A Hybrid Nonlinear Greater Cane Rat Algorithm with Sine–Cosine Algorithm for Global Optimization and Constrained Engineering Applications
Abstract
1. Introduction
- (1)
- Swarm intelligence algorithms (SIAs)
- (2)
- Evolutionary algorithms (EAs)
- (3)
- Physics/Chemistry/Mathematics-inspired algorithms
- (4)
- Human-inspired algorithms (HBAs)
2. Greater Cane Rat Algorithm (GCRA)
2.1. Population Initialization
2.2. Exploration
2.3. Exploitation
Algorithm 1 GCRA |
Step 1. Initialize the GCRs population Step 2. Estimate the fitness of GCRs, renovate the global best solution () Sift the fittest GCR as the dominant male Renovate the remaining GCRs stem from via Equation (3) Step 3. while do for all GCRs Renovate , , , , , if Exploration Renovate GCRs positions via Equation (4) else Exploitation Renovate GCRs positions via Equation (9) end if end for Affirm whether any solution has overflowed the search interval and revise it Estimate the fitness of GCRs stem from a renewed location Renovate GCRs positions via Equation (5) Renovate and sift a renewed dominant male end while Return |
3. Nonlinear Greater Cane Rat Algorithm with Sine–Cosine Algorithm (SCGCRA)
3.1. Nonlinear GCRA
3.2. Sine–Cosine Algorithm (SCA)
3.3. SCGCRA
Algorithm 2 SCGCRA |
Step 1. Initialize the GCRs population Step 2. Estimate the fitness of GCRs, renovate the global best solution () Sift the fittest GCR as the dominant male Renovate the remaining GCRs stem from via Equation (3) Step 3. while do for all GCRs Renovate , , , , , if Exploration The nonlinear control strategy is introduced into exploration of GCRA Combine SCA with GCRA to enhance the global exploration efficiency Renovate GCRs positions via Equations (11) and (16) else Exploitation The nonlinear control strategy is introduced into exploitation of GCRA Combine SCA with GCRA to enhance the local exploitation accuracy Renovate GCRs positions via Equations (13) and (18) end if end for Affirm whether any solution has overflowed the search interval and revise it Estimate the fitness of GCRs stem from a renewed location The nonlinear control strategy is introduced into GCRA Combine SCA with GCRA to enhance the exploration and exploitation Renovate GCRs positions via Equations (12) and (17) Renovate and sift a renewed dominant male end while Return |
4. Simulation Test and Result Analysis for Tackling Benchmark Functions
4.1. Experimental Disposition
4.2. Benchmark Functions
4.3. Parameter Settings
4.4. Simulation Test and Result Analysis
4.5. Convergence Analysis
4.6. Boxplot Analysis
4.7. Wilcoxon Rank-Sum Test
5. SCGCRA for Tackling Engineering Designs
5.1. Three-Bar Truss Design
5.2. Piston Lever Design
5.3. Gear Train Design
5.4. Car Side Impact Design
5.5. Multiple-Disk Clutch Brake Design
5.6. Rolling Element Bearing Design
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Z.; Liu, G.; Jiang, F. Chinese Pangolin Optimizer: A Novel Bio-Inspired Metaheuristic for Solving Optimization Problems. J. Supercomput. 2025, 81, 517. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Hu, X.; Qiu, L.; Zang, H. Black-Winged Kite Algorithm: A Nature-Inspired Meta-Heuristic for Solving Benchmark Functions and Engineering Problems. Artif. Intell. Rev. 2024, 57, 98. [Google Scholar] [CrossRef]
- Al-Betar, M.A.; Awadallah, M.A.; Braik, M.S.; Makhadmeh, S.; Doush, I.A. Elk Herd Optimizer: A Novel Nature-Inspired Metaheuristic Algorithm. Artif. Intell. Rev. 2024, 57, 48. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Khodadadi, N.; Barshandeh, S.; Trojovskỳ, P.; Gharehchopogh, F.S.; El-kenawy, E.-S.M.; Abualigah, L.; Mirjalili, S. Puma Optimizer (PO): A Novel Metaheuristic Optimization Algorithm and Its Application in Machine Learning. Clust. Comput. 2024, 27, 5235–5283. [Google Scholar] [CrossRef]
- Peraza-Vázquez, H.; Peña-Delgado, A.; Merino-Treviño, M.; Morales-Cepeda, A.B.; Sinha, N. A Novel Metaheuristic Inspired by Horned Lizard Defense Tactics. Artif. Intell. Rev. 2024, 57, 59. [Google Scholar] [CrossRef]
- Agushaka, J.O.; Ezugwu, A.E.; Saha, A.K.; Pal, J.; Abualigah, L.; Mirjalili, S. Greater Cane Rat Algorithm (GCRA): A Nature-Inspired Metaheuristic for Optimization Problems. Heliyon 2024, 10, e31629. [Google Scholar] [CrossRef]
- Zhang, H.; San, H.; Sun, H.; Ding, L.; Wu, X. A Novel Optimization Method: Wave Search Algorithm. J. Supercomput. 2024, 80, 16824–16859. [Google Scholar] [CrossRef]
- Golalipour, K.; Nowdeh, S.A.; Akbari, E.; Hamidi, S.S.; Ghasemi, D.; Abdelaziz, A.Y.; Kotb, H.; Yousef, A. Snow Avalanches Algorithm (SAA): A New Optimization Algorithm for Engineering Applications. Alex. Eng. J. 2023, 83, 257–285. [Google Scholar] [CrossRef]
- Houssein, E.H.; Oliva, D.; Samee, N.A.; Mahmoud, N.F.; Emam, M.M. Liver Cancer Algorithm: A Novel Bio-Inspired Optimizer. Comput. Biol. Med. 2023, 165, 107389. [Google Scholar] [CrossRef]
- Yuan, Y.; Shen, Q.; Wang, S.; Ren, J.; Yang, D.; Yang, Q.; Fan, J.; Mu, X. Coronavirus Mask Protection Algorithm: A New Bio-Inspired Optimization Algorithm and Its Applications. J. Bionic Eng. 2023, 20, 1747–1765. [Google Scholar] [CrossRef]
- Ahmed, M.; Sulaiman, M.H.; Mohamad, A.J.; Rahman, M. Gooseneck Barnacle Optimization Algorithm: A Novel Nature Inspired Optimization Theory and Application. Math. Comput. Simul. 2024, 218, 248–265. [Google Scholar] [CrossRef]
