 0 | 1.08646 × 10−3 | 1.84587 × 10−6 | 2.87534 × 10−3 | 8.41713 | |
SD | 0 | 0.0092 | 0.0793 | 0 | 0.1456 | 0 | 3.26004 × 10−3 | 8.04594 × 10−6 | 6.18704 × 10−3 | 1.44086 | |
Best | 0 | 0 | 0 | 0 | 0.0617 | 0 | 0 | 0 | 3.57892 × 10−5 | 6.13197 | |
Rank-1 | 1 | 3 | 2 | 1 | 4 | 1 | 3 | 2 | 4 | 5 | |
Rank-2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 3 | |
Mean | 5.5608 × 10−16 | 0.0013 | 0.1460 | 5.8625 × 10−19 | 1.4325 | 6.52623 × 10−3 | 5.37489 × 10−2 | 2.02809 × 10+7 | 1.51014 | 12.39863 | |
SD | 5.4263 × 10−16 | 0.0027 | 0.0559 | 4.7541 × 10−19 | 1.1414 | 2.77643 × 10−3 | 1.58948 × 10−2 | 8.83913 × 10+7 | 5.23148 | 4.24249 | |
Best | 4.9600 × 10−17 | 1.1400 × 10−7 | 0.0785 | 1.1700 × 10−19 | 0.3464 | 2.19108 × 10−3 | 3.30271 × 10−2 | 5.10567 × 10−1 | 2.53465 × 10−5 | 6.641798 | |
Rank-1 | 2 | 3 | 4 | 1 | 5 | 1 | 2 | 5 | 3 | 4 | |
Rank-2 | 2 | 3 | 4 | 1 | 5 | 2 | 3 | 4 | 1 | 5 | |
Mean | 3.3100 × 10−5 | 0.0252 | 1.5150 | 0.0530 | 3.9508 | 2.98239 | 2.93852 | 12.63706 | 396.468 | 240.727 | |
SD | 1.4428 × 10−4 | 0.0481 | 0.2505 | 0.2265 | 2.9004 | 0.5132 | 0.57558 | 7.56417 | 1228.85 | 131.559 | |
Best | 9.9300 × 10−15 | 2.8800 × 10−6 | 1.0700 | 2.4600 × 10−18 | 0.6260 | 2.0708 | 1.87816 | 9.77515 | 0.315757 | 156.342 | |
Rank-1 | 1 | 2 | 4 | 3 | 5 | 2 | 1 | 3 | 5 | 4 | |
Rank-2 | 2 | 3 | 5 | 1 | 4 | 3 | 2 | 4 | 1 | 5 |
GBFIO | GWO | TLBO | DE | PSO | ||
---|---|---|---|---|---|---|
Mean | 0.998003838 | 0.998003838 | 0.99800467 | 0.998003838 | 1.14710789 | |
SD | 0 | 6.1799 × 10−12 | 2.7057 × 10−6 | 0 | 0.354938656 | |
Best | 0.998003838 | 0.998003838 | 0.998003838 | 0.998003838 | 0.998003838 | |
Rank-1 | 1 | 2 | 3 | 1 | 4 | |
Rank-2 | 1 | 1 | 1 | 1 | 1 | |
Mean | 3.07 × 10−4 | 0.0033 | 5.7905 × 10−4 | 5.8005 × 10−4 | 4.4484 × 10−4 | |
SD | 0 | 0.0072 | 2.7999 × 10−4 | 1.3945 × 10−4 | 3.2697 × 10−4 | |
Best | 3.07 × 10−4 | 3.07 × 10−4 | 3.09 × 10−4 | 3.07 × 10−4 | 3.0749 × 10−4 | |
Rank-1 | 1 | 5 | 3 | 4 | 2 | |
Rank-2 | 1 | 1 | 3 | 1 | 2 | |
Mean | −1.0316 | −1.0316 | −1.0316 | −1.0316 | −1.0316 | |
SD | 2.1642 × 10−16 | 7.5654 × 10−10 | 7.1017 × 10−5 | 2.2204 × 10−16 | 2.1642 × 10−16 | |
Best | −1.0316 | −1.0316 | −1.0316 | −1.0316 | −1.0316 | |
Rank-1 | 1 | 3 | 4 | 2 | 1 | |
Rank-2 | 1 | 1 | 1 | 1 | 1 | |
Mean | 0. 39788736 | 0.39788738 | 0.39788738 | 0.39788736 | 0.39788736 | |
SD | 0 | 2.6038 × 10−8 | 4.3017 × 10−8 | 0 | 0 | |
Best | 0.39788736 | 0.39788736 | 0.39788736 | 0.39788736 | 0.39788736 | |
Rank-1 | 1 | 2 | 3 | 1 | 1 | |
Rank-2 | 1 | 1 | 1 | 1 | 1 | |
Mean | 2.99999999999992 | 3.00000005812866 | 3.00017061441758 | 2.99999999999992 | 2.99999999999992 | |
SD | 0 | 9.8523 × 10−8 | 4.4211 × 10−4 | 9.0468 × 10−16 | 2.2204 × 10−16 | |
Best | 2.99999999999992 | 3.00000000025439 | 2.99999999999995 | 2.99999999999992 | 2.99999999999992 | |
Rank-1 | 1 | 4 | 5 | 3 | 2 | |
Rank-2 | 1 | 3 | 2 | 1 | 1 | |
Mean | −3.862782 | −3.862779 | −3.862460 | −3.862782 | −3.862782 | |
SD | 2.2204 × 10−15 | 6.0993 × 10−6 | 0.0012 | 2.2204 × 10−15 | 2.2004 × 10−15 | |
Best | −3.862782 | −3.862782 | −3.862782 | −3.862782 | −3.862782 | |
Rank-1 | 2 | 3 | 4 | 2 | 1 | |
Rank-2 | 1 | 1 | 1 | 1 | 1 | |
Mean | −3.207927 | −3.196545 | −3.168953 | −3.202468 | −3.204332 | |
SD | 0.0087 | 0.022283 | 0.034273 | 0.006574 | 0.008985 | |
Best | −3.222190 | −3.222189 | −3.207691 | −3.222190 | −3.222190 | |
Rank-1 | 1 | 4 | 5 | 3 | 2 | |
Rank-2 | 1 | 2 | 3 | 1 | 1 | |
Mean | −10.153200 | −9.053145 | −8.791638 | −9.895080 | −8.272518 | |
SD | 2.8087 × 10−15 | 2.2271 | 1.4955 | 1.1002 | 3.2574 | |
Best | −10.153200 | −10.153193 | −10.121451 | −10.153200 | −10.153200 | |
Rank-1 | 1 | 3 | 4 | 2 | 5 | |
Rank-2 | 1 | 2 | 3 | 1 | 1 | |
Mean | −10.402915 | −10.139136 | −9.467246 | −10.402915 | −10.020248 | |
SD | 1.7764 × 10−15 | 1.1495 | 1.2249 | 1.7764 × 10−15 | 1.6680 | |
Best | −10.402915 | −10.402912 | −10.400771 | −10.402915 | −10.402915 | |
Rank-1 | 1 | 2 | 4 | 1 | 3 | |
Rank-2 | 1 | 2 | 3 | 1 | 1 | |
Mean | −10.536443 | −10.536363 | −9.500209 | −9.945075 | −10.536443 | |
SD | 1.1916 × 10−15 | 7.7539 × 10−5 | 1.3665 | 1.7827 | 1.1235 × 10−15 | |
Best | −10.536443 | −10.536440 | −10.535909 | −10.536443 | −10.536443 | |
Rank-1 | 2 | 3 | 5 | 4 | 1 | |
Rank-2 | 1 | 2 | 3 | 1 | 1 |
GBFIO | GWO | TLBO | DE | PSO | ||
---|---|---|---|---|---|---|
Mean | −106.764537 | −106.764532 | −106.75358 | −106.764537 | −106.764537 | |
SD | 1.5723 × 10−9 | 7.3496 × 10−6 | 0.032729 | 2.7335 × 10−14 | 2.9296 × 10−14 | |
Best | −106.764537 | −106.764537 | −106.764537 | −106.764537 | −106.764537 | |
Rank-1 | 3 | 4 | 5 | 1 | 2 | |
Rank-2 | 1 | 1 | 1 | 1 | 1 | |
Mean | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | |
SD | 1.6784 × 10−14 | 1.0430 × 10−11 | 2.5923 × 10−12 | 0 | 0 | |
Best | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | |
Rank-1 | 2 | 4 | 3 | 1 | 1 | |
Rank-2 | 1 | 1 | 1 | 1 | 1 | |
Mean | 3.993739 | 4.242761 | 6.757190 | 5.419060 | 4.747401 | |
SD | 0.850113 | 1.13408372494118 | 0.558152 | 0.270471 | 0.761412 | |
Best | 1.805434 | 2.40637 | 5.698089 | 4.933010 | 3.215879 | |
Rank-1 | 1 | 2 | 5 | 4 | 3 | |
Rank-2 | 1 | 2 | 5 | 4 | 3 | |
Mean | −8.03985 | −8.03922 | −8.03937 | −8.03983 | −8.03898 | |
SD | 8.76466 × 10−6 | 3.89416 × 10−4 | 4.94818 × 10−4 | 8.60975 × 10−5 | 1.40674 × 10−3 | |
Best | −8.03985 | −8.03985 | −8.03985 | −8.03985 | −8.03945 | |
Rank-1 | 1 | 4 | 3 | 2 | 5 | |
Rank-2 | 1 | 1 | 1 | 1 | 1 | |
Mean | 0.03464 | 0.37738 | 0.31450 | 0.00037 | 0.00055 | |
SD | 0.05045 | 0.09128 | 0.06964 | 0.00047 | 0.00055 | |
Best | 1.00 × 10−4 | 0.234437 | 0.173517 | 1.00 × 10−4 | 1.00 × 10−4 | |
Rank-1 | 3 | 5 | 4 | 1 | 2 | |
Rank-2 | 1 | 3 | 2 | 1 | 1 | |
Mean | 0.01795 | 4.14519 | 7.85220 | 4.50203 | 4.23656 | |
SD | 0.01091 | 4.21639 | 0.31422 | 0.42907 | 0.80989 | |
Best | 0.0051 | 0.70668 | 6.78426 | 3.55829 | 2.97515 | |
Rank-1 | 1 | 2 | 5 | 4 | 3 | |
Rank-2 | 1 | 2 | 5 | 4 | 3 | |
Mean | 0.117687 | 0.407370 | 1.056183 | 0.006566 | 0.386806 | |
SD | 0.086418 | 0.160198 | 1.186894 | 0.006526 | 0.184927 | |
Best | 6.492597 × 10−5 | 0.165007 | 0.297562 | 1.677507 × 10−5 | 0.110005 | |
Rank-1 | 2 | 4 | 5 | 1 | 3 | |
Rank-2 | 2 | 4 | 5 | 1 | 3 | |
Mean | −955.608723 | −953.013547 | −955.089361 | −955.089692 | −884.819663 | |
SD | 1.68625 × 10−13 | 4.49498 | 2.26251 | 2.262402 | 83.64259 | |
Best | −955.608723 | −955.608723 | −955.608723 | −955.608723 | −955.608723 | |
Rank-1 | 1 | 4 | 3 | 2 | 5 | |
Rank-2 | 1 | 1 | 1 | 1 | 1 |
Function | Dimension = 100 | |||||||
