Animals as Architects: Building the Future of Technology-Supported Rehabilitation with Biomimetic Principles
Abstract
:1. Introduction
2. Animal Models in (Rehabilitation) Research
2.1. Locomotion and Prosthetics
2.2. Neural Plasticity and Recovery
2.3. Sensory Systems and Assistive Technologies
2.4. Brain Machine Interface
3. Case Studies in Biomimetic Rehabilitation Technologies
3.1. Selection Criteria and Unique Contributions of Animal Models in Biomimetic Rehabilitation Technologies
Animal Model | Research Area | Purpose/Insight | Examples/Applications |
---|---|---|---|
Rats | Spinal Cord Injury [60] | Used to study nerve regeneration and motor recovery through rehabilitation techniques such as treadmill training and electrical stimulation. | Development of therapies to enhance motor function recovery after spinal cord injuries. |
Mice | Stroke Recovery [61] | Models for studying brain plasticity and motor recovery, allowing testing of rehabilitation strategies like constraint-induced movement therapy. | Insights into neuroplasticity and development of post-stroke rehabilitation protocols. |
Cats | Locomotor Rehabilitation [62] | Employed in studies of gait and locomotor function, particularly useful in understanding how spinal circuits contribute to movement recovery. | Development of robotic-assisted gait training devices for humans with spinal injuries. |
Pigs | Muscle Regeneration [63] | Used to study the effects of exercise and physical therapy on muscle recovery after injury due to their muscle structure similarity to humans. | Insights into improving rehabilitation for muscle injuries, such as post-surgical recovery. |
Non-Human Primates (e.g., macaques) | Cognitive Rehabilitation [64] | Models for testing rehabilitation approaches for cognitive and motor function recovery after brain injuries, closely mimicking human brain function. | Development of cognitive therapies and advanced rehabilitation technologies. |
Rabbits | Tendon Healing [65] | Studied for their response to various physical therapy modalities like ultrasound and controlled movements to enhance tendon repair. | Development of rehabilitation protocols for tendinitis and post-surgical tendon recovery. |
Dogs | Orthopedic Rehabilitation [66] | Used for modeling rehabilitation after joint surgeries, including physical therapy regimens to restore range of motion. | Insights into physical therapy techniques for post-operative care in joint replacement. |
Zebrafish | Regenerative Medicine [67] | Allows study of neural regeneration and recovery due to their ability to regenerate central nervous system tissues. | Development of approaches for nerve regeneration and spinal injury recovery in humans. |
Sheep | Joint Rehabilitation [68] | Used to study cartilage repair and recovery after joint injuries, focusing on rehabilitation techniques that promote healing. | Insights into physical therapy methods for joint recovery and treatment of osteoarthritis. |
Rats | Peripheral Nerve Injury