- Kaveh, M.; Mesgari, M.S.; Saeidian, B. Orchard Algorithm (OA): A New Meta-Heuristic Algorithm for Solving Discrete and Continuous Optimization Problems. Math. Comput. Simul. 2023, 208, 95–135. [Google Scholar] [CrossRef]
- Yuan, C.; Zhao, D.; Heidari, A.A.; Liu, L.; Chen, Y.; Wu, Z.; Chen, H. Artemisinin Optimization Based on Malaria Therapy: Algorithm and Applications to Medical Image Segmentation. Displays 2024, 84, 102740. [Google Scholar] [CrossRef]
- Sowmya, R.; Premkumar, M.; Jangir, P. Newton-Raphson-Based Optimizer: A New Population-Based Metaheuristic Algorithm for Continuous Optimization Problems. Eng. Appl. Artif. Intell. 2024, 128, 107532. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; El-Shahat, D.; Jameel, M.; Abouhawwash, M. Exponential Distribution Optimizer (EDO): A Novel Math-Inspired Algorithm for Global Optimization and Engineering Problems. Artif. Intell. Rev. 2023, 56, 9329–9400. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; El-Shahat, D.; Jameel, M.; Abouhawwash, M. Young’s Double-Slit Experiment Optimizer: A Novel Metaheuristic Optimization Algorithm for Global and Constraint Optimization Problems. Comput. Methods Appl. Mech. Eng. 2023, 403, 115652. [Google Scholar] [CrossRef]
- Barua, S.; Merabet, A. Lévy Arithmetic Algorithm: An Enhanced Metaheuristic Algorithm and Its Application to Engineering Optimization. Expert Syst. Appl. 2024, 241, 122335. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, T.; Cai, L.; Yang, R. Triangulation Topology Aggregation Optimizer: A Novel Mathematics-Based Meta-Heuristic Algorithm for Continuous Optimization and Engineering Applications. Expert Syst. Appl. 2024, 238, 121744. [Google Scholar] [CrossRef]
- Lian, J.; Zhu, T.; Ma, L.; Wu, X.; Heidari, A.A.; Chen, Y.; Chen, H.; Hui, G. The Educational Competition Optimizer. Int. J. Syst. Sci. 2024, 55, 3185–3222. [Google Scholar] [CrossRef]
- Wu, X.; Li, S.; Jiang, X.; Zhou, Y. Information Acquisition Optimizer: A New Efficient Algorithm for Solving Numerical and Constrained Engineering Optimization Problems. J. Supercomput. 2024, 80, 25736–25791. [Google Scholar] [CrossRef]
- Lian, J.; Hui, G. Human Evolutionary Optimization Algorithm. Expert Syst. Appl. 2024, 241, 122638. [Google Scholar] [CrossRef]
- Jia, H.; Lu, C.; Xing, Z. Memory Backtracking Strategy: An Evolutionary Updating Mechanism for Meta-Heuristic Algorithms. Swarm Evol. Comput. 2024, 84, 101456. [Google Scholar] [CrossRef]
- Jia, H.; Lu, C. Guided Learning Strategy: A Novel Update Mechanism for Metaheuristic Algorithms Design and Improvement. Knowl.-Based Syst. 2024, 286, 111402. [Google Scholar] [CrossRef]
- Jia, H.; Zhou, X.; Zhang, J. Thinking Innovation Strategy (TIS): A Novel Mechanism for Metaheuristic Algorithm Design and Evolutionary Update. Appl. Soft Comput. 2025, 175, 113071. [Google Scholar] [CrossRef]
- Dehkordi, A.A.; Sadiq, A.S.; Mirjalili, S.; Ghafoor, K.Z. Nonlinear-Based Chaotic Harris Hawks Optimizer: Algorithm and Internet of Vehicles Application. Appl. Soft Comput. 2021, 109, 107574. [Google Scholar]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar]
- Zhang, J.; Liu, W.; Zhang, G.; Zhang, T. Quantum Encoding Whale Optimization Algorithm for Global Optimization and Adaptive Infinite Impulse Response System Identification. Artif. Intell. Rev. 2025, 58, 158. [Google Scholar] [CrossRef]
- Zhong, C.; Li, G.; Meng, Z.; Li, H.; Yildiz, A.R.; Mirjalili, S. Starfish Optimization Algorithm (SFOA): A Bio-Inspired Metaheuristic Algorithm for Global Optimization Compared with 100 Optimizers. Neural Comput. Appl. 2025, 37, 3641–3683. [Google Scholar]
- Mohammadzadeh, A.; Mirjalili, S. Eel and Grouper Optimizer: A Nature-Inspired Optimization Algorithm. Clust. Comput. 2024, 27, 12745–12786. [Google Scholar] [CrossRef]
- Han, M.; Du, Z.; Yuen, K.F.; Zhu, H.; Li, Y.; Yuan, Q. Walrus Optimizer: A Novel Nature-Inspired Metaheuristic Algorithm. Expert Syst. Appl. 2024, 239, 122413. [Google Scholar] [CrossRef]
- Jia, H.; Li, Y.; Wu, D.; Rao, H.; Wen, C.; Abualigah, L. Multi-Strategy Remora Optimization Algorithm for Solving Multi-Extremum Problems. J. Comput. Des. Eng. 2023, 10, 1315–1349. [Google Scholar] [CrossRef]
- Dhiman, G. SSC: A Hybrid Nature-Inspired Meta-Heuristic Optimization Algorithm for Engineering Applications. Knowl.-Based Syst. 2021, 222, 106926. [Google Scholar] [CrossRef]
- Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A Nature-Inspired Meta-Heuristic Optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Hashim, F.A.; Mostafa, R.R.; Hussien, A.G.; Mirjalili, S.; Sallam, K.M. Fick’s Law Algorithm: A Physical Law-Based Algorithm for Numerical Optimization. Knowl.-Based Syst. 2023, 260, 110146. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Azeem, S.A.A.; Jameel, M.; Abouhawwash, M. Kepler Optimization Algorithm: A New Metaheuristic Algorithm Inspired by Kepler’s Laws of Planetary Motion. Knowl.-Based Syst. 2023, 268, 110454. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Jameel, M.; Abouhawwash, M. Nutcracker Optimizer: A Novel Nature-Inspired Metaheuristic Algorithm for Global Optimization and Engineering Design Problems. Knowl.-Based Syst. 2023, 262, 110248. [Google Scholar] [CrossRef]
- Bai, J.; Li, Y.; Zheng, M.; Khatir, S.; Benaissa, B.; Abualigah, L.; Wahab, M.A. A Sinh Cosh Optimizer. Knowl.-Based Syst. 2023, 282, 111081. [Google Scholar] [CrossRef]