---|---|---|---|---|---|---|---|---|
GBFIO V.S. GWO | 8.0065 × 10−9 | 6.7860 × 10−8 | 7.9919 × 10−9 | 6.7956 × 10−8 | 9.0289 × 10−4 | 2.3531 × 10−6 | 6.7860 × 10−8 | 9.7106 × 10−6 |
GBFIO V.S. TLBO | 8.0065 × 10−9 | 6.7860 × 10−8 | 8.0065 × 10−9 | 6.7956 × 10−8 | 6.1179 × 10−8 | 6.7765 × 10−8 | 6.7860 × 10−8 | 9.1222 × 10−8 |
GBFIO V.S. DE | 7.9919 × 10−9 | 6.7860 × 10−8 | 7.9626 × 10−9 | 6.7860 × 10−8 | 6.4949 × 10−8 | 1.8030 × 10−6 | 6.7860 × 10−8 | 1.5750 × 10−5 |
GBFIO V.S. PSO | 8.0065 × 10−9 | 6.7860 × 10−8 | 8.0065 × 10−9 | 6.7956 × 10−8 | 6.4949 × 10−8 | 6.7956 × 10−8 | 6.7860 × 10−8 | 1.5983 × 10−5 |
Function | Dimension = 100 | |||||||
GBFIO V.S. GWO | 7.9480 × 10−9 | 3.8352 × 10−9 | 0.1626 | 6.7765 × 10−8 | 0.8711 | N/A | 0.0804 | N/A |
GBFIO V.S. TLBO | 8.0065 × 10−9 | 7.6327 × 10−9 | 0.1626 | 6.7860 × 10−8 | 6.7288 × 10−8 | N/A | 7.9919 × 10−9 | N/A |
GBFIO V.S. DE | 7.9919 × 10−9 | 7.9626 × 10−9 | 8.0065 × 10−9 | 2.9223 × 10−5 | 0.0017 | N/A | 2.9868 × 10−8 | N/A |
GBFIO V.S. PSO | 8.0065 × 10−9 | 8.0065 × 10−9 | 8.0065 × 10−9 | 6.7956 × 10−8 | 6.7956 × 10−8 | 1.5427 × 10−9 | 1.5427 × 10−9 | 4.6827 × 10−10 |
Function | ||||||||
GBFIO V.S. GWO | N/A | N/A | N/A | 0.0393 | 0.0400 | 0.3421 | N/A | N/A |
GBFIO V.S. TLBO | N/A | N/A | N/A | 6.9726 × 10−5 | 7.9480 × 10−9 | 1.0381 × 10−7 | 1.0968 × 10−6 | N/A |
GBFIO V.S. DE | N/A | N/A | N/A | 0.0236 | 0.1626 | N/A | 0.1626 | N/A |
GBFIO V.S. PSO | 4.6827 × 10−10 | N/A | 4.6827 × 10−10 | 0.3481 | 2.5780 × 10−9 | 3.0335 × 10−8 | 4.6827 × 10−10 | 4.6827 × 10−10 |
Function | ||||||||
GBFIO V.S. GWO | N/A | 0.3792 | N/A | 5.8435 × 10−8 | 6.7860 × 10−8 | 4.2490 × 10−6 | 0.0195 | |
GBFIO V.S. TLBO | N/A | 6.7765 × 10−8 | N/A | 5.8519 × 10−8 | 6.7765 × 10−8 | 1.0602 × 10−7 | 0.3421 | |
GBFIO V.S. DE | N/A | 4.5110 × 10−7 | N/A | 5.5870 × 10−4 | 6.7669 × 10−8 | 9.1601 × 10−8 | 0.3421 | |
GBFIO V.S. PSO | N/A | 0.0133 | 3.1997 × 10−9 | 0.0114 | 6.7956 × 10−8 | 1.5961 × 10−4 | 2.1875 × 10−8 |
Number of Population | ||||||
---|---|---|---|---|---|---|
20 | 30 | 40 | 50 | 60 | ||
Mean | 0 | 0 | 0 | 0 | 0 | |
SD | 0 | 0 | 0 | 0 | 0 | |
Best | 0 | 0 | 0 | 0 | 0 | |
Mean | 9.488376 × 10−308 | 8.961751 × 10−312 | 4.425393 × 10−312 | 2.964866 × 10−312 | 4.131339 × 10−314 | |
SD | 0 | 0 | 0 | 0 | 0 | |
Best | 4.970226 × 10−313 | 1.223130 × 10−313 | 2.260542 × 10−314 | 5.041268 × 10−315 | 2.445212 × 10−316 | |
Mean | 0 | 0 | 0 | 0 | 0 | |
SD | 0 | 0 | 0 | 0 | 0 | |
Best | 0 | 0 | 0 | 0 | 0 | |
Mean | 3.155977 × 10−290 | 7.658761 × 10−291 | 2.641380 × 10−293 | 1.301568 × 10−293 | 1.090979 × 10−293 | |
SD | 0 | 0 | 0 | 0 | 0 | |
Best | 5.607299 × 10−296 | 4.390067 × 10−295 | 4.779610 × 10−296 | 1.083217 × 10−296 | 5.658902 × 10−297 | |
Mean | 24.847301 | 24.592571 | 24.504815 | 24.359246 | 24.409804 | |
SD | 0.405346 | 0.304791 | 0.297845 | 0.328575 | 0.286390 | |
Best | 24.277476 | 23.940380 | 24.045424 | 23.909135 | 23.919656 | |
Mean | 2.174950 × 10−9 | 1.427397 × 10−10 | 4.364226 × 10−11 | 1.444414 × 10−11 | 8.657999 × 10−12 | |
SD | 2.416979 × 10−9 | 1.508869 × 10−10 | 3.702102 × 10−11 | 1.369896 × 10−11 | 8.307039 × 10−12 | |
Best | 6.53199 × 10−11 | 6.958819 × 10−12 | 6.127176 × 10−12 | 9.838662 × 10−13 | 8.529919 × 10−13 | |
Mean | 7.968518 × 10−5 | 7.081454 × 10−5 | 5.588143 × 10−5 | 6.343727 × 10−5 | 4.857298 × 10−5 | |
SD | 4.791609 × 10−5 | 3.430162 × 10−5 | 2.361767 × 10−5 | 2.313969 × 10−5 | 2.589811 × 10−5 | |
Best | 1.383589 × 10−5 | 1.308217 × 10−5 | 2.123137 × 10−5 | 2.875731 × 10−5 | 1.143129 × 10−5 | |
Mean | −7650.140234 | −8264.838722 | −8280.885116 | −8209.417095 | −8964.229479 | |
SD | 2173.569713 | 1805.621009 | 1952.301928 | 2257.507354 | 2127.146066 | |
Best | −10,376.851123 | −10,428.494237 | −11,143.987174 | −11,067.745203 | −11,403.276763 | |
Mean | 8.754598 | 6.765642 | 5.662471 | 0 | 0 | |
SD | 23.202940 | 17.050401 | 17.419375 | 0 | 0 | |
Best | 0 | 0 | 0 | 0 | 0 | |
Mean | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | |
SD | 0 | 0 | 0 | 0 | 0 | |
Best | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | |
Mean | 0 | 0 | 0 | 0 | 0 | |
SD | 0 | 0 | 0 | 0 | 0 | |
Best | 0 | 0 | 0 | 0 | 0 | |
Mean | 6.271662 × 10−11 | 8.523194 × 10−12 | 2.468391 × 10−12 | 6.364377 × 10−13 | 1.200745 × 10−13 | |
SD | 7.522505 × 10−11 | 1.295646 × 10−11 | 5.984179 × 10−12 | 8.595888 × 10−13 | 1.360803 × 10−13 | |
Best | 8.262464 × 10−13 | 2.042665 × 10−13 | 6.735877 × 10−14 | 3.604206 × 10−14 | 5.514638 × 10−15 | |
Mean | 0.197081 | 0.112027 | 0.106591 | 0.077995 | 0.038914 | |
SD | 0.132252 | 0.111567 | 0.098950 | 0.075663 | 0.065934 | |
Best | 6.583484 × 10−10 | 2.716825 × 10−10 | 2.515858 × 10−11 | 1.976762 × 10−11 | 1.399126 × 10−12 | |
Mean | 0.998003838 | 0.998003838 | 0.998003838 | 0.998003838 | 0.998003838 | |
SD | 9.930137 × 10−17 | 0 | 7.021667 × 10−17 | 0 | 0 | |
Best | 0.998003838 | 0.998003838 | 0.998003838 | 0.998003838 | 0.998003838 | |
Mean | 3.461836 × 10−4 | 3.152664 × 10−4 | 3.113838 × 10−4 | 3.168474 × 10−4 | 3.084805 × 10−4 | |
SD | 7.297051 × 10−5 | 1.975967 × 10−5 | 1.318464 × 10−5 | 3.184629 × 10−5 | 3.802653 × 10−6 | |
Best | 3.074859 × 10−4 | 3.074859 × 10−4 | 3.074859 × 10−4 | 3.074859 × 10−4 | 3.074859 × 10−4 | |
Mean | −1.031628 | −1.031628 | −1.031628 | −1.031628 | −1.031628 | |
SD | 3.729863 × 10−9 | 1.876679 × 10−9 | 2.220446 × 10−16 | 2.220446 × 10−16 | 2.220446 × 10−16 | |
Best | −1.031628 | −1.031628 | −1.031628 | −1.031628 | −1.031628 | |
Mean | 0.39788736 | 0.39788736 | 0.39788736 | 0.39788736 | 0.39788736 | |
SD | 0 | 0 | 0 | 0 | 0 | |
Best | 0.39788736 | 0.39788736 | 0.39788736 | 0.39788736 | 0.39788736 | |
Mean | 2.999999999999922 | 2.999999999999922 | 2.999999999999922 | 2.999999999999922 | 2.99999999999992 | |
SD | 8.992121 × 10−16 | 4.965068 × 10−16 | 5.063396 × 10−16 | 4.550560 × 10−16 | 3.140185 × 10−16 | |
Best | 2.999999999999921 | 2.999999999999922 | 2.999999999999921 | 2.999999999999921 | 2.999999999999921 | |
Mean | −3.862782 | −3.862782 | −3.862782 | −3.862782 | −3.862782 | |
SD | 2.220446 × 10−15 | 2.220446 × 10−15 | 2.220446 × 10−15 | 2.220446 × 10−15 | 2.220446 × 10−15 | |
Best | −3.862782 | −3.862782 | −3.862782 | −3.862782 | −3.862782 | |
Mean | −3.204730 | −3.203979 | −3.207953 | −3.204986 | −3.204392 | |
SD | 0.018867 | 0.018451 | 0.010447 | 0.008771 | 0.018489 | |
Best | −3.222190 | −3.222190 | −3.222190 | −3.222190 | −3.222190 | |
Mean | −9.286335 | −9.583326 | −9.894665 | −10.132708 | −10.141487 | |
