Approaches for the Prediction of Leaf Wetness Duration with Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Models and Approaches
- Daily records for multiple regression models (DMR). One model for each region, using as the output variable the daily LWD in minutes. The input variables were aggregated to a daily level.
- Daily records for one regression model (DOR). One model for the three regions that collected the information every 15 min and one model for the three regions that collected the information every 30 min. Both models used as the output variable the LWD daily in minutes. The input variables were aggregated to a daily level.
- Hourly records for one regression model (HOR). The difference between this model and Model b is that the variables were aggregated by hour instead of by day. To test the model’s performance, the records were aggregated to minutes of daily wetness.
- Natural time records for multiple classification models (NMC). One model for each region, using as the output a dummy variable, where 1 = wet and 0 = not wet, for every 15 or 30 min. When the sensor showed a value greater than 0 at the time interval, the value was converted to 1 because this indicated that the leaf was not completely dry, influencing fungal and bacterial infection processes. To test the model’s performance, the dichotomous prediction was transformed to minutes of wetness during a day. For example, if the prediction was “wet” in an interval of 15 min, it was converted to 15 min of wetness. Finally, the records were aggregated to minutes of daily wetness.
- Natural time records for one classification model (NOC). One model for regions that collected information every 15 min and one model for regions that collected information every 30 min. The output was the dummy variable, where 1 = wet and 0 = not wet, as explained previously.
2.3. Procedure
2.3.1. Preprocessing and Data Division
2.3.2. Training
2.3.3. Validation
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alcarde, C.; de Moré Mattos, E.; Sentelhas, P.; Miranda, A.; Stape, J. Modeling temporal and spatial variability of leaf wetness duration in Brazil. Theor. Appl. Climatol. 2014, 120, 455–467. [Google Scholar]
- Wang, H.; Sanchez-Molina, J.; Li, M.; Rodríguez, F. Improving the performance of vegetable leaf wetness duration models in greenhouses using decision tree learning. Water 2018, 11, 158. [Google Scholar] [CrossRef] [Green Version]
- Huber, L.; Gillespie, T.J. Modeling leaf wetness in relation to plant disease epidemiology. Annu. Rev. Phytopathol. 1992, 30, 553–577. [Google Scholar] [CrossRef]
- Kruit, R.J.W.; Jacobs, A.F.G.; Holtslag, A.A.M. Measurements and estimates of leaf wetness over agricultural grassland for dry deposition modelling of trace gases. Atmos. Environ. 2008, 42, 5304–5316. [Google Scholar] [CrossRef]
- SEPSA. Available online: http://www.sepsa.go.cr/docs/2020-022-Indicadores_Macroeconomicos_2016-2020_Octubre_2020.pdf (accessed on 3 March 2021).
- ICAFE. Available online: http://www.icafe.cr/wp-content/uploads/informacion_mercado/informes_actividad/actual/Informe%20Actividad%20Cafetalera.pdf (accessed on 3 March 2021).
- Rowlandson, T.; Gleason, M.; Sentelhas, P.; Gillespie, T.; Thomas, C.; Hornbuckle, B. Reconsidering leaf wetness duration determination for plant disease management. Plant Dis. 2015, 99, 310–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DAVIS Instruments. Available online: https://www.davisinstruments.com.au/product-page/6420-leaf-wetness-sensor (accessed on 22 January 2021).
- Campbell. Available online: https://s.campbellsci.com/documents/us/manuals/lws.pdf (accessed on 29 April 2021).