- Wang, W.; Tian, W.; Xu, D.; Zang, H. Arctic Puffin Optimization: A Bio-Inspired Metaheuristic Algorithm for Solving Engineering Design Optimization. Adv. Eng. Softw. 2024, 195, 103694. [Google Scholar] [CrossRef]
- Bai, J.; Nguyen-Xuan, H.; Atroshchenko, E.; Kosec, G.; Wang, L.; Wahab, M.A. Blood-Sucking Leech Optimizer. Adv. Eng. Softw. 2024, 195, 103696. [Google Scholar] [CrossRef]
- Bouaouda, A.; Hashim, F.A.; Sayouti, Y.; Hussien, A.G. Pied Kingfisher Optimizer: A New Bio-Inspired Algorithm for Solving Numerical Optimization and Industrial Engineering Problems. Neural Comput. Appl. 2024, 36, 15455–15513. [Google Scholar] [CrossRef]
- Kim, P.; Lee, J. An Integrated Method of Particle Swarm Optimization and Differential Evolution. J. Mech. Sci. Technol. 2009, 23, 426–434. [Google Scholar] [CrossRef]
- Rechenberg, I. Evolutionsstrategien. In Proceedings of the Simulationsmethoden in der Medizin und Biologie: Workshop, Hannover, Germany, 29 September–1 October 1977; Springer: Berlin/Heidelberg, Germany, 1978; pp. 83–114. [Google Scholar]
- Bayzidi, H.; Talatahari, S.; Saraee, M.; Lamarche, C.-P. Social Network Search for Solving Engineering Optimization Problems. Comput. Intell. Neurosci. 2021, 2021, 8548639. [Google Scholar] [CrossRef]
- Seyyedabbasi, A.; Kiani, F. Sand Cat Swarm Optimization: A Nature-Inspired Algorithm to Solve Global Optimization Problems. Eng. Comput. 2023, 39, 2627–2651. [Google Scholar] [CrossRef]
- Azizi, M.; Talatahari, S.; Giaralis, A. Optimization of Engineering Design Problems Using Atomic Orbital Search Algorithm. IEEE Access 2021, 9, 102497–102519. [Google Scholar] [CrossRef]
- Sadeeq, H.T.; Abdulazeez, A.M. Giant Trevally Optimizer (GTO): A Novel Metaheuristic Algorithm for Global Optimization and Challenging Engineering Problems. IEEE Access 2022, 10, 121615–121640. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Agushaka, J.O.; Abualigah, L.; Mirjalili, S.; Gandomi, A.H. Prairie Dog Optimization Algorithm. Neural Comput. Appl. 2022, 34, 20017–20065. [Google Scholar] [CrossRef]
- Das, A.K.; Pratihar, D.K. Bonobo Optimizer (BO): An Intelligent Heuristic with Self-Adjusting Parameters over Continuous Spaces and Its Applications to Engineering Problems. Appl. Intell. 2022, 52, 2942–2974. [Google Scholar] [CrossRef]
- Singh, H.; Singh, B.; Kaur, M. An Improved Elephant Herding Optimization for Global Optimization Problems. Eng. Comput. 2022, 38, 3489–3521. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, C.; Gharehchopogh, F.S.; Mirjalili, S. An Improved Whale Optimization Algorithm Based on Multi-Population Evolution for Global Optimization and Engineering Design Problems. Expert Syst. Appl. 2023, 215, 119269. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial Rabbits Optimization: A New Bio-Inspired Meta-Heuristic Algorithm for Solving Engineering Optimization Problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [Google Scholar] [CrossRef]
- Yadav, D. Blood Coagulation Algorithm: A Novel Bio-Inspired Meta-Heuristic Algorithm for Global Optimization. Mathematics 2021, 9, 3011. [Google Scholar] [CrossRef]
- Tarkhaneh, O.; Alipour, N.; Chapnevis, A.; Shen, H. Golden Tortoise Beetle Optimizer: A Novel Nature-Inspired Meta-Heuristic Algorithm for Engineering Problems. arXiv 2021, arXiv:210401521. [Google Scholar]
- Wu, H.; Zhang, X.; Song, L.; Zhang, Y.; Gu, L.; Zhao, X. Wild Geese Migration Optimization Algorithm: A New Meta-Heuristic Algorithm for Solving Inverse Kinematics of Robot. Comput. Intell. Neurosci. 2022, 2022, 5191758. [Google Scholar] [CrossRef]
- Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. Starling Murmuration Optimizer: A Novel Bio-Inspired Algorithm for Global and Engineering Optimization. Comput. Methods Appl. Mech. Eng. 2022, 392, 114616. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, Y. Dream Optimization Algorithm (DOA): A Novel Metaheuristic Optimization Algorithm Inspired by Human Dreams and Its Applications to Real-World Engineering Problems. Comput. Methods Appl. Mech. Eng. 2025, 436, 117718. [Google Scholar] [CrossRef]
- Luan, T.M.; Khatir, S.; Tran, M.T.; De Baets, B.; Cuong-Le, T. Exponential-Trigonometric Optimization Algorithm for Solving Complicated Engineering Problems. Comput. Methods Appl. Mech. Eng. 2024, 432, 117411. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems. Comput.-Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Bhesdadiya, R.; Trivedi, I.N.; Jangir, P.; Jangir, N. Moth-Flame Optimizer Method for Solving Constrained Engineering Optimization Problems. In Advances in Computer and Computational Sciences: Proceedings of ICCCCS 2016, Volume 2; Springer: Berlin/Heidelberg, Germany, 2017; pp. 61–68. [Google Scholar]
- Deb, K.; Srinivasan, A. Innovization: Discovery of Innovative Design Principles through Multiobjective Evolutionary Optimization. In Multiobjective Problem Solving from Nature: From Concepts to Applications; Springer: Berlin/Heidelberg, Germany, 2007; pp. 243–262. [Google Scholar]
- Sayed, G.I.; Darwish, A.; Hassanien, A.E. A New Chaotic Multi-Verse Optimization Algorithm for Solving Engineering Optimization Problems. J. Exp. Theor. Artif. Intell. 2018, 30, 293–317. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water Cycle Algorithm–A Novel Metaheuristic Optimization Method for Solving Constrained Engineering Optimization Problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, J. Hybridizing Sine–Cosine Algorithm with Harmony Search Strategy for Optimization Design Problems. Soft Comput. 2021, 25, 11053–11075. [Google Scholar] [CrossRef]