SD | 1.789232 | 1.518792 | 1.110277 | 0.030605 | 0.035946 | |
Best | −10.1531996790582 | −10.1531996790582 | −10.1531996790582 | −10.1531996790582 | −10.1531996790582 | |
Mean | −9.809420 | −10.381395 | −10.384025 | −10.401542 | −10.402913 | |
SD | 1.592699 | 0.057163 | 0.051033 | 0.005985 | 1.152257 × 10−5 | |
Best | −10.402915 | −10.402915 | −10.402915 | −10.402915 | −10.402915 | |
Mean | −9.474190 | −10.207301 | −10.264706 | −10.529081 | −10.536443 | |
SD | 2.180221 | 1.408249 | 1.178794 | 0.030607 | 8.881784 × 10−16 | |
Best | −10.536443 | −10.536443 | −10.536443 | −10.536443 | −10.536443 | |
Mean | −106.764537 | −106.764537 | −106.764537 | −106.764537 | −106.764537 | |
SD | 2.313359 × 10−14 | 2.377931 × 10−14 | 3.759839 × 10−14 | 2.561898 × 10−14 | 3.552714 × 10−14 | |
Best | −106.764537 | −106.764537 | −106.764537 | −106.764537 | −106.764537 | |
Mean | 0.500000000000311 | 0.500000000000209 | 0.500000000000182 | 0.500000000000043 | 0.500000000000040 | |
SD | 3.939481 × 10−13 | 3.403677 × 10−13 | 4.809765 × 10−13 | 6.064783 × 10−14 | 4.258445 × 10−14 | |
Best | 0.500000000000001 | 0.500000000000000 | 0.500000000000000 | 0.500000000000000 | 0.500000000000000 | |
Mean | 4.709092 | 5.105572 | 4.897150 | 4.662565 | 4.565587 | |
SD | 0.700081 | 0.545440 | 0.547182 | 0.712527 | 0.738187 | |
Best | 3.150080 | 3.901535 | 3.844543 | 3.337249 | 3.091730 | |
Mean | −8.039597 | −8.039755 | −8.039829 | −8.039806 | −8.039810 | |
SD | 0.000227 | 0.000158 | 4.728803 × 10−5 | 9.869128 × 10−5 | 7.925843 × 10−5 | |
Best | −8.03985 | −8.03985 | −8.03985 | −8.03985 | −8.03985 | |
Mean | 0.121397 | 0.053492 | 0.053453 | 0.052545 | 0.055992 | |
SD | 0.086411 | 0.063682 | 0.064224 | 0.070996 | 0.056458 | |
Best | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Mean | 0.165859 | 0.124924 | 0.065325 | 0.072015 | 0.041180 | |
SD | 0.198043 | 0.156524 | 0.040186 | 0.117556 | 0.022127 | |
Best | 0.018643 | 0.012714 | 0.013105 | 0.005866 | 0.005531 | |
Mean | 0.300939 | 0.271066 | 0.182162 | 0.231211 | 0.196458 | |
SD | 0.119096 | 0.108416 | 0.092769 | 0.111651 | 0.093854 | |
Best | 0.109866 | 0.115039 | 0.062385 | 0.007016 | 0.004542 | |
Mean | −955.608723 | −955.608723 | −955.608723 | −955.608723 | −955.608723 | |
SD | 1.368971 × 10−13 | 1.219156 × 10−13 | 1.296229 × 10−13 | 1.368971 × 10−13 | 1.296229 × 10−13 | |
Best | −955.608723 | −955.608723 | −955.608723 | −955.608723 | −955.608723 |
Number of Maximum Iterations | ||||||
---|---|---|---|---|---|---|
50 | 100 | 200 | 500 | 1000 | ||
Mean | 7.236219 × 10−60 | 4.888781 × 10−122 | 2.723329 × 10−245 | 0 | 0 | |
SD | 1.329818 × 10−59 | 5.664636 × 10−122 | 0 | 0 | 0 | |
Best | 8.282774 × 10−62 | 1.502527 × 10−123 | 3.714608 × 10−248 | 0 | 0 | |
Mean | 8.077162 × 10−31 | 3.011036 × 10−62 | 2.954380 × 10−125 | 1.095445 × 10−314 | 0 | |
SD | 5.150460 × 10−31 | 3.159078 × 10−62 | 6.131570 × 10−125 | 0 | 0 | |
Best | 1.799495 × 10−31 | 4.422890 × 10−63 | 1.000961 × 10−126 | 5.244914 × 10−317 | 0 | |
Mean | 2.663880 × 10−56 | 7.335968 × 10−115 | 2.753337 × 10−230 | 0 | 0 | |
SD | 3.661737 × 10−56 | 1.226888 × 10−114 | 0 | 0 | 0 | |
Best | 1.716129 × 10−58 | 1.095871 × 10−117 | 2.055096 × 10−236 | 0 | 0 | |
Mean | 5.417876 × 10−29 | 9.849815 × 10−59 | 1.081251 × 10−117 | 9.603995 × 10−295 | 1.000000 × 10−323 | |
SD | 6.091838 × 10−29 | 1.687004 × 10−58 | 9.333747 × 10−118 | 0 | 0 | |
Best | 3.866891 × 10−30 | 1.421012 × 10−61 | 6.562393 × 10−119 | 1.265138 × 10−297 | 1.000000 × 10−323 | |
Mean | 26.813010 | 26.269416 | 25.537543 | 24.219361 | 23.006166 | |
SD | 0.229245 | 0.166345 | 0.2252578 | 0.258855 | 0.393699 | |
Best | 26.396138 | 25.898832 | 25.081468 | 23.790486 | 22.436206 | |
Mean | 0.174425 | 0.009292 | 2.603807 × 10−5 | 1.459834 × 10−12 | 8.525488 × 10−25 | |
SD | 0.095731 | 0.004469 | 1.775197 × 10−5 | 1.347648 × 10−12 | 1.707910 × 10−24 | |
Best | 0.053348 | 0.003414 | 8.222699 × 10−6 | 1.073916 × 10−13 | 5.523253 × 10−27 | |
Mean | 4.157443 × 10−4 | 2.363886 × 10−4 | 1.135765 × 10−4 | 4.609243 × 10−5 | 2.655697 × 10−5 | |
SD | 2.696449 × 10−4 | 1.036415 × 10−4 | 4.512791 × 10−5 | 1.712571 × 10−5 | 1.169044 × 10−5 | |
Best | 8.646435 × 10−5 | 2.857222 × 10−5 | 2.400965 × 10−5 | 2.204244 × 10−5 | 5.296813 × 10−6 | |
Mean | −5522.811083 | −6649.882116 | −7979.289336 | −8349.210891 | −9603.189247 | |
SD | 1618.143281 | 2108.537271 | 2282.800575 | 2202.544287 | 1486.878032 | |
Best | −10,333.978992 | −10,281.485338 | −11,297.097530 | −11,403.322725 | −11,621.979941 | |
Mean | 12.276021 | 4.377582 | 4.236812 | 0 | 0 | |
SD | 36.829146 | 19.081437 | 18.467836 | 0 | 0 | |
Best | 0 | 0 | 0 | 0 | 0 | |
Mean | 5.684342 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | |
SD | 1.694536 × 10−15 | 0 | 0 | 0 | 0 | |
Best | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | |
Mean | 0 | 0 | 0 | 0 | 0 | |
SD | 0 | 0 | 0 | 0 | 0 | |
Best | 0 | 0 | 0 | 0 | 0 | |
Mean | 0.006145 | 2.496981 × 10−4 | 6.758787 × 10−7 | 4.177336 × 10−14 | 1.819623 × 10−26 | |
SD | 0.003086 | 1.323707 × 10−4 | 3.414239 × 10−7 | 9.785659 × 10−14 | 4.362844 × 10−26 | |
Best | 0.001692 | 8.998801 × 10−5 | 2.097865 × 10−7 | 1.334239 × 10−15 | 2.218079 × 10−28 | |
Mean | 0.237284 | 0.093105 | 0.027542 | 0.034877 | 0.011916 | |
SD | 0.085985 | 0.101294 | 0.045562 | 0.063506 | 0.040562 | |
Best | 0.085086 | 0.009021 | 2.653115 × 10−5 | 3.509161 × 10−13 | 2.273020 × 10−25 | |
Mean | 0.998003838 | 0.998003838 | 0.998003838 | 0.998003838 | 0.998003838 | |
SD | 2.106500 × 10−16 | 1.216188 × 10−16 | 0 | 0 | 0 | |
Best | 0.998003838 | 0.998003838 | 0.998003838 | 0.998003838 | 0.998003838 | |
Mean | 3.749509 × 10−4 | 3.111576 × 10−4 | 3.076168 × 10−4 | 3.075054 × 10−4 | 3.074910 × 10−4 | |
SD | 2.001892 × 10−4 | 1.428813 × 10−5 | 4.882946 × 10−7 | 5.363649 × 10−8 | 2.195724 × 10−8 | |
Best | 3.074867 × 10−4 | 3.074861 × 10−4 | 3.074860 × 10−4 | 3.074860 × 10−4 | 3.074860 × 10−4 | |
Mean | −1.031628 | −1.031628 | −1.031628 | −1.031628 | −1.031628 | |
SD | 1.140715 × 10−7 | 1.453566 × 10−9 | 7.645066 × 10−11 | 2.220446 × 10−16 | 2.220446 × 10−16 | |
Best | −1.031628 | −1.031628 | −1.031628 | −1.031628 | −1.031628 | |
Mean | 0.39788736 | 0.39788736 | 0.39788736 | 0.39788736 | 0.39788736 | |
SD | 0 | 0 | 0 | 0 | 0 | |
Best | 0.39788736 | 0.39788736 | 0.39788736 | 0.39788736 | 0.39788736 | |
Mean | 2.999999999999930 | 2.999999999999923 | 2.999999999999922 | 2.999999999999922 | 2.999999999999922 | |
SD | 5.504736 × 10−15 | 1.731378 × 10−15 | 8.770059 × 10−16 | 4.094300 × 10−16 | 5.063396 × 10−16 | |