- Kim, K.S.; Taylor, S.E.; Gleason, M.L.; Nutter, F.W.; Coop, L.B.; Pfender, W.F.; Seem, R.C.; Sentelhas, P.C.; Gillespie, T.J.; Marta, A.D.; et al. Spatial portability of numerical models of leaf wetness duration based on empirical approaches. Agricul. Forest Mete. 2010, 150, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Sentelhas, P.C.; Monteiro, J.E.B.A.; Gillespie, T.J. Electronic leaf wetness duration sensor: Why it should be painted. Int. J. Biometeorol. 2004, 48, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Sentelhas, P.C.; Gillespie, T.J.; Santos, E.A. Leaf wetness duration measurement: Comparison of cylindrical and flat plate sensors under different field conditions. Int. J. Biometeorol. 2007, 51, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Durigon, A.; Van Lier, Q. Duração do período de molhamento foliar: Medição e estimativa em feijão sob diferentes tratamentos hídricos. Rev. Bras. Eng. Agre. 2013, 17, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Sentelhas, P.C.; Dalla Marta, A.; Orlandini, S.; Santos, E.A.; Gillespie, T.J.; Gleason, M.L. Suitability of relative humidity as an estimator of leaf wetness duration. Agric. For. Meteorol. 2008, 148, 392–400. [Google Scholar] [CrossRef]
- Gleason, M.L.; Duttweiler, K.B.; Batzer, J.C.; Taylor, S.E.; Sentelhas, P.C.; Monteiro, J.E.B.A.; Gillespie, T.J. Obtaining weather data for input to crop disease-warning systems: Leaf wetness duration as a case study. Sci. Agric. 2008, 65, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, W.T.; Silva, M.A.D.A.; França, J.A.D.; Igarashi, S.; Saab, O.J.G.A. Estimation of soybean leaf wetness from meteorological variables. Pesqui. Agropecuária Bras. 2018, 53, 1087–1092. [Google Scholar] [CrossRef]
- Stella, A.; Caliendo, G.; Melgani, F.; Goller, R.; Barazzuol, M.; La Porta, N. Leaf wetness evaluation using artificial neural network for improving apple scab fight. Environments 2017, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Jian, L.I.U.; Aixin, R.E.N.; Ran, L.I.U.; Tao, J.I.; Huiying, L.I.U.; Ming, L.I. Estimation model of cucumber leaf wetness duration considering the spatial heterogeneity of solar greenhouse. Smart Agric. 2020, 2, 135–144. [Google Scholar]
- Park, J.; Shin, J.Y.; Kim, K.R.; Ha, J.C. Leaf wetness duration models using advanced machine learning algorithms: Application to farms in Gyeonggi Province, South Korea. Water 2019, 11, 1878. [Google Scholar] [CrossRef] [Green Version]
- Bassimba, D.D.M.; Intrigliolo, D.S.; Dalla Marta, A.; Orlandini, S.; Vicent, A. Leaf wetness duration in irrigated citrus orchards in the mediterranean climate conditions. Agri. Forest Met. 2017, 234, 182–195. [Google Scholar] [CrossRef]
- Lee, K.J.; Kang, J.Y.; Lee, D.Y.; Jang, S.W.; Lee, S.; Lee, B.W.; Kim, K.S. Use of an empirical model to estimate leaf wetness duration for operation of a disease warning system under a shade in a ginseng field. Plant Dis. 2016, 100, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 785–794. [Google Scholar]
Variables | Unit | 1. Barva | 2. San Vito | 3. San Lor.. | 4. Naranjo | 5. San Ped.. | 6. Páramo | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | std | m | std | m | std | m | std | m | std | m | std | ||