- Azizyan, G.; Miarnaeimi, F.; Rashki, M.; Shabakhty, N. Flying Squirrel Optimizer (FSO): A Novel SI-Based Optimization Algorithm for Engineering Problems. Iran J Optim 2019, 11, 177–205. [Google Scholar]
- Yildiz, B.S.; Pholdee, N.; Bureerat, S.; Yildiz, A.R.; Sait, S.M. Enhanced Grasshopper Optimization Algorithm Using Elite Opposition-Based Learning for Solving Real-World Engineering Problems. Eng. Comput. 2022, 38, 4207–4219. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. Artificial Ecosystem-Based Optimization: A Novel Nature-Inspired Meta-Heuristic Algorithm. Neural Comput. Appl. 2020, 32, 9383–9425. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Mirjalili, S. Artificial Hummingbird Algorithm: A New Bio-Inspired Optimizer with Its Engineering Applications. Comput. Methods Appl. Mech. Eng. 2022, 388, 114194. [Google Scholar] [CrossRef]
- Askari, Q.; Saeed, M.; Younas, I. Heap-Based Optimizer Inspired by Corporate Rank Hierarchy for Global Optimization. Expert Syst. Appl. 2020, 161, 113702. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger Games Search: Visions, Conception, Implementation, Deep Analysis, Perspectives, and towards Performance Shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
- Naruei, I.; Keynia, F.; Sabbagh Molahosseini, A. Hunter–Prey Optimization: Algorithm and Applications. Soft Comput. 2022, 26, 1279–1314. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.; Wang, L. Manta Ray Foraging Optimization: An Effective Bio-Inspired Optimizer for Engineering Applications. Eng. Appl. Artif. Intell. 2020, 87, 103300. [Google Scholar] [CrossRef]
- Dhiman, G.; Garg, M.; Nagar, A.; Kumar, V.; Dehghani, M. A Novel Algorithm for Global Optimization: Rat Swarm Optimizer. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 8457–8482. [Google Scholar] [CrossRef]
- Emami, H. Anti-Coronavirus Optimization Algorithm. Soft Comput. 2022, 26, 4991–5023. [Google Scholar] [CrossRef]
- Braik, M.; Ryalat, M.H.; Al-Zoubi, H. A Novel Meta-Heuristic Algorithm for Solving Numerical Optimization Problems: Ali Baba and the Forty Thieves. Neural Comput. Appl. 2022, 34, 409–455. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN beyond the Metaphor: An Efficient Optimization Algorithm Based on Runge Kutta Method. Expert Syst. Appl. 2021, 181, 115079. [Google Scholar] [CrossRef]
- Azizi, M.; Aickelin, U.; Khorshidi, H.A.; Baghalzadeh Shishehgarkhaneh, M. Energy Valley Optimizer: A Novel Metaheuristic Algorithm for Global and Engineering Optimization. Sci. Rep. 2023, 13, 226. [Google Scholar] [CrossRef]
- Emami, H. Stock Exchange Trading Optimization Algorithm: A Human-Inspired Method for Global Optimization. J. Supercomput. 2022, 78, 2125–2174. [Google Scholar] [CrossRef] [PubMed]
Benchmark Test Functions | Dim | Range | |
---|---|---|---|
30 | [−100, 100] | 0 | |
30 | [−10, 10] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−30, 30] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−1.28, 1.28] | 0 | |
30 | [−5.12, 5.12] | 0 | |
30 | [−32, 32] | 0 | |
30 | [−600, 600] | 0 | |
30 | [−50, 50] | 0 | |
30 | [−50, 50] | 0 | |
2 | [−65, 65] | 0.998 | |
2 | [−5, 5] | −1.0316 | |
2 | [−5.12, 5.12] | −1 | |
2 | [−2, 2] | 3 | |
6 | [0, 1] | −3.32 | |
4 | [0, 10] | −10.1532 | |
4 | [0, 10] | −10.4029 | |
4 | [0, 10] | −10.5364 | |
2 | −1 | ||
2 | [−100, 100] | −1 | |
10 | [−10, 10] | 0 |
Function | Result | CPO | BKA | EHO | PO | WSA | HLOA | ECO | IAO | AO | HEOA | NRBO | GCRA | SCGCRA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||
Worst | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||
Mean | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||
Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
Best | 0 | 0 | 0 | 0 | ||||||||||
Worst | 0 | 0 | 0 | |||||||||||
Mean | 0 | 0 | 0 | |||||||||||
Std | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||
Best | 1.719617 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
Worst | 23.04144 | 0 | 0 | 0 | 0.000685 | 0 | 0 | 0 | ||||||
Mean | 9.040724 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
Std | 5.778427 | 0 | 0 | 0 | 0 | 0.000139 | 0 | 0 | 0 | 0 | ||||
Best | 4.708022 | 0 | 0 | 0 | 0 | |||||||||
Worst | 14.89710 | 0 | 0 | 0 | ||||||||||
Mean | 9.530409 | 0 | 0 | 0 | ||||||||||
Std | 2.750975 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||
Best | 28.22641 | 23.97181 | 2.096586 | 16.70165 | 25.55554 | 28.64800 | 26.33154 | 0.128208 | 26.62669 | |||||
Worst | 28.97101 | 28.91524 | 152.7259 | 25.71341 | 20.93888 | 28.70570 | 26.46565 | 28.77166 | 26.80314 | 1.643262 | 28.81900 | 0.000118 | ||
Mean | 28.80065 | 26.19458 | 52.40917 | 23.79129 | 18.89737 | 20.09465 | 25.94569 | 28.72375 | 26.60947 | 0.589470 | 27.49856 | |||
Std | 0.146114 | 1.377809 | 39.41412 | 4.524737 | 1.226874 | 13.35128 | 0.258348 | 0.026958 | 0.126309 | 0.381245 | 0.603713 | |||
Best | 6.032364 | 0 | 0.170839 | 0.001802 | 1.564431 | |||||||||
Worst | 6.750920 | 5.838999 | 0 | 0.000167 | 1.827244 | 1.483572 | 3.069441 | |||||||
Mean | 6.493847 | 0.712540 | 0 | 0.946642 | 0.257351 | 2.262051 | ||||||||
Std | 0.183935 | 1.678794 | 0 | 0.445780 | 0.421081 | 0.364347 | ||||||||
Best | 0.016694 | 0.000187 | ||||||||||||
Worst | 0.000306 | 0.000312 | 0.154408 | 0.000199 | 0.000114 | 0.000396 | 0.000232 | 0.002812 | 0.000243 | 0.000379 | 0.000111 | |||