Best | 2.999999999999923 | 2.999999999999922 | 2.999999999999921 | 2.999999999999921 | 2.999999999999920 | |
Mean | −3.862782 | −3.862782 | −3.862782 | −3.862782 | −3.862782 | |
SD | 2.180112 × 10−15 | 1.756821 × 10−15 | 2.220446 × 10−15 | 2.220446 × 10−15 | 2.220446 × 10−15 | |
Best | −3.862782 | −3.862782 | −3.862782 | −3.862782 | −3.862782 | |
Mean | −3.202283 | −3.203573 | −3.205763 | −3.205044 | −3.203534 | |
SD | 6.689631 × 10−3 | 7.820802 × 10−3 | 9.484115 × 10−3 | 8.443659 × 10−3 | 7.729254 × 10−3 | |
Best | −3.222190 | −3.222190 | −3.222190 | −3.222190 | −3.222190 | |
Mean | −8.777263 | −9.876641 | −10.093695 | −10.147108 | −10.152762 | |
SD | 1.800773 | 0.654818 | 0.232526 | 2.524644 × 10−2 | 1.909355 × 10−3 | |
Best | −10.1531996790505 | −10.1531996790582 | −10.1531996790582 | −10.1531996790582 | −10.1531996790582 | |
Mean | −10.015114 | −10.054852 | −10.374473 | −10.402915 | −10.402915 | |
SD | 1.025274 | 1.176498 | 0.123977 | 1.863059 × 10−15 | 1.685200 × 10−15 | |
Best | −10.402915 | −10.402915 | −10.402915 | −10.402915 | −10.402915 | |
Mean | −9.776116 | −10.162331 | −10.536443 | −10.536443 | −10.53644 | |
SD | 1.838704 | 1.207934 | 3.445696 × 10−10 | 1.432145 × 10−15 | 1.191616 × 10−15 | |
Best | −10.536443 | −10.536443 | −10.536443 | −10.536443 | −10.536443 | |
Mean | −106.764536 | −106.764536 | −106.764537 | −106.764537 | −106.764537 | |
SD | 2.747015 × 10−6 | 2.350338 × 10−6 | 1.903775 × 10−7 | 3.177644 × 10−14 | 2.929643 × 10−14 | |
Best | −106.764537 | −106.764537 | −106.764537 | −106.764537 | −106.764537 | |
Mean | 0.500000000004132 | 0.500000000000730 | 0.500000000000137 | 0.500000000000084 | 0.500000000000009 | |
SD | 6.984784 × 10−12 | 9.168767 × 10−13 | 2.589352 × 10−13 | 1.275293 × 10−13 | 1.343753 × 10−14 | |
Best | 0.500000000000003 | 0.500000000000002 | 0.500000000000001 | 0.500000000000000 | 0.500000000000000 | |
Mean | 5.910513 | 5.469769 | 4.974104 | 4.642032 | 3.924982 | |
SD | 0.602621 | 0.601245 | 0.555017 | 0.446079 | 0.536122 | |
Best | 4.708575 | 4.232750 | 3.771043 | 3.680268 | 2.808316 | |
Mean | −8.039649 | −8.039721 | −8.039795 | −8.039843 | −8.039849 | |
SD | 1.857984 × 10−4 | 1.600838 × 10−4 | 6.850032 × 10−5 | 1.438728 × 10−5 | 1.628580 × 10−6 | |
Best | −8.039846 | −8.039850 | −8.039850 | −8.039850 | −8.039850 | |
Mean | 0.114351 | 0.061762 | 0.066710 | 0.036362 | 0.0474869 | |
SD | 0.096535 | 0.084652 | 0.076252 | 0.050605 | 0.048523 | |
Best | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Mean | 0.100030 | 0.082277 | 0.056272 | 0.024195 | 0.021766 | |
SD | 0.056637 | 0.041447 | 0.047774 | 0.01818 | 0.009736 | |
Best | 0.033410 | 0.0144334 | 0.010267 | 6.687262 × 10−3 | 6.000812 × 10−3 | |
Mean | 0.446857 | 0.374940 | 0.266077 | 0.117528 | 0.132555 | |
SD | 0.154262 | 0.168532 | 0.116847 | 0.041254 | 0.077086 | |
Best | 0.123845 | 0.072605 | 0.079889 | 0.057579 | 4.514708 × 10−4 | |
Mean | −955.608723 | −955.608723 | −955.608723 | −955.608723 | −955.608723 | |
SD | 6.283705 × 10−13 | 1.219156 × 10−13 | 1.219156 × 10−13 | 1.368971 × 10−13 | 1.850688 × 10−13 | |
Best | −955.608723 | −955.608723 | −955.608723 | −955.608723 | −955.608723 |
GBFIO | GWO | TLBO | DE | PSO | ||
---|---|---|---|---|---|---|
Mean | 0 | 0 | 1.294179 × 10−81 | 0.144674 | 4.966553 × 10−2 | |
SD | 0 | 0 | 3.882538 × 10−81 | 0.234250 | 0.057479 | |
Best | 0 | 0 | 9.879461 × 10−174 | 1.595589 × 10−36 | 8.364170 × 10−3 | |
Mean | 1.218656 × 10−287 | 0 | 1.051319 | 5.177139 × 10−44 | 0.128009 | |
SD | 0 | 0 | 3.153956 | 1.553142 × 10−43 | 5.629631 × 10−2 | |
Best | 1.118360 × 10−290 | 0 | 7.386626 × 10−90 | 3.227326 × 10−63 | 0.025325 | |
Mean | 0 | 3.192145 × 10−105 | 9.184483 × 10−5 | 166.611247 | 15.313370 | |
SD | 0 | 9.5764341 × 10−105 | 2.755345 × 10−4 | 205.245492 | 10.381268 | |
Best | 0 | 3.203688 × 10−132 | 1.279402 × 10−19 | 32.239259 | 7.060690 | |
Mean | 6.351895 × 10−267 | 3.568757 × 10−121 | 1.337250 × 10−25 | 7.976398 | 3.098161 | |
SD | 0 | 8.394264 × 10−121 | 4.009598 × 10−25 | 4.841287 | 0.960820 | |
Best | 9.529171 × 10−272 | 6.329564 × 10−127 | 2.708885 × 10−50 | 2.436636 | 1.641832 | |
Mean | 24.657226 | 25.000458 | 25.473331 | 82.627279 | 67.935807 | |
SD | 0.344494 | 0.528751 | 1.014831 | 54.946209 | 50.904897 | |
Best | 24.007749 | 24.142314 | 24.718418 | 27.056345 | 28.198511 | |
Mean | 2.254566 × 10−9 | 7.538724 × 10−2 | 2.005264 | 1.574209 × 10−3 | 4.139476 × 10−3 | |
SD | 2.433088 × 10−9 | 0.115157 | 0.278941 | 4.594092 × 10−3 | 2.617503 × 10−3 | |
Best | 9.271979 × 10−11 | 1.580530 × 10−7 | 1.521674 | 6.430025 × 10−26 | 8.398675 × 10−4 | |
Mean | 7.987476 × 10−5 | 1.731456 × 10−4 | 1.152873 × 10−3 | 2.018705 × 10−3 | 7.780638 × 10−3 | |
SD | 2.957382 × 10−5 | 5.302466 × 10−5 | 7.507599 × 10−4 | 8.608555 × 10−4 | 3.925921 × 10−3 | |
Best | 2.590416 × 10−5 | 8.293191 × 10−5 | 2.602298 × 10−4 | 7.265199 × 10−4 | 3.881654 × 10−3 | |
Mean | −7145.318974 | −7765.884441 | −5415.742450 | −12,533.951559 | −6618.143350 | |
SD | 1888.294358 | 423.738554 | 817.169578 | 75.838506 | 715.725130 | |
Best | −9400.506153 | −8317.183028 | −7547.511021 | −12,569.486618 | −8027.302686 | |
Mean | 1.534772 × 10−13 | 4.998223 | 147.657316 | 11.839696 | 28.485021 | |
SD | 4.574788 × 10−13 | 6.107039 | 45.841691 | 9.225338 | 4.849056 | |
Best | 0 | 0 | 62.506848 | 0.994959 | 19.965157 | |
Mean | 4.440892 × 10−15 | 5.151435 × 10−15 | 13.552329 | 0.103796 | 2.803250 | |
SD | 0 | 1.421085 × 10−15 | 7.694548 | 0.168057 | 0.420610 | |
Best | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | 4.440892 × 10−15 | 1.792227 | |
Mean | 0 | 1.786773 × 10−3 | 9.573472 × 10−3 | 1.105455 × 10−2 | 8.989487 × 10−2 | |
SD | 0 | 3.611421 × 10−3 | 2.220695 × 10−3 | 2.513669 × 10−2 | 4.414168 × 10−2 | |
Best | 0 | 0 | 0 | 0 | 5.255478 × 10−2 | |
Mean | 5.497947 × 10−11 | 2.470617 × 10−8 | 9.135967 × 10−2 | 4.669100 × 10−2 | 1.327286 | |
SD | 4.249546 × 10−11 | 1.011952 × 10−8 | 2.430115 × 10−2 | 8.734069 × 10−2 | 1.247796 | |
Best | 7.307790 × 10−12 | 1.197376 × 10−8 | 6.475929 × 10−2 | 1.570545 × 10−32 | 0.111829 | |
Mean | 0.188401 | 6.580893 × 10−2 | 1.380241 | 2.362345 | 0.494989 | |
SD | 0.153263 | 6.743503 × 10−2 | 0.239008 | 3.112145 | 0.598903 | |
Best | 4.302022 × 10−4 | 3.078688 × 10−7 | 1.135953 | 5.242489 × 10−10 | 9.204132 × 10−2 | |
Mean | 0.998003837794450 | 0.998003837794717 | 0.998003847208895 | 1.49108796655502 | 1.29581667593930 | |
SD | 7.021667 × 10−17 | 2.011807 × 10−13 | 2.623667 × 10−8 | 1.479252 | 0.635439 | |