Temp. out_station | °C | 21 | 4 | 23 | 3 | 19 | 3 | 22 | 4 | 23 | 3 | 20 | 3 |
High temperature | °C | 21 | 4 | 23 | 3 | 19 | 3 | 22 | 4 | 23 | 3 | 20 | 3 |
Low temperature | °C | 21 | 4 | 23 | 3 | 18 | 3 | 22 | 4 | 23 | 3 | 20 | 3 |
Temp. in station | °C | 24 | 2 | 27 | 4 | 24 | 2 | 26 | 1 | 26 | 3 | 24 | 5 |
Humidity out_station | % | 80 | 14 | 89 | 10 | 86 | 14 | 77 | 13 | 85 | 8 | 91 | 8 |
Humidity in_station | % | 55 | 9 | 60 | 9 | 64 | 7 | 58 | 8 | 65 | 8 | 65 | 9 |
Solar radiation | W/m² | 193 | 294 | 172 | 272 | 196 | 298 | 189 | 278 | 141 | 235 | 145 | 233 |
High solar rad | W/m² | 228 | 338 | 218 | 337 | 233 | 346 | 252 | 355 | 208 | 328 | 207 | 323 |
Wind speed | km/h | 1 | 2 | 1 | 2 | 2 | 4 | 2 | 2 | 1 | 1 | 2 | 3 |
High speed | km/h | 8 | 8 | 4 | 5 | 7 | 9 | 7 | 7 | 5 | 5 | 7 | 6 |
Barometer | hPa | 782 | 1 | 757 | 2 | 758 | 2 | 755 | 37 | 741 | 27 | 760 | 1 |
Rain | mm | 0.1 | 0.6 | 0.1 | 0.7 | 0.1 | 0.4 | 0.1 | 0.8 | 0.2 | 1.4 | 0.2 | 1.0 |
Soil moisture | cB | 193 | 20 | 120 | 71 | 67 | 69 | 116 | 69 | 7 | 15 | 37 | 50 |
Wet leaf (%) | % | 0.43 | 0.49 | 0.62 | 0.49 | 0.57 | 0.50 | 0.44 | 0.50 | 0.43 | 0.49 | 0.38 | 0.49 |
Station | DMR | DOR | HOR | NMC | NOC | |||||
---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
15_min | ||||||||||
1 | 96 b | 139 | 96 b | 135 | 65 a | 91 | 65 a | 96 | 62 a | 90 |
2 | 82 b | 105 | 80 b | 106 | 54 a | 72 | 53 a | 75 | 57 a | 79 |
3 | 92 b | 123 | 91 b | 123 | 64 a | 98 | 64 a | 92 | 65 a | 93 |
30_min | ||||||||||
4 | 123 c | 175 | 124 c | 181 | 102 b | 140 | 96 a | 136 | 99 b | 146 |
5 | 125 b | 161 | 126 b | 162 | 95 a | 128 | 86 a | 124 | 88 a | 129 |
6 | 113 b | 145 | 119 b | 150 | 83 a | 107 | 81 a | 113 | 84 a | 111 |
Test Sample | Train Sample | ||
---|---|---|---|
Without 1 | Without 2 | Without 3 | |
1 | 127 * | 61 | 63 |
2 | 54 | 135 * | 55 |
3 | 66 | 64 | 168 * |
Without 4 | Without 5 | Without 6 | |
4 | 351 * | 97 | 96 |
5 | 87 | 387 * | 86 |
6 | 83 | 85 | 363 * |
Region | NOC_All Variables | NOC_1 | NOC_2 | NOC_3 |
---|---|---|---|---|
15_min | ||||
1 | 63 | 67 * | 71 * | 69 * |
2 | 55 | 61 * | 63 * | 68 * |
3 | 66 | 72 * | 75 * | 79 * |
30_min | ||||
4 | 99 | 104 | 123 * | 132 * |
5 | 88 | 94 | 131 * | 137 * |
6 | 84 | 103 * | 101 * | 102 * |
Region | NOC_All | NOC_>2017 | NOC_>2018 |
---|---|---|---|
15_min | |||
1 | 57 | 56 | 55 |
2 | 45 | 46 | 43 |
3 | 65 | 64 | 64 |
30_min | |||
4 | 131 | 117 | 100 |
5 | 76 | 76 | 80 |
6 | 90 | 94 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solís, M.; Rojas-Herrera, V. Approaches for the Prediction of Leaf Wetness Duration with Machine Learning. Biomimetics 2021, 6, 29. https://doi.org/10.3390/biomimetics6020029
Solís M, Rojas-Herrera V. Approaches for the Prediction of Leaf Wetness Duration with Machine Learning. Biomimetics. 2021; 6(2):29. https://doi.org/10.3390/biomimetics6020029
Chicago/Turabian StyleSolís, Martín, and Vanessa Rojas-Herrera. 2021. "Approaches for the Prediction of Leaf Wetness Duration with Machine Learning" Biomimetics 6, no. 2: 29. https://doi.org/10.3390/biomimetics6020029
APA StyleSolís, M., & Rojas-Herrera, V. (2021). Approaches for the Prediction of Leaf Wetness Duration with Machine Learning. Biomimetics, 6(2), 29. https://doi.org/10.3390/biomimetics6020029