Mean | 0.064251 | 0.000124 | 0.001062 | 0.000112 | ||||||||||
Std | 0.034555 | 0.000104 | 0.000603 | |||||||||||
Best | 0 | 0 | 16.91430 | 0 | 0 | 0 | 0 | 0 | 0 | 29.40100 | 0 | 0 | 0 | |
Worst | 0 | 0 | 79.59648 | 0 | 0 | 0 | 0 | 0 | 0 | 38.57384 | 0 | 0 | 0 | |
Mean | 0 | 0 | 27.82566 | 0 | 0 | 0 | 0 | 0 | 0 | 30.84521 | 0 | 0 | 0 | |
Std | 0 | 0 | 10.91009 | 0 | 0 | 0 | 0 | 0 | 0 | 2.421543 | 0 | 0 | 0 | |
Best | ||||||||||||||
Worst | 3.681357 | |||||||||||||
Mean | 1.863179 | |||||||||||||
Std | 0 | 0 | 0.783795 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Worst | 0 | 0 | 0.157370 | 0 | 0 | 0 | 0 | 0 | 0.075727 | 0.082115 | 0 | 0 | 0 | |
Mean | 0 | 0 | 0.021437 | 0 | 0 | 0 | 0 | 0 | 0.003756 | 0.022793 | 0 | 0 | 0 | |
Std | 0 | 0 | 0.038474 | 0 | 0 | 0 | 0 | 0 | 0.014409 | 0.026793 | 0 | 0 | 0 | |
Best | 0.811592 | 0.018092 | 0.088837 | |||||||||||
Worst | 1.402394 | 0.292436 | 0.936925 | 0.207317 | 0.207367 | 0.231948 | 0.960863 | 0.350026 | ||||||
Mean | 0.999341 | 0.016193 | 0.214786 | 0.024187 | 0.006916 | 0.085527 | 0.199670 | 0.183719 | ||||||
Std | 0.156332 | 0.052893 | 0.326651 | 0.064897 | 0.037859 | 0.056073 | 0.275405 | 0.062374 | ||||||
Best | 2.703748 | 0.206470 | 0.074259 | 0.000135 | 1.157680 | |||||||||
Worst | 2.898933 | 2.996717 | 3.608452 | 0.030827 | 0.108559 | 0.801424 | 2.975089 | 0.586973 | 0.004159 | 2.791573 | ||||
Mean | 2.803325 | 1.468360 | 0.620813 | 0.002795 | 0.009825 | 0.030724 | 2.167549 | 0.111098 | 0.001434 | 1.980314 | ||||
Std | 0.042338 | 0.754096 | 1.358982 | 0.007703 | 0.025663 | 0.145685 | 1.257903 | 0.133287 | 0.001229 | 0.430654 | ||||
Best | 1.000194 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | |
Worst | 2.982105 | 1.992031 | 10.76318 | 0.998004 | 1.992031 | 12.67051 | 2.982105 | 0.998004 | 10.76318 | 12.67051 | 2.982105 | 0.998004 | 0.998004 | |
Mean | 2.029939 | 1.031138 | 2.311901 | 0.998004 | 1.031138 | 4.888682 | 1.130277 | 0.998004 | 1.522078 | 7.734534 | 1.460961 | 0.998004 | 0.998004 | |
Std | 0.756035 | 0.181484 | 2.323848 | 0 | 0.181484 | 3.849528 | 0.503383 | 0 | 1.828591 | 5.035198 | 0.853527 | |||
Best | −1.03160 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03161 | −1.03163 | |
Worst | −1.02996 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −0.21546 | −1.03163 | −1.03163 | −1.03141 | −1.03125 | −1.03163 | −0.83077 | −1.03163 | |
Mean | −1.03127 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.00442 | −1.03163 | −1.03163 | −1.03161 | −1.03156 | −1.03163 | −0.99581 | −1.03163 | |
Std | 0.000390 | 0.149011 | 0.044594 | |||||||||||
Best | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
Worst | −1 | −1 | −0.93625 | −0.93625 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
Mean | −1 | −1 | −0.98725 | −0.99787 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
Std | 0 | 0 | 0.025938 | 0.011640 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Best | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3.000011 | 3 | 3.129500 | 3 | |
Worst | 3.000200 | 3 | 3 | 3 | 3 | 30 | 3 | 3 | 3.044026 | 3.029225 | 3 | 32.68454 | 3 | |
Mean | 3.000027 | 3 | 3 | 3 | 3 | 3.9 | 3 | 3 | 3.003641 | 3.003765 | 3 | 18.45967 | 3 | |
Std | 4.929503 | 0.008607 | 0.006171 | 12.04699 | ||||||||||
Best | −3.15823 | −3.32200 | −3.32200 | −3.32200 | −3.32200 | −3.32200 | −3.32200 | −3.32200 | −3.32200 | −3.30996 | −3.32200 | −2.60843 | −3.32200 | |
Worst | −2.45031 | −3.15869 | −3.20310 | −3.20310 | −3.20310 | −3.08394 | −3.20310 | −3.32200 | −3.20166 | −3.06329 | −3.13725 | −1.16984 | −3.32200 | |
Mean | −2.94344 | −3.29920 | −3.29029 | −3.29029 | −3.25066 | −3.25655 | −3.25462 | −3.32200 | −3.27040 | −3.19238 | −3.25994 | −1.82424 | −3.32200 | |
Std | 0.144663 | 0.052318 | 0.053475 | 0.053475 | 0.059241 | 0.075305 | 0.059923 | 0.060001 | 0.072875 | 0.067223 | 0.391285 | |||
Best | −4.06428 | −10.1532 | −10.1532 | −10.1532 | −10.1532 | −10.1532 | −10.1532 | −10.1532 | −10.1532 | −10.1520 | −10.1532 | −10.1532 | −10.1532 | |
Worst | −0.85099 | −10.1532 | −2.63047 | −10.1532 | −5.05520 | −2.63047 | −2.63047 | −5.05520 | −2.62952 | −7.07049 | −5.38758 | −10.1494 | −10.1521 | |
Mean | −1.58082 | −10.1532 | −8.31182 | −10.1532 | −9.64340 | −9.65092 | −9.90244 | −7.43427 | −5.85794 | −9.16726 | −9.98192 | −10.1528 | −10.1531 | |
Std | 0.975053 | 2.938369 | 1.555546 | 1.908370 | 1.373456 | 2.586809 | 2.813123 | 0.870257 | 0.869491 | 0.000723 | 0.000198 | |||
Best | −3.87932 | −10.4029 | −10.4029 | −10.4029 | −10.4029 | −10.4029 | −10.4029 | −10.4029 | −10.4029 | −10.4005 | −10.4029 | −10.4028 | −10.4028 | |
Worst | −0.84842 | −3.72430 | −2.75193 | −2.76590 | −5.08767 | −2.76590 | −1.83759 | −5.08767 | −2.74761 | −6.51320 | −4.89939 | −10.3973 | −10.4020 | |
Mean | −2.01752 | −10.1794 | −9.41615 | −10.1484 | −9.33989 | −8.71556 | −9.16305 | −7.56813 | −6.89784 | −9.30859 | −9.95802 | −10.4024 | −10.4027 | |
Std | 0.919006 | 1.219188 | 2.563526 | 1.394327 | 2.162454 | 3.116658 | 2.835141 | 2.697054 | 3.610540 | 1.122435 | 1.405488 | 0.001098 | 0.000190 | |
Best | −4.18195 | −10.5364 | −10.5364 | −10.5364 | −10.5364 | −10.5364 | −10.5364 | −10.5364 | −10.5364 | −10.5339 | −10.5364 | −10.5363 | −10.5363 | |
Worst | −0.93680 | −10.5364 | −2.87114 | −3.83543 | −5.12848 | −2.42173 | −2.42173 | −5.12848 | −2.42144 | −8.11593 | −7.26135 | −10.5341 | −10.5359 | |
Mean | −2.66391 | −10.5364 | −9.83417 | −10.0897 | −9.81535 | −8.46676 | −8.74623 | −6.75086 | −6.70094 | −9.84772 | −10.2548 | −10.5360 | −10.5362 | |