Best | 0.998003837794450 | 0.998003837794483 | 0.998003837794450 | 0.998003837794450 | 0.998003837794450 | |
Mean | 4.62448857988186 × 10−4 | 3.99054908144924 × 10−4 | 4.058168 × 10−4 | 6.984581 × 10−4 | 4.906235 × 10−4 | |
SD | 2.745643 × 10−4 | 2.747062 × 10−4 | 2.736655 × 10−4 | 2.716092 × 10−4 | 3.662750 × 10−4 | |
Best | 3.07485988525647 × 10−4 | 3.07485989805093 × 10−4 | 3.07662563819038 × 10−4 | 3.10985749911466 × 10−4 | 3.07485987805605 × 10−4 | |
Mean | −1.03162845348988 | −1.03162845340201 | −1.03162841182056 | −1.03162845348988 | −1.03162845348988 | |
SD | 0 | 7.100377 × 10−11 | 9.916618 × 10−8 | 0 | 0 | |
Best | −1.03162845348988 | −1.03162845348443 | −1.03162845347704 | −1.03162845348988 | −1.03162845348988 | |
Mean | 0.397887357729738 | 0.397887358687981 | 0.397887357729913 | 0.397887357729738 | 0.397887357729738 | |
SD | 0 | 8.737636 × 10−10 | 4.454266 × 10−13 | 0 | 0 | |
Best | 0.397887357729738 | 0.397887357729841 | 0.397887357729738 | 0.397887357729738 | 0.397887357729738 | |
Mean | 2.99999999999992 | 3.00000001535671 | 3.00020912571569 | 2.99999999999992 | 2.99999999999992 | |
SD | 5.063396 × 10−16 | 2.426698 × 10−8 | 5.874210 × 10−4 | 8.188600 × 10−16 | 0 | |
Best | 2.99999999999992 | 3.00000000000157 | 2.99999999999992 | 2.99999999999992 | 2.99999999999992 | |
Mean | −3.86278214782076 | −3.86278209251003 | −3.86278214065809 | −3.86278214782076 | −3.86278214782076 | |
SD | 8.881784 × 10−16 | 4.353004 × 10−8 | 1.224830 × 10−8 | 8.881784 × 10−16 | 8.881784 × 10−16 | |
Best | −3.86278214782076 | −3.86278214667246 | −3.86278214782076 | −3.86278214782076 | −3.86278214782076 | |
Mean | −3.191775 | −3.202244 | −3.198292 | −3.200285 | −3.189303 | |
SD | 2.92343 × 10−2 | 2.459642 × 10−2 | 8.855541 × 10−3 | 7.268656 × 10−6 | 2.755499 × 10−2 | |
Best | −3.22219007647393 | −3.22219006463194 | −3.21360383726563 | −3.20028745044100 | −3.22219007647393 | |
Mean | −9.601349 | −9.142709 | −9.031591 | −9.142714 | −8.390441 | |
SD | 1.516076 | 2.020970 | 1.175195 | 2.020971 | 2.767170 | |
Best | −10.1531996790582 | −10.1531994004619 | −10.1312343981895 | −10.1531996790582 | −10.1531996790582 | |
Mean | −10.242894 | −9.339864 | −9.674596 | −9.871391 | −8.872245 | |
SD | 0.199721 | 2.126096 | 0.729454 | 1.594573 | 3.061341 | |
Best | −10.4029153367777 | −10.4029149121881 | −10.3983960082644 | −10.4029153367777 | −10.4029153367777 | |
Mean | −10.5364431534835 | −10.5364381295375 | −9.38574003225806 | −10.5364431534835 | −10.5364431534835 | |
SD | 7.944109 × 10−16 | 4.450583 × 10−6 | 1.967776 | 0 | 1.375960 × 10−15 | |
Best | −10.5364431534835 | −10.5364429443837 | −10.5345358768162 | −10.5364431534835 | −10.5364431534835 | |
Mean | −106.764536749265 | −106.764536670269 | −106.764433302178 | −106.764536749265 | −106.764536749265 | |
SD | 2.107810 × 10−14 | 1.062099 × 10−7 | 2.393181 × 10−4 | 1.421085 × 10−14 | 2.733512 × 10−14 | |
Best | −106.764536749265 | −106.764536749056 | −106.764536747555 | −106.764536749265 | −106.764536749265 | |
Mean | 0.500000000000153 | 0.500000000000779 | 0.500000000000314 | 0.500000000000000 | 0.500000000000000 | |
SD | 2.008861 × 10−13 | 1.627484 × 10−12 | 8.786089 × 10−13 | 0 | 0 | |
Best | 0.500000000000005 | 0.500000000000001 | 0.500000000000000 | 0.500000000000000 | 0.500000000000000 | |
Mean | 4.649871 | 2.701262 | 6.522691 | 3.648867 | 4.588877 | |
SD | 0.800309 | 1.151474 | 1.031441 | 0.268596 | 0.723199 | |
Best | 2.787816 | 0.931653 | 4.442681 | 3.038657 | 3.453176 | |
Mean | −8.03977154555592 | −8.03934047668692 | −8.03955534121555 | −8.03983806190992 | −8.03919251751744 | |
SD | 1.185843 × 10−4 | 1.742601 × 10−4 | 2.361555 × 10−4 | 2.857435 × 10−5 | 6.104576 × 10−4 | |
Best | −8.039850 | −8.039829 | −8.039836 | −8.039849 | −8.039850 | |
Mean | 6.097802 × 10−2 | 0.284577 | 0.190707 | 7.502779 × 10−4 | 2.107188 × 10−4 | |
SD | 8.192341 × 10−2 | 0.113906 | 8.350326 × 10−2 | 5.310118 × 10−4 | 3.321565 × 10−4 | |
Best | 0.0001 | 0.015002 | 0.044782 | 0.0001 | 0.0001 | |
Mean | 0.257036 | 3.306600 | 7.702267 | 1.158201 | 3.942612 | |
SD | 0.333940 | 4.187744 | 0.435606 | 1.187534 | 0.603973 | |
Best | 1.453989 × 10−2 | 0.301483 | 6.647798 | 7.549659 × 10−12 | 2.797453 | |
Mean | 0.336127 | 0.363262 | 0.603217 | 7.050466 × 10−8 | 0.245494 | |
SD | 0.137485 | 0.182822 | 0.217843 | 1.619793 × 10−7 | 0.133411 | |
Best | 5.559156 × 10−2 | 5.500235 × 10−2 | 0.313131 | 0 | 6.083741 × 10−33 | |
Mean | −955.608723 | −950.418413 | −955.608721 | −954.570662 | −891.830018 | |
SD | 3.595093 × 10−14 | 5.190310 | 3.862493 × 10−6 | 3.114183 | 91.055620 | |
Best | −955.608722698531 | −955.608722698531 | −955.608722698531 | −955.608722698531 | −955.608722698531 | |
Rank Based on Mean of the Results | Sum Rank | 53 | 88 | 122 | 84 | 107 |
Mean Rank | 1.709677 | 2.838710 | 3.935484 | 2.709677 | 3.451613 | |
Total Rank | 1 | 3 | 5 | 2 | 4 | |
Rank Based on Best of the Results | Sum Rank | 53 | 97 | 124 | 81 | 100 |
Mean Rank | 1.709677 | 3.129032 | 4 | 2.612903 | 3.225806 | |
Total Rank | 1 | 3 | 5 | 2 | 4 |
No. | Function Name | Type | |
---|---|---|---|
S&R Bent Cigar Function | 100 | Unimodal | |
S&R Sum of Different Power Function | 200 | ||
S&R Zakharov Function | 300 | ||
S&R Rosenbrock’s Function | 400 | Multimodal | |
S&R Rastrigin’s Function | 500 | ||
S&R Expanded Scaffer’s F6 Function | 600 | ||
S&R Lunacek Bi_Rastrigin Function | 700 | ||
S&R Non-Continuous Rastrigin’s Function | 800 | ||
S&R Levy Function | 900 | ||
S&R Schwefel’s Function | 1000 | ||
, , and | 1100 | Hybrid | |
, , and S&R High-Conditioned Elliptic Function | 1200 | ||
, , and | 1300 | ||
, S&R High-Conditioned Elliptic, S&R Ackley, and S&R Expanded Scaffer’s F7 Functions | 1400 | ||
, , , and S&R HGBat Function | 1500 | ||
, , , and S&R HGBat Function | 1600 | ||
, , S&R Ackley, and S&R Expanded Griewank plus Rosenbrock Functions | 1700 | ||
, S&R High-Conditioned Elliptic, S&R Ackley, S&R HGBat, and S&R Discus Functions | 1800 | ||
, , , S&R Expanded Griewank Plus Rosenbrock, and S&R Weierstrass | 1900 | ||
, S&R HappyCat, S&R Katsuura, S&R Ackley, S&R Schwefel, and S&R Expanded Scaffer’s F7 Functions | 2000 | ||
Rosenbrocks, High-Conditioned Elliptic, and Rastrigin’s Functions | 2100 | Composition | |
Rastrigin’s, Griewank, and Modified Schwefel Functions | 2200 | ||
Rosenbrocks, Ackley, Modified Schwefel, and Rastrigin’s Functions | 2300 | ||
Ackley, High-Conditioned Elliptic, Griewank, and Rastrigin’s Functions | 2400 | ||