Std | 0.816296 | 2.147720 | 1.700094 | 1.869769 | 3.504272 | 3.332191 | 2.520590 | 3.740067 | 0.780452 | 0.749936 | 0.000594 | |||
Best | −0.99988 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
Worst | −0.93514 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −0.99901 | −0.99996 | −1 | −1 | −1 | |
Mean | −0.98330 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −0.99992 | −0.99999 | −1 | −1 | −1 | |
Std | 0.014053 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000223 | 0 | ||||
Best | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
Worst | −1 | −1 | −0.99028 | −0.99028 | −1 | −1 | −1 | −1 | −1 | −0.99028 | −1 | −1 | −1 | |
Mean | −1 | −1 | −0.99255 | −0.99870 | −1 | −1 | −1 | −1 | −1 | −0.99636 | −1 | −1 | −1 | |
Std | 0 | 0 | 0.004180 | 0.003359 | 0 | 0 | 0 | 0 | 0 | 0.004718 | 0 | 0 | ||
Best | 0 | 0 | 8.05 × 10−97 | 0 | 0 | |||||||||
Worst | 0 | 0.378388 | 0 | 0 | ||||||||||
Mean | 0 | 0.030604 | 0 | 0 | ||||||||||
Std | 0 | 0 | 0 | 0.085938 | 0 | 0 |
Function | SCGCRA vs. CPO | SCGCRA vs. BKA | SCGCRA vs. EHO | SCGCRA vs. PO | SCGCRA vs. WSA | SCGCRA vs. HLOA | SCGCRA vs. ECO | SCGCRA vs. IAO | SCGCRA vs. AO | SCGCRA vs. HEOA | SCGCRA vs. NRBO | SCGCRA vs. GCRA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.21 | 1.21 | 1.21 | N/A | N/A | N/A | 1.21 | N/A | 1.21 | 1.21 | N/A | N/A | |
1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | N/A | 1.21 | 1.21 | 4.19 | N/A | |
1.21 | 1.21 | 1.21 | N/A | 3.33 | N/A | 1.21 | N/A | 1.21 | 1.21 | N/A | N/A | |
1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | N/A | 1.21 | 1.21 | 4.57 | N/A | |
3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 4.08 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 1.68 | |
3.02 | 3.02 | 3.02 | 4.85 | 1.21 | 3.02 | 6.52 | 3.02 | 2.37 | 3.02 | 3.02 | 1.10 | |
1.33 | 3.34 | 3.02 | 3.69 | 8.99 | 3.69 | 3.02 | 6.07 | 3.02 | 3.69 | 3.02 | 4.98 | |
N/A | N/A | 1.20 | N/A | N/A | N/A | N/A | N/A | N/A | 1.21 | N/A | N/A | |
N/A | N/A | 1.21 | N/A | N/A | N/A | N/A | N/A | 2.01 | N/A | N/A | N/A | |
N/A | N/A | 1.92 | N/A | N/A | N/A | N/A | N/A | 8.15 | 1.27 | N/A | N/A | |
3.02 | 3.02 | 6.10 | 4.64 | 1.11 | 3.02 | 1.07 | 3.02 | 3.83 | 3.02 | 3.02 | 1.00 | |
3.02 | 3.02 | N/A | 5.39 | 1.11 | 3.02 | 8.89 | 3.02 | 1.20 | 3.02 | 3.02 | 7.60 | |
3.02 | 1.44 | 7.25 | 1.21 | 4.56 | 9.48 | 4.72 | 1.21 | 1.05 | 1.61 | 3.75 | 1.03 | |
3.15 | 3.91 | 8.14 | 8.14 | 6.99 | 7.48 | 2.65 | 8.14 | 3.87 | 3.15 | 1.83 | 3.15 | |
N/A | N/A | 1.09 | 3.33 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 2.21 | |
2.19 | 1.52 | 2.49 | 6.96 | 1.06 | 2.17 | 1.29 | 1.80 | 1.26 | 2.19 | 5.55 | 2.19 | |
1.25 | 1.25 | 8.66 | 8.62 | 3.28 | 1.25 | 9.51 | 6.56 | 5.91 | 1.25 | 1.25 | 1.25 | |
3.02 | 6.39 | 6.66 | 1.41 | 8.38 | 1.32 | 3.79 | 6.59 | 4.87 | 3.02 | 3.04 | 3.03 | |
3.02 | 4.37 | 8.43 | 1.94 | 5.55 | 1.17 | 8.33 | 6.60 | 6.95 | 3.02 | 5.13 | 2.64 | |
3.02 | 2.08 | 3.43 | 5.12 | 7.79 | 3.26 | 3.69 | 7.50 | 7.72 | 3.02 | 2.50 | 1.85 | |
3.02 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 8.34 | 3.50 | 1.21 | 4.03 | |
N/A | N/A | 1.77 | 4.17 | N/A | N/A | N/A | N/A | N/A | 4.95 | N/A | 8.86 | |
1.21 | 1.21 | 1.20 | 1.21 | 1.21 | 4.57 | 1.21 | N/A | 1.21 | 1.21 | N/A | 1.21 |
Algorithm | Optimum Variables | Optimum Weight | |
---|---|---|---|
LSHADE [34] | 0.785249 | 0.410335 | 263.8915 |
SCA [34] | 0.788649 | 0.408235 | 263.8715 |
WOA [34] | 0.78860276 | 0.408453070 | 263.8958 |
TEO [34] | 0.7886618 | 0.4082831 | 263.8958 |
HGSO [34] | 0.778254 | 0.440528 | 264.1762 |
HGS [34] | 0.7884562 | 0.40886831 | 263.8959 |
KOA [35] | 0.788675 | 0.408248 | 263.895843 |
COA [35] | 0.788057 | 0.410073 | 263.903379 |
RUN [35] | 0.788793 | 0.407916 | 263.895854 |
SMA [35] | 0.788541 | 0.408627 | 263.895857 |
DO [35] | 0.788643 | 0.408339 | 263.895844 |
POA [35] | 0.788675 | 0.408248 | 263.895843 |
NOA [36] | 0.78868 | 0.40825 | 263.89584338 |
GBO [36] | 0.78868 | 0.40825 | 263.89584338 |
BKA [2] | 0.788675 | 0.408248 | 263.895843 |
SHO [2] | 0.788898 | 0.40762 | 263.895881 |
TTAO [18] | 0.788688 | 0.408213 | 263.8958431 |
SCHO [37] | 0.7886642 | 0.40827926 | 263.8958476 |
APO [38] | 0.7887 | 0.4082 | 263.89584338 |
BSLO [39] | 0.78867930 | 0.40823651 | 263.8958434 |
FOX [39] | 0.78870269 | 0.4081704 | 263.8958523 |
ARSCA [1] | 0.7887 | 0.4081 | 263.8958 |
CPO [1] | 0.7885 | 0.4088 | 263.8959 |
PKO [40] | 0.7886870838 | 0.4082144942 | 263.8958435 |
SFOA [28] | 0.78868 | 0.40825 | 263.89584 |
SCGCRA | 0.78645 | 0.41813 | 263.8543 |
Algorithm | Optimum Variables | Optimum Weight | |||
---|---|---|---|---|---|
PSO [41] | 133.3 | 2.44 | 117.14 | 4.75 | 122 |
DE [41] | 129.4 | 2.43 | 119.8 | 4.75 | 159 |
GA [41] | 250 | 3.96 | 60.03 | 5.91 | 161 |
HPSO [41] | 135.5 | 2.48 | 116.62 | 4.75 | 162 |
CS [42] | 0.050 | 2.043 | 120 | 4.085 | 8.427 |
SNS [43] | 0.050 | 2.042 | 120 | 4.083 | 8.412698349 |
SCSO [44] | 0.050 | 2.040 | 119.99 | 4.083 | 8.40901438899551 |
CSO [44] | 0.050 | 2.399 | 85.68 | 4.0804 | 13.7094866557362 |
GWO [44] | 0.060 | 2.0390 | 120 | 4.083 | 8.40908765909047 |
WAO [44] | 0.099 | 2.057 | 118.4 | 4.112 | 9.05943208079399 |
SSA [44] | 0.050 | 2.073 | 116.32 | 4.145 | 8.80243253777633 |
GSA [44] | 497.49 | 500 | 60.041 | 2.215 | 168.094363238712 |
BWO [44] | 12.364 | 12.801 | 172.02 | 3.074 | 95.9980864948937 |
AOS [45] | 0.05 | 2.042112482 | 119.951727 | 4.084004492 | 8.419142742 |
GTO [46] | 0.05 | 2.052859 | 119.6392 | 4.089713 | 8.41270 |
MFO [46] | 0.05 | 2.041514 | 120 | 4.083365 | 8.412698 |
WOA [46] | 0.051874 | 2.045915 | 119.9579 | 4.085849 | 8.449975 |
ISA [47] | N/A | N/A | N/A | N/A | 8.4 |
CGO [47] | N/A | N/A | N/A | N/A | 8.41281381 |
MGA [47] | N/A | N/A | N/A | N/A | 8.41340665 |
TTAO [18] | 0.05 | 2.041514 | 4.083027 | 120 | 8.412698323 |
EGO [29] | 1.979653079 | 3.652740666 | 426.379188 | 2.031507236 | 8.41269886 |
MVO [29] | 0.05 | 2.046900355 | 119.92924 | 4.095582502 | 8.57509432 |
ALO [29] | 0.05 | 2.051360067 | 118.821159 | 4.102693186 | 8.53445096 |
CS-EO [29] | 0.05 | 2.041514 | 120 | 4.083027 | 8.412698 |
SCGCRA | 0.05 | 0.125364154 | 120 | 4.12410157 | 7.794 |
Algorithm | Optimum Variables | Optimum Cost | |||
---|---|---|---|---|---|
BO [48] | 43 | 19 | 16 | 49 | 2.700857 |
KOA [35] | 44 | 20 | 16 | 50 | 2.700857 |
FLA [35] | 44 | 16 | 20 | 49 | 2.700857 |
COA [35] | 23 | 14 | 12 | 48 | 9.92158 |
RUN [35] | 44 | 17 | 19 | 49 | 2.700857 |
SMA [35] | 52 | 30 | 13 | 53 | 2.307816 |
DO [35] | 49 | 16 | 19 | 44 | 2.700857 |
POA [35] | 44 | 17 | 19 | 49 | 2.700857 |
PDO [47] | 48 | 17 | 22 | 54 | 2.70 |
DMOA [47] | 49 | 19 | 16 | 43 | 2.70 |
AOA [47] | 49 | 19 | 19 | 54 | 2.70 |
CPSOGSA [47] | 55 | 16 | 16 | 43 | 2.31 |
SSA [47] | 49 | 19 | 19 | 49 | 2.70 |
SCA [47] | 49 | 19 | 34 | 49 | 2.700857 |
IEHO [49] | 19 | 16 | 43 | 49 | 2.70085 |
MEWOA [50] | 49 | 16 | 19 | 43 | 2.7099 |
ARO [51] | 49 | 19 | 16 | 43 | 2.7009 |
BCA [52] | 43 | 16 | 19 | 49 | 2.7009 |
BWO [53] | 50 | 18 | 17 | 46 | 7.5421 |
GMO [54] | 43 | 19 | 16 | 49 | 2.700857 |
GBO [18] | 53 | 13 | 20 | 34 | 2.3078 |
TTAO [18] | 43 | 16 | 19 | 49 | 2.70 |
WO [30] | 43 | 16 | 19 | 43 | 2.700857 |
GCRA [6] | 55 | 16 | 16 | 43 | 2.70 |
GOA [6] | 49 | 19 | 16 | 43 | 2.70 |
SCGCRA | 50 | 22 | 19 | 52 | 3.25 |
Algorithm | Optimum Variables | Optimum Weight | |||||
---|---|---|---|---|---|---|---|
ACO [55] | 0.5 | 1.12004 | 0.5 | 1.29627 | 0.5 | 1.5 | |
0.5 | 0.345 | 0.192 | −18.905 | −0.0008 | 22.84371 | ||
KH [55] | 0.5 | 1.14747 | 0.5 | 1.26118 | 0.5 | 1.5 | |
0.5 | 0.345 | 0.345 | −13.998 | −0.8984 | 22.88596 | ||
HHO [55] | 0.5 | 1.15627 | 0.5 | 1.27133 | 0.5 | 1.4777 | |
0.5 | 0.345 | 0.192 | −14.592 | −2.4898 | 22.98537 | ||
BOA [55] | 0.8246 | 1.03224 | 0.54007 | 1.35639 | 0.6377 | 1.26889 | |
0.5854 | 0.192 | 0.345 | −5.7333 | 0.4352 | 25.06573 | ||
HGSO [55] | 0.5 | 1.22375 | 0.5 | 1.27111 | 0.5 | 1.31085 | |
0.5 | 0.345 | 0.345 | −4.3235 | 2.93676 | 23.43457 | ||
LIACO [55] | 0.5 | 1.11593 | 0.5 | 1.30293 | 0.5 | 1.5 | |
0.5 | 0.192 | 0.345 | −19.64 | −0.000003 | 22.84299 | ||
SMO [55] | 0.5 | 1.11634 | 0.5 | 1.30224 | 0.5 | 1.5 | |
0.5 | 0.345 | 0.345 | −19.566 | 0.000001 | 22.84298 | ||
DOA [56] | 0.5081 | 1.2021 | 0.5318 | 1.3052 | 0.5719 | 1.4954 | |
0.5557 | 0.303 | 0.2585 | −24.8171 | 3.4047 | 23.9682 | ||
DCS [56] | 0.5772 | 1.2586 | 0.5195 | 1.2002 | 0.5463 | 1.258 | |
0.5073 | 0.278 | 0.2669 | 2.0888 | 5.4035 | 23.9995 | ||
COA [56] | 0.5 | 1.2791 | 0.5 | 1.2739 | 1.2828 | 0.5 | |
0.5 | 0.2954 | 0.192 | 3.557 | 19.0792 | 25.2083 | ||
MSA [56] | 0.5151 | 1.2684 | 0.5545 | 1.3737 | 0.5261 | 1.3484 | |
0.7156 | 0.2869 | 0.2167 | −7.2394 | 11.7869 | 25.2334 | ||
HLOA [56] | 0.5 | 1.0669 | 0.8016 | 1.0704 | 0.504 | 1.4873 | |
0.5 | 0.192 | 0.192 | −29.9786 | 3.2119 | 23.6956 | ||
AROA [56] | 0.5 | 1.5 | 0.5 | 1.2928 | 0.5 | 0.5 | |
0.5 | 0.192 | 0.3195 | 8.8265 | 23.0874 | 25.3642 | ||
EGO [29] | 0.5 | 1.1107 | 0.5 | 1.312 | 0.5001 | 1.5 | |
0.50001 | 0.98732 | 0.04604 | −20.57 | 0.18084 | 22.84570 | ||
MVO [29] | 0.5 | 1.1352 | 0.5012 | 1.27318 | 0.5003 | 1.5 | |
0.50403 | 0.53489 | 0.23089 | −16.1449 | 0.99051 | 22.88565 | ||
ETO [57] | 0.50282 | 1.2414 | 0.51604 | 1.2201 | 0.60334 | 1.3878 | |
0.5 | 0.74832 | 0.06747 | 2.2526 | −7.2818 | 23.2574 | ||
SCHO [57] | 0.5 | 1.10286 | 0.87088 | 0.88643 | 0.52609 | 1.49992 | |
0.5 | 0.03508 | 0.19439 | −30 | −0.5913 | 23.7209 | ||
AOA [57] | 0.5 | 1.2279 | 0.5 | 1.4332 | 0.5 | 1.5 | |
0.5 | 0.61018 | 0.21619 | 0.00126 | −0.0765 | 24.1125 | ||
HGS [57] | 0.5 | 1.10612 | 1.11044 | 0.5 | 0.5 | 1.5 | |
0.5 | 4.4 | 0.00000 | −30 | −6.0 | 23.8188 | ||
GJO [57] | 0.5 | 1.20309 | 0.50327 | 1.28778 | 0.51053 | 1.5 | |
0.5 | 0.00000 | 9.5 | −22.115 | −0.0536 | 23.4052 | ||
ROA [31] | 1.098334 901 | 0.957459058 | 1.112521155 | 1.043356648 | 0.730817433 | 1.009550656 | |
0.51561597 | 0.345 | 0.345 | 0.053235933 | 0.042350889 | 28.40584747 | ||
SCSO [31] | 0.502366774 | 1.23533939 | 0.5 | 1.223008761 | 0.515267967 | 1.39187245 | |
0.50003369 | 0.340647775 | 0.211950171 | 1.374158706 | −7.77399175 | 23.35787723 | ||
SHO [31] | 1.5 | 1.267885192 | 1.5 | 0.768783364 | 1.11811662 | 0.74785158 | |
0.56089667 | 0.345 | 0.345 | 2.050521688 | 3.263049114 | 34.86111849 | ||
SOA [31] | 0.500139239 | 1.254868587 | 0.5 | 1.205871077 | 0.739233716 | 0.772309974 | |
0.5 | 0.316999014 | 0.30308334 | 0.749660043 | 2.039711514 | 23.8070425 | ||
SFOA [28] | 0.5 | 1.234 | 0.5 | 1.187 | 0.875 | 0.892 | |
0.4 | 0.345 | 0.192 | 1.5 | 0.572 | 23.5616 | ||
SCGCRA | 0.5 | 1.11643 | 0.5 | 1.30208 | 0.5 | 1.5 | |
0.5 | 0.345 | 0.192 | −19.54935 | −0.00431 | 22.84294 |
Algorithm | Optimum Variables | Optimum Weight | ||||
---|---|---|---|---|---|---|
TLBO [58] | 70 | 90 | 1 | 810 | 3 | 0.313657 |
MFO [59] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