Rastrigins, HappyCat, Ackley, Discus, and Rosenbrock’s Functions | 2500 | ||
Expanded Scaffer’s F6, Modified Schwefel, Griewank, Rosenbrocks, and Rastrigin’s Functions | 2600 | ||
HappyCat, Rastrigins, Modified Schwefel, Bent Cigar, High-Conditioned Elliptic, and Expanded Scaffer’s F6 Functions | 2700 | ||
Ackley, Griewank, Discus, Rosenbrocks, HappyCat, and Expanded Scaffer’s F6 Functions | 2800 | ||
Expanded Scaffer’s F6, Ackley, Expanded Griewank plus Rosenbrock, Bent Cigar, Two HGBat, Two Rosenbrocks, Two Rastrigins, and Two Schwefel’s Functions | 2900 | ||
Expanded Griewank Plus Rosenbrock, Weierstrass, Expanded Scaffer’s F6, High-Conditioned Elliptic, Ackley, Discus, Two HGBat, Two Rosenbrocks, Two Bent Cigar, and Three Rastrigin’s Functions | 3000 |
GBFIO | GWO | TLBO | DE | PSO | CPA | TSA | WOA | ||
---|---|---|---|---|---|---|---|---|---|
Mean | 3.0427 × 10+4 | 5.2425 × 10+7 | 1.0787 × 10+10 | 3.2906 × 10+6 | 5.8511 × 10+8 | 5.5862 × 10+4 | 7.4852 × 10+10 | 1.7534 × 10+8 | |
SD | 2.8249 × 10+4 | 6.8858 × 10+7 | 2.7243 × 10+9 | 7.0151 × 10+6 | 2.3514 × 10+8 | 8.6168 × 10+4 | 6.0034 × 10+9 | 2.7801 × 10+8 | |
Best | 1.0006 × 10+2 | 2.2646 × 10+6 | 7.3081 × 10+9 | 1.0473 × 10+2 | 3.1247 × 10+8 | 1.3209 × 10+2 | 6.5858 × 10+10 | 1.2616 × 10+2 | |
Mean | 1.3459 × 10+16 | 1.8283 × 10+21 | 1.0306 × 10+30 | 2.4881 × 10+20 | 6.5639 × 10+16 | 5.2363 × 10+22 | 3.3919 × 10+38 | 4.5171 × 10+32 | |
SD | 3.7829 × 10+16 | 3.6753 × 10+21 | 1.6537 × 10+30 | 7.1219 × 10+20 | 1.9650 × 10+17 | 1.3691 × 10+23 | 8.5134 × 10+38 | 1.3551 × 10+33 | |
Best | 3.0591 × 10+8 | 1.2396 × 10+13 | 2.3330 × 10+26 | 6.6152 × 10+12 | 1.0099 × 10+10 | 5.0366 × 10+12 | 4.0212 × 10+36 | 4.6817 × 10+11 | |
Mean | 7.9853 × 10+3 | 1.2979 × 10+3 | 5.1089 × 10+4 | 1.1540 × 10+4 | 6.6428 × 10+2 | 1.7898 × 10+4 | 8.5956 × 10+4 | 6.6356 × 10+2 | |
SD | 3.5092 × 10+3 | 1.0247 × 10+3 | 1.5404 × 10+4 | 3.5303 × 10+3 | 1.0050 × 10+3 | 7.8294 × 10+3 | 9.5798 × 10+3 | 4.6279 × 10+2 | |
Best | 3.0623 × 10+3 | 3.5710 × 10+2 | 3.3715 × 10+4 | 7.1014 × 10+3 | 3.1513 × 10+2 | 7.0414 × 10+3 | 7.6401 × 10+4 | 3.0118 × 10+2 | |
Mean | 8.4462 × 10+3 | 2.3143 × 10+5 | 4.3737 × 10+8 | 9.1427 × 10+3 | 5.9680 × 10+5 | 1.2831 × 10+4 | 8.5166 × 10+9 | 9.7340 × 10+3 | |
SD | 9.1738 × 10+3 | 3.0453 × 10+5 | 2.1974 × 10+8 | 7.0608 × 10+3 | 1.4865 × 10+6 | 1.2426 × 10+4 | 1.7105 × 10+9 | 6.5563 × 10+3 | |
Best | 6.1169 × 10+2 | 9.8791 × 10+3 | 1.5995 × 10+8 | 6.0642 × 10+2 | 7.8244 × 10+2 | 6.0885 × 10+2 | 6.7843 × 10+9 | 7.4653 × 10+2 | |
Mean | 6.9705 × 10+2 | 9.8453 × 10+2 | 1.0757 × 10+4 | 6.5860 × 10+2 | 1.0612 × 10+3 | 6.9874 × 10+2 | 5.9355 × 10+4 | 4.8812 × 10+3 | |
SD | 2.3280 × 10+1 | 2.8484 × 10+2 | 2.0250 × 10+3 | 8.8627 | 3.9530 × 10+2 | 3.6326 × 10+1 | 4.0418 × 10+3 | 9.4759 × 10+2 | |
Best | 6.5335 × 10+2 | 6.0076 × 10+2 | 7.7623 × 10+3 | 6.4341 × 10+2 | 7.3606 × 10+2 | 6.0023 × 10+2 | 5.0626 × 10+4 | 3.4009 × 10+3 | |
Mean | 6.1199 × 10+2 | 6.1076 × 10+2 | 6.1221 × 10+2 | 6.1204 × 10+2 | 6.1142 × 10+2 | 6.1229 × 10+2 | 6.1274 × 10+2 | 6.1225 × 10+2 | |
SD | 0.2505 | 0.39161 | 0.2545 | 0.1725 | 0.4042 | 0.2568 | 0.1937 | 0.4033 | |
Best | 6.1159 × 10+2 | 6.0998 × 10+2 | 6.1156 × 10+2 | 6.1181 × 10+2 | 6.1076 × 10+2 | 6.1156 × 10+2 | 6.1243 × 10+2 | 6.1157 × 10+2 | |
Mean | 9.4332 × 10+2 | 9.7733 × 10+2 | 2.6965 × 10+3 | 8.9814 × 10+2 | 9.6824 × 10+2 | 9.4150 × 10+2 | 1.0159 × 10+4 | 3.3524 × 10+3 | |
SD | 2.3829 × 10+1 | 3.1959 × 10+1 | 3.8496 × 10+2 | 9.4581 | 8.5816 × 10+1 | 8.8598 | 8.3824 × 10+2 | 9.7905 × 10+2 | |
Best | 9.0639 × 10+2 | 9.4075 × 10+2 | 2.2887 × 10+3 | 8.7647 × 10+2 | 8.1326 × 10+2 | 9.2597 × 10+2 | 8.3332 × 10+3 | 2.3470 × 10+3 | |
Mean | 1.0170 × 10+3 | 1.1686 × 10+3 | 2.0555 × 10+4 | 9.5874 × 10+2 | 2.5350 × 10+3 | 1.0173 × 10+3 | 9.0818 × 10+4 | 4.6828 × 10+3 | |
SD | 1.6858 × 10+1 | 1.3060 × 10+2 | 3.0799 × 10+3 | 8.3148 | 7.6991 × 10+2 | 1.4184 × 10+1 | 9.1209 × 10+3 | 1.4188 × 10+3 | |
Best | 9.8354 × 10+2 | 9.4557 × 10+2 | 1.5471 × 10+4 | 9.3628 × 10+2 | 1.1926 × 10+3 | 9.8525 × 10+2 | 7.2518 × 10+4 | 2.7142 × 10+3 | |
Mean | 9.3282 × 10+2 | 1.0107 × 10+3 | 7.6405 × 10+3 | 9.0001 × 10+2 | 4.1650 × 10+3 | 9.1484 × 10+2 | 1.2363 × 10+4 | 6.0580 × 10+3 | |
SD | 1.4807 × 10+1 | 7.4294 × 10+1 | 2.1172 × 10+3 | 3.7424 × 10−2 | 1.3628 × 10+3 | 9.7802 | 1.0314 × 10+3 | 1.8479 × 10+3 | |
Best | 9.1759 × 10+2 | 9.0972 × 10+2 | 4.7597 × 10+3 | 9.0000 × 10+2 | 1.8404 × 10+3 | 9.0107 × 10+2 | 1.0089 × 10+4 | 3.5584 × 10+3 | |
Mean | 1.1011 × 10+4 | 1.1079 × 10+4 | 1.1455 × 10+4 | 1.0722 × 10+4 | 1.1401 × 10+4 | 1.0961 × 10+4 | 1.2451 × 10+4 | 1.1813 × 10+4 | |
SD | 1.8808 × 10+2 | 1.5078 × 10+2 | 2.3859 × 10+2 | 1.5673 × 10+2 | 1.2725 × 10+2 | 1.284 × 10+2 | 1.3989 × 10+2 | 4.1831 × 10+2 | |
Best | 1.0590 × 10+4 | 1.0908 × 10+4 | 1.1136 × 10+4 | 1.0548 × 10+4 | 1.1195 × 10+4 | 1.0724 × 10+4 | 1.2189 × 10+4 | 1.1129 × 10+4 | |
Mean | 1.7670 × 10+3 | 2.0221 × 10+6 | 3.1151 × 10+9 | 2.5291 × 10+3 | 1.1730 × 10+7 | 8.7801 × 10+5 | 4.0390 × 10+10 | 1.3320 × 10+3 | |
SD | 6.7221 × 10+2 | 3.4853 × 10+6 | 8.2243 × 10+8 | 3.0633 × 10+3 | 2.0238 × 10+7 | 1.6759 × 10+6 | 4.4325 × 10+9 | 2.6880 × 10+2 | |
Best | 1.1290 × 10+3 | 4.2580 × 10+3 | 1.5136 × 10+9 | 1.1365 × 10+3 | 1.0634 × 10+4 | 2.4347 × 10+3 | 3.2131 × 10+10 | 1.1290 × 10+3 | |
Mean | 5.9288 × 10+4 | 9.7257 × 10+7 | 7.1215 × 10+9 | 1.6104 × 10+4 | 1.3794 × 10+8 | 5.7313 × 10+6 | 4.8662 × 10+10 | 1.3130 × 10+9 | |
SD | 9.0807 × 10+4 | 1.3485 × 10+8 | 2.0435 × 10+9 | 2.5779 × 10+3 | 2.4600 × 10+8 | 1.1492 × 10+7 | 5.4498 × 10+9 | 3.1497 × 10+9 | |
Best | 1.3827 × 10+4 | 4.7340 × 10+6 | 4.0387 × 10+9 | 1.3849 × 10+4 | 1.6120 × 10+4 | 1.4564 × 10+4 | 3.7038 × 10+10 | 1.3874 × 10+4 | |
Mean | 8.3733 × 10+4 | 1.4049 × 10+8 | 1.4700 × 10+10 | 3.9304 × 10+5 | 5.8942 × 10+8 | 8.1524 × 10+4 | 8.5046 × 10+10 | 2.1004 × 10+3 | |
SD | 2.6233 × 10+4 | 9.9947 × 10+7 | 3.6972 × 10+9 | 4.4340 × 10+5 | 2.9850 × 10+8 | 4.4050 × 10+4 | 1.3211 × 10+10 | 1.3268 | |
Best | 3.3367 × 10+4 | 2.7440 × 10+7 | 1.0374 × 10+10 | 1.8847 × 10+4 | 8.4376 × 10+7 | 2.2178 × 10+3 | 5.9840 × 10+10 | 2.0984 × 10+3 | |
Mean | 5.8750 × 10+6 | 1.5426 × 10+7 | 9.8656 × 10+7 | 6.3622 × 10+6 | 2.1211 × 10+6 | 9.4752 × 10+6 | 9.1320 × 10+8 | 9.3891 × 10+5 | |
SD | 1.7853 × 10+6 | 8.1897 × 10+6 | 2.1676 × 10+7 | 2.8854 × 10+6 | 2.2163 × 10+6 | 1.0014 × 10+7 | 2.4638 × 10+8 | 6.2615 × 10+5 | |
Best | 2.4620 × 10+6 | 5.0749 × 10+6 | 5.8264 × 10+7 | 2.2981 × 10+6 | 2.5551 × 10+5 | 1.5089 × 10+6 | 5.2074 × 10+8 | 2.9271 × 10+5 | |
Mean | 8.2975 × 10+4 | 1.3341 × 10+8 | 1.0189 × 10+10 | 4.0740 × 10+5 | 3.0637 × 10+8 | 8.9142 × 10+4 | 7.6362 × 10+10 | 1.5357 × 10+3 | |
SD | 3.9857 × 10+4 | 1.1885 × 10+8 | 2.4488 × 10+9 | 3.0513 × 10+5 | 3.0808 × 10+8 | 5.7921 × 10+4 | 3.9859 × 10+9 | 7.9048 | |
Best | 1.5673 × 10+3 | 4.2886 × 10+6 | 6.8067 × 10+9 | 1.5325 × 10+3 | 3.2873 × 10+7 | 1.5468 × 10+3 | 6.9687 × 10+9 | 1.5299 × 10+3 | |
Mean | 1.4487 × 10+4 | 2.5661 × 10+5 | 1.2361 × 10+9 | 5.8814 × 10+4 | 2.7922 × 10+6 | 3.6117 × 10+4 | 2.9758 × 10+10 | 3.2885 × 10+5 | |
SD | 5.8891 × 10+2 | 4.0008 × 10+5 | 3.0577 × 10+8 | 7.6916 × 10+4 | 4.1507 × 10+6 | 6.4341 × 10+4 | 5.1031 × 10+9 | 8.6244 × 10+5 | |
Best | 1.4194 × 10+4 | 1.4372 × 10+4 | 7.0565 × 10+8 | 1.4231 × 10+4 | 6.4617 × 10+4 | 1.4196 × 10+4 | 1.9522 × 10+10 | 1.4195 × 10+4 | |
Mean | 1.4351 × 10+4 | 7.1725 × 10+7 | 1.6760 × 10+14 | 1.4279 × 10+4 | 9.7976 × 10+8 | 1.4331 × 10+4 | 5.4148 × 10+16 | 7.9218 × 10+7 | |
SD | 2.0286 × 10+1 | 1.6587 × 10+8 | 1.3323 × 10+14 | 7.2173 | 2.2737 × 10+9 | 5.5655 × 10+1 | 1.4025 × 10+16 | 2.3744 × 10+8 | |
Best | 1.4310 × 10+4 | 1.4474 × 10+4 | 2.4595 × 10+13 | 1.4270 × 10+4 | 4.7082 × 10+6 | 1.4297 × 10+4 | 3.2314 × 10+16 | 1.4310 × 10+4 | |
Mean | 7.6719 × 10+6 | 1.2565 × 10+7 | 8.4578 × 10+7 | 1.7995 × 10+7 | 2.3636 × 10+6 | 1.1445 × 10+7 | 4.9030 × 10+8 | 3.9831 × 10+7 | |
SD | 3.9782 × 10+6 | 5.1616 × 10+6 | 2.1103 × 10+7 | 1.3468 × 10+7 | 1.1146 × 10+6 | 6.8927 × 10+6 | 6.7935 × 10+7 | 1.8158 × 10+7 | |
Best | 1.7226 × 10+6 | 5.8824 × 10+6 | 5.4018 × 10+7 | 6.7495 × 10+6 | 1.2019 × 10+6 | 5.2488 × 10+6 | 3.2780 × 10+8 | 1.4917 × 10+7 | |
Mean | 4.7801 × 10+3 | 1.8763 × 10+8 | 5.7415 × 10+13 | 3.3488 × 10+3 | 8.8622 × 10+8 | 3.4119 × 10+3 | 2.5284 × 10+16 | 1.9531 × 10+3 | |
SD | 1.3835 × 10+3 | 1.6251 × 10+8 | 8.8069 × 10+13 | 2.6690 × 10+3 | 1.3862 × 10+9 | 2.0317 × 10+3 | 1.2974 × 10+16 | 3.0686 × 10+1 | |
Best | 1.9145 × 10+3 | 7.8634 × 10+6 | 3.5591 × 10+12 | 1.9074 × 10+3 | 2.7479 × 10+7 | 1.9135 × 10+3 | 7.0023 × 10+15 | 1.9237 × 10+3 | |
Mean | 5.9888 × 10+102 | 1.6665 × 10+84 | 7.6404 × 10+111 | 1.5548 × 10+19 | 1.4427 × 10+100 | 1.0005 × 10+91 | 8.4624 × 10+116 | 7.1701 × 10+109 | |
SD | 1.7792 × 10+103 | 4.9606 × 10+84 | 2.2625 × 10+112 | 4.6645 × 10+19 | 4.1334 × 10+100 | 2.2225 × 10+91 | 1.1522 × 10+117 | 1.9814 × 10+110 | |
Best | 6.5653 × 10+65 | 1.4713 × 10+63 | 5.2358 × 10+106 | 1.4579 × 10+4 | 1.8321 × 10+86 | 2.6695 × 10+85 | 5.4253 × 10+113 | 4.2488 × 10+103 | |
Mean | 2.1135 × 10+3 | 3.8159 × 10+3 | 9.5991 × 10+3 | 6.4467 × 10+3 | 3.3722 × 10+3 | 2.1853 × 10+3 | 5.8262 × 10+4 | 2.1123 × 10+3 | |
SD | 5.9729 | 7.7727 × 10+2 | 1.8415 × 10+3 | 1.3007 × 10+4 | 5.9383 × 10+2 | 1.2686 × 10+2 | 1.5694 × 10+4 | 5.3425 | |
Best | 2.1097 × 10+3 | 2.7056 × 10+3 | 7.0339 × 10+3 | 2.1097 × 10+3 | 2.4574 × 10+3 | 2.1098 × 10+3 | 3.1666 × 10+4 | 2.1097 × 10+3 | |
Mean | 6.4059 × 10+3 | 6.4015 × 10+3 | 6.4382 × 10+3 | 6.4009 × 10+3 | 6.4497 × 10+3 | 6.4216 × 10+3 | 6.4082 × 10+3 | 6.4113 × 10+3 | |
SD | 5.0426 × 10−1 | 1.3617 | 1.7149 × 10+1 | 2.1676 | 1.4282 × 10+1 | 2.6376 × 10+1 | 3.9606 × 10−1 | 6.2780 | |
Best | 6.4047 × 10+3 | 6.3984 × 10+3 | 6.4068 × 10+3 | 6.3971 × 10+3 | 6.4235 × 10+3 | 6.4008 × 10+3 | 6.4073 × 10+3 | 6.4072 × 10+3 | |
Mean | 5.4514 × 10+3 | 5.4583 × 10+3 | 5.8620 × 10+3 | 5.4702 × 10+3 | 5.6456 × 10+3 | 5.4948 × 10+3 | 6.5117 × 10+3 | 5.4470 × 10+3 | |
SD | 3.5528 | 1.3281 × 10+1 | 1.3220 × 10+2 | 1.6258 × 10+1 | 2.6447 × 10+2 | 3.4469 × 10+1 | 1.6655 × 10+2 | 7.6078 | |
Best | 5.4496 × 10+3 | 5.4496 × 10+3 | 5.7378 × 10+3 | 5.4496 × 10+3 | 5.4781 × 10+3 | 5.4567 × 10+3 | 6.2514 × 10+3 | 5.4445 × 10+3 | |
Mean | 2.4049 × 10+3 | 3.7702 × 10+3 | 8.1763 × 10+3 | 2.4003 × 10+3 | 4.4037 × 10+3 | 9.8171 × 10+3 | 4.4376 × 10+4 | 2.4112 × 10+3 | |
SD | 3.5938 | 7.0818 × 10+2 | 1.9869 × 10+3 | 9.3908 × 10−1 | 1.6095 × 10+3 | 2.2245 × 10+4 | 1.2943 × 10+4 | 4.8607 | |
Best | 2.4000 × 10+3 | 2.9135 × 10+3 | 5.8856 × 10+3 | 2.4000 × 10+3 | 2.5242 × 10+3 | 2.4000 × 10+3 | 2.6345 × 10+4 | 2.4047 × 10+3 | |
Mean | 2.5115 × 10+3 | 2.5259 × 10+3 | 2.8632 × 10+3 | 2.5346 × 10+3 | 2.6545 × 10+3 | 2.5449 × 10+3 | 3.6612 × 10+3 | 2.5209 × 10+3 | |
SD | 1.3832 × 10+1 | 2.1977 × 10+1 | 5.0626 × 10+1 | 6.1919 × 10+1 | 9.3843 × 10+1 | 2.5118 × 10+1 | 1.4584 × 10+2 | 1.5459 × 10+1 | |
Best | 2.5069 × 10+3 | 2.5069 × 10+3 | 2.7889 × 10+3 | 2.5069 × 10+3 | 2.5790 × 10+3 | 2.5071 × 10+3 | 3.4479 × 10+3 | 2.5069 × 10+3 | |
Mean | 5.1221 × 10+3 | 5.1271 × 10+3 | 5.4637 × 10+3 | 5.1439 × 10+3 | 5.1698 × 10+3 | 5.1538 × 10+3 | 5.9227 × 10+3 | 5.1204 × 10+3 | |
SD | 5.2682 | 1.5539 × 10+1 | 6.5653 × 10+1 | 4.3448 × 10+1 | 4.2873 × 10+1 | 1.8060 × 10+1 | 1.9952 × 10+2 | 1.0649 × 10+1 | |
Best | 5.1197 × 10+3 | 5.1197 × 10+3 | 5.3657 × 10+3 | 5.1197 × 10+3 | 5.1228 × 10+3 | 5.1211 × 10+3 | 5.6535 × 10+3 | 5.1150 × 10+3 | |
Mean | 4.7961 × 10+3 | 5.0083 × 10+3 | 1.3037 × 10+6 | 4.8113 × 10+3 | 5.2446 × 10+3 | 4.8678 × 10+3 | 2.3729 × 10+6 | 4.7963 × 10+3 | |
SD | 5.2592 × 10−1 | 1.9426 × 10+2 | 2.6522 × 10+5 | 4.6254 × 10+1 | 3.0010 × 10+2 | 1.3515 × 10+2 | 2.5672 × 10+5 | 6.7444 × 10−1 | |
Best | 4.7958 × 10+3 | 4.7968 × 10+3 | 9.5446 × 10+5 | 4.7958 × 10+3 | 4.9123 × 10+3 | 4.7959 × 10+3 | 2.0097 × 10+6 | 4.7958 × 10+3 | |
Mean | 2.8057 × 10+3 | 2.8141 × 10+3 | 3.1012 × 10+3 | 2.8232 × 10+3 | 2.8946 × 10+3 | 2.8122 × 10+3 | 3.7470 × 10+3 | 2.8057 × 10+3 | |
SD | 2.4908 × 10−13 | 1.0768 × 10+1 | 6.2779 × 10+1 | 1.8079 × 10+1 | 1.2846 × 10+2 | 1.3537 × 10+1 | 1.8942 × 10+2 | 2.0667 × 10−8 | |
Best | 2.8057 × 10+3 | 2.8057 × 10+3 | 3.0038 × 10+3 | 2.8057 × 10+3 | 2.8143 × 10+3 | 2.8057 × 10+3 | 3.5139 × 10+3 | 2.8057 × 10+3 | |
Mean | 4.9999 × 10+3 | 5.0411 × 10+3 | 5.2807 × 10+5 | 8.6630 × 10+3 | 6.3626 × 10+3 | 2.4707 × 10+7 | 1.1877 × 10+6 | 4.9999 × 10+3 | |
SD | 8.1348 × 10−13 | 5.4386 × 10+1 | 4.0488 × 10+4 | 1.0984 × 10+4 | 1.5954 × 10+3 | 6.0227 × 10+7 | 8.1164 × 10+4 | 1.9679 × 10−7 | |
Best | 4.9999 × 10+3 | 5.0005 × 10+3 | 4.8404 × 10+5 | 4.9999 × 10+3 | 5.0830 × 10+3 | 5.0104 × 10+3 | 1.0129 × 10+6 | 4.9999 × 10+3 | |
Mean | 3.0022 × 10+3 | 3.0024 × 10+3 | 1.0060 × 10+6 | 7.1836 × 10+5 | 3.2555 × 10+3 | 9.2082 × 10+6 | 2.0871 × 10+6 | 3.0023 × 10+3 | |
SD | 9.2714 × 10−4 | 3.0809 × 10−2 | 2.6791 × 10+5 | 2.1461 × 10+6 | 2.4063 × 10+2 | 2.7196 × 10+7 | 3.0555 × 10+5 | 3.7938 × 10−2 | |