NSGA-II [60] | 70 | 90 | 1.5 | 1000 | 3 | 0.470400 |
MVO [61] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
CMVO [61] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
WCA [62] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
APSO [63] | 76 | 96 | 1 | 840 | 3 | 0.337181 |
IAPSO [63] | 70 | 90 | 1 | 900 | 3 | 0.31365661 |
DAPSO-GA [63] | 70 | 90 | 1 | 1000 | 3 | 0.31365661 |
FSO [64] | 70 | 90 | 1 | 870 | 3 | 0.31365661053 |
GOA [65] | 71 | 92 | 1 | 835 | 3 | 0.3355146 |
EOBL-GOA [65] | 70 | 90 | 1 | 984 | 3 | 0.31365661053 |
ABC [66] | 70 | 90 | 1 | 790 | 3 | 0.313657 |
PSO [66] | 70 | 90 | 1 | 860 | 3 | 0.3136566 |
CS [66] | 70 | 90 | 1 | 810 | 3 | 0.3136566 |
GSA [66] | 72 | 92 | 2 | 815 | 3 | 0.3175771 |
AEO [66] | 70 | 90 | 1 | 810 | 3 | 0.3136566 |
AHA [67] | 70 | 90 | 1 | 840 | 3 | 0.3136566 |
HBO [68] | 70 | 90 | 1 | 1000 | 3 | 0.3136566 |
HGS [69] | 70 | 90 | 1 | 1000 | 3 | 0.313657 |
I-ABC [70] | 70 | 90 | 1 | 900 | 3 | 0.313766 |
MRFO [71] | 70 | 90 | 1 | 835 | 3 | 0.3136566 |
GA [71] | 72 | 92 | 1 | 918 | 3 | 0.321498 |
DE [71] | 71 | 92 | 1 | 835 | 3 | 0.3355146 |
RSO [32] | 70 | 90 | 1 | 810 | 3 | 0.313657 |
SCGCRA | 70 | 90 | 1 | 600 | 2 | 0.235247 |
Algorithm | Optimum Variables | Optimum Cost | ||||
---|---|---|---|---|---|---|
HHO [33] | 125 | 21 | 11.09207 | 0.515 | 0.515 | |
0.4 | 0.6 | 0.3 | 0.050474 | 0.6 | 83,011.88 | |
RSA [33] | 125.1722 | 21.29734 | 10.88521 | 0.515253 | 0.517764 | |
0.41245 | 0.632338 | 0.301911 | 0.024395 | 0.6024 | 83,486.64 | |
RSO [72] | 125 | 21.41769 | 10.94027 | 0.515 | 0.515 | |
0.4 | 0.7 | 0.3 | 0.02 | 0.6 | 85,069.021 | |
EPO [63] | 125 | 21.4189 | 10.94113 | 0.515 | 0.515 | |
0.4 | 0.7 | 0.3 | 0.02 | 0.6 | 85,067.983 | |
ESA [63] | 125 | 21.4175 | 10.94109 | 0.51 | 0.515 | |
0.4 | 0.7 | 0.3 | 0.02 | 0.6 | 85,070.085 | |
HSCAHS [63] | 125 | 10.5 | 4 | 0.515 | 0.515 | |
0.4 | 0.6 | 0.3 | 0.02 | 0.6 | 85,539.192 | |
SSA [63] | 125 | 20.77562 | 11.01247 | 0.515 | 0.515 | |
0.5 | 0.61397 | 0.3 | 0.05004 | 0.61001 | 82,773.982 | |
PSOGSA [73] | 125.008533 | 21.112638 | 11.062267 | 0.515 | 0.5195993 | |
0.40487643 | 0.6032501 | 0.3 | 0.1 | 0.7037127 | 83,650.9164 | |
WOA [73] | 125.100734 | 21.4233 | 10.95119 | 0.515 | 0.515 | |
0.4 | 0.7 | 0.314216 | 0.02 | 0.6 | 85,265.167 | |
HGSA [73] | 125.708006 | 21.4233005 | 10.999978 | 0.515 | 0.515 | |
0.5 | 0.7 | 0.300304 | 0.0271098 | 0.6 | 85,532.7227 | |
ACVO [73] | 125.70959 | 21.4232997 | 11.000104 | 0.515 | 0.515 | |
0.48352698 | 0.61821897 | 0.3002753 | 0.02 | 0.6478817 | 85,533.4103 | |
AFT [74] | 125 | 21.418 | 11.356 | 0.515 | 0.515 | |
0.4 | 0.68 | 0.3 | 0.02 | 0.622 | 85,206.641 | |
AHA [67] | 125.718411 | 21.42535 | 10.527979 | 0.515 | 0.515155 | |
0.470216 | 0.640818 | 0.300012 | 0.095122 | 0.682241 | 85,547.49822 | |
HBO [68] | 125.7227184 | 21.4233 | 11 | 0.515 | 0.515 | |
0.438476 | 0.699998 | 0.3 | 0.047532 | 0.601081 | 85,533.18 | |
HPO [70] | 125 | 21.875 | 10.777 | 0.515 | 0.515 | |
0.4 | 0.7 | 0.3 | 0.029 | 0.6 | 83,918.4925 | |
MRFO [71] | 125.7190556 | 21.4255902 | 11 | 0.515 | 0.515 | |
0.4050856 | 0.6905778 | 0.3 | 0.0536602 | 0.6925802 | 85,549.239 | |
CS [71] | 125.442787 | 21.205159 | 11 | 0.515 | 0.5416852 | |
0.5 | 0.7 | 0.3 | 0.0975781 | 0.6015492 | 83,988.259 | |
RUN [75] | 125.2142 | 21.59796 | 11.4024 | 0.515 | 0.515 | |
0.40059 | 0.61467 | 0.3053 | 0.02 | 0.63665 | 83,680.47 | |
ARO [51] | 125.7189 | 21 | 10.5403 | 0.515 | 0.515 | |
0.4459 | 0.672132 | 0.3 | 0.0825 | 0.6317 | 85,548.5106 | |
MGA [76] | 125.718 | 21.8745119 | 10.7770658 | 0.51500082 | 0.51500299 | |
0.405908353 | 0.65558802 | 0.30000415 | 0.07754492 | 0.6 | 83,912.87983 | |
CGO [76] | 125 | 21.875 | 10.777009 | 0.515 | 0.515 | |
0.4 | 0.64620052 | 0.3 | 0.050152445 | 0.6 | 83,918.49253 | |
EVO [76] | 125.7190556 | 21.4255902 | 10.6955328 | 0.515 | 0.515 | |
0.463182936 | 0.6999265 | 0.3 | 0.063431519 | 0.604213108 | 81,859.7415974 | |
SELO [77] | 126.3521 | 21.0299 | 11 | 0.515 | 0.515 | |
0.4 | 0.6011 | 0.3 | 0.1 | 0.6004 | 83,805.29 | |
LFD [77] | 126.3999 | 21 | 11 | 0.515 | 0.5251 | |
0.5 | 0.6 | 0.3 | 0.1 | 0.6 | 83,670.78 | |
SETO [77] | 125.7227 | 21.4233 | 11 | 0.515 | 0.515 | |
0.4 | 0.7 | 0.3 | 0.1 | 0.6 | 85,539.19 | |
SCGCRA | 126.2339 | 20.1947 | 10.5139 | 0.5524 | 0.5428 | |
0.4072 | 0.6565 | 0.3254 | 0.0681 | 0.6142 | 90,020.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Jin, A.; Zhang, T. A Hybrid Nonlinear Greater Cane Rat Algorithm with Sine–Cosine Algorithm for Global Optimization and Constrained Engineering Applications. Biomimetics 2025, 10, 629. https://doi.org/10.3390/biomimetics10090629
Zhang J, Jin A, Zhang T. A Hybrid Nonlinear Greater Cane Rat Algorithm with Sine–Cosine Algorithm for Global Optimization and Constrained Engineering Applications. Biomimetics. 2025; 10(9):629. https://doi.org/10.3390/biomimetics10090629
Chicago/Turabian StyleZhang, Jinzhong, Anqi Jin, and Tan Zhang. 2025. "A Hybrid Nonlinear Greater Cane Rat Algorithm with Sine–Cosine Algorithm for Global Optimization and Constrained Engineering Applications" Biomimetics 10, no. 9: 629. https://doi.org/10.3390/biomimetics10090629
APA StyleZhang, J., Jin, A., & Zhang, T. (2025). A Hybrid Nonlinear Greater Cane Rat Algorithm with Sine–Cosine Algorithm for Global Optimization and Constrained Engineering Applications. Biomimetics, 10(9), 629. https://doi.org/10.3390/biomimetics10090629