Best | 3.0022 × 10+3 | 3.0023 × 10+3 | 7.1959 × 10+5 | 3.0022 × 10+3 | 3.0712 × 10+3 | 3.1290 × 10+3 | 1.6273 × 10+6 | 3.0023 × 10+3 | |
Rank Based on Mean of the Results | Mean Rank | 2.233 | 3.933 | 6.733 | 2.933 | 4.733 | 4 | 7.8 | 3.633 |
Total Rank | 1 | 4 | 7 | 2 | 6 | 5 | 8 | 3 | |
Rank Based on Best of the Results | Mean Rank | 2.533 | 4.1 | 6.767 | 2.833 | 4.900 | 3.533 | 7.967 | 3.367 |
Total Rank | 1 | 5 | 7 | 2 | 6 | 4 | 8 | 3 |
Algorithm | GBFIO | GWO | TLBO | DE | PSO | |
---|---|---|---|---|---|---|
Variables | 0.051733 | 0.051131 | 0.051559 | 0.051689 | 0.051691 | |
0.357782 | 0.343415 | 0.353596 | 0.356717 | 0.356762 | ||
11.226838 | 12.119772 | 11.475790 | 11.289034 | 11.28640 | ||
Constraints | −2.220446 × 10−16 | −1.137609 × 10−4 | −7.716146 × 10−5 | 0 | −2.220446 × 10−16 | |
0 | −2.930045 × 10−5 | −3.314506 × 10−5 | 0 | 0 | ||
−4.049367 | −4.047656 | −4.047007 | −4.053783 | −4.053872 | ||
−0.729275 | −0.729614 | −0.729896 | −0.727730 | −0.727698 | ||
Optimum objective function | 0.012665 | 0.012667 | 0.012667 | 0.012665 | 0.012665 |
Algorithm | GBFIO | GWO | TLBO | DE | PSO |
---|---|---|---|---|---|
Best | 0.012665 | 0.012667 | 0.012667 | 0.012665 | 0.012665 |
Mean | 0.012668 | 0.012702 | 0.012698 | 0.012744 | 0.012705 |
Worst | 0.012676 | 0.012725 | 0.012763 | 0.013090 | 0.013193 |
SD | 3.05638 × 10−6 | 2.07286 × 10−5 | 2.44736 × 10−5 | 1.24856 × 10−4 | 1.14067 × 10−4 |
Algorithm | GBFIO | GWO | TLBO | DE | PSO | |
---|---|---|---|---|---|---|
Variables | 0.203662 | 0.203663 | 0.203726 | 0.203671 | 0.203669 | |
2.657678 | 2.656573 | 2.662157 | 2.659399 | 2.659002 | ||
9.474038 | 9.475445 | 9.467296 | 9.472102 | 9.472551 | ||
0.203662 | 0.203667 | 0.203735 | 0.203671 | 0.203669 | ||
Constraints | −0.000427 | −0.640565 | −0.173804 | 0 | 0 | |
−2429.184048 | −2437.957204 | −2399.718172 | −2419.093017 | −2421.428131 | ||
−0.241422 | −0.241425 | −0.241413 | −0.241419 | −0.241420 | ||
−6.790706 × 10−9 | −3.767273 × 10−7 | −9.238739 × 10−6 | 0 | 0 | ||
−0.009883 | −0.960555 | −3.702637 | −0.004736 | −9.094947 × 10−13 | ||
−0.078662 | −0.078663 | −0.078726 | −0.078671 | −0.078669 | ||
−3.407872 | −3.407712 | −3.407979 | −3.407958 | −3.407938 | ||
Optimum objective function | 1.668085 | 1.668196 | 1.668231 | 1.668085 | 1.668085 |
Algorithm | GBFIO | GWO | TLBO | DE | PSO |
---|---|---|---|---|---|
Best | 1.668085 | 1.668196 | 1.668231 | 1.668085 | 1.668085 |
Mean | 1.668139 | 1.668613 | 1.673312 | 1.750973 | 1.670535 |
Worst | 1.668261 | 1.670510 | 1.714264 | 2.277017 | 1.692367 |
SD | 4.02387 × 10−5 | 0.000491 | 0.011483 | 0.139742 | 0.007278 |
Algorithm | GBFIO | GWO | TLBO | DE | PSO | |
---|---|---|---|---|---|---|
Variables | 0.778171 | 0.778334 | 0.778177 | 0.799488 | 0.778169 | |
0.384650 | 0.384867 | 0.384655 | 0.396177 | 0.384649 | ||
40.319716 | 40.32289 | 40.31969 | 41.42425 | 40.31962 | ||
199.998644 | 199.9564541 | 200 | 185.17393 | 200 | ||
Constraints | −3.474887 × 10−12 | −1.026458 × 10−4 | −6.906605 × 10−6 | 0 | −1.110223 × 10−16 | |
−7.984169 × 10−13 | −1.867439 × 10−4 | −5.317988 × 10−6 | −9.897130 × 10−4 | 0 | ||
−8.302741 × 10−7 | −10.026897 | −4.945010 | 0 | −4.656613 × 10−10 | ||
−40.001356 | −40.043546 | −40 | −54.826069 | −40 | ||
Optimum objective function | 5885.335987 | 5886.766716 | 5885.421274 | 5925.80197 | 5885.332774 |
Algorithm | GBFIO | GWO | TLBO | DE | PSO |
---|---|---|---|---|---|
Best | 5885.335987 | 5886.766716 | 5885.421274 | 5925.80197 | 5885.332774 |
Mean | 5885.729959 | 5906.428534 | 5957.584751 | 6268.301804 | 5987.870488 |
Worst | 5887.656004 | 6159.109518 | 6413.063728 | 7107.412167 | 6409.398064 |
SD | 0.504172297 | 58.24275335 | 131.2308551 | 294.4901147 | 165.3137231 |
Algorithm | GBFIO | GWO | TLBO | DE | PSO | |
---|---|---|---|---|---|---|
Variables | 3.5 | 3.501233 | 3.5 | 3.5 | 3.5 | |
0.7 | 0.7 | 0.7 | 0.7 | 0.7 | ||
17 | 17 | 17 | 17 | 17 | ||
7.3 | 7.307395699 | 7.3 | 7.3 | 7.3 | ||
7.715319911 | 7.787380246 | 7.715385227 | 7.715319911 | 8.3 | ||
3.350215 | 3.350762 | 3.350221 | 3.350215 | 3.350215 | ||
5.286654 | 5.287165 | 5.28666 | 5.286654 | 5.286859 | ||
Constraints | −7.391528 × 10−2 | −7.424131 × 10−2 | −7.391585 × 10−2 | −7.391528 × 10−2 | −7.391528 × 10−2 | |
−0.197999 | −0.198281 | −0.197999 | −0.197999 | −0.197999 | ||
−0.499172 | −0.497977 | −0.499176 | −0.499172 | −0.499172 | ||
−0.904644 | −0.901985 | −0.904642 | −0.904644 | −0.881299 | ||
−7.771561 × 10−16 | −4.776360 × 10−4 | −5.500447 × 10−6 | −7.771561 × 10−16 | −2.220446 × 10−16 | ||
0 | −2.755579 × 10−4 | −3.228823 × 10−6 | 0 | −2.220446 × 10−16 | ||
−0.702500 | −0.702500 | −0.702500 | −0.702500 | −0.702500 | ||
−3.330669 × 10−16 | −3.520475 × 10−4 | −6.164804 × 10−7 | −2.220446 × 10−16 | −2.220446 × 10−16 | ||
−0.583333 | −0.583187 | −0.583333 | −0.583333 | −0.583333 | ||
−5.132575 × 10−2 | −5.217353 × 10−2 | −5.132449 × 10−2 | −5.132575 × 10−2 | −5.132575 × 10−2 | ||
−7.771561 × 10−16 | −9.181416 × 10−3 | −7.651281 × 10−6 | −9.992007 × 10−16 | −7.041622 × 10−2 | ||
Optimum objective function | 2994.471066 | 2997.066108 | 2994.478541 | 2994.471066 | 3007.436552 |
Algorithm | GBFIO | GWO | TLBO | DE | PSO |
---|---|---|---|---|---|
Best | 2994.471066 | 2997.06611 | 2994.478541 | 2994.471066 | 3007.436552 |
Mean | 2994.471066 | 3001.723014 | 3002.476476 | 2995.286717 | 3049.074191 |
Worst | 2994.471066 | 3009.972106 | 3037.194378 | 2999.867867 | 3180.009085 |
SD | 3.02268 × 10−10 | 3.759029713 | 11.22155472 | 1.496503751 | 34.49904775 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehghani, M.; Aly, M.; Rodriguez, J.; Sheybani, E.; Javidi, G. A Novel Nature-Inspired Optimization Algorithm: Grizzly Bear Fat Increase Optimizer. Biomimetics 2025, 10, 379. https://doi.org/10.3390/biomimetics10060379
Dehghani M, Aly M, Rodriguez J, Sheybani E, Javidi G. A Novel Nature-Inspired Optimization Algorithm: Grizzly Bear Fat Increase Optimizer. Biomimetics. 2025; 10(6):379. https://doi.org/10.3390/biomimetics10060379
Chicago/Turabian StyleDehghani, Moslem, Mokhtar Aly, Jose Rodriguez, Ehsan Sheybani, and Giti Javidi. 2025. "A Novel Nature-Inspired Optimization Algorithm: Grizzly Bear Fat Increase Optimizer" Biomimetics 10, no. 6: 379. https://doi.org/10.3390/biomimetics10060379
APA StyleDehghani, M., Aly, M., Rodriguez, J., Sheybani, E., & Javidi, G. (2025). A Novel Nature-Inspired Optimization Algorithm: Grizzly Bear Fat Increase Optimizer. Biomimetics, 10(6), 379. https://doi.org/10.3390/biomimetics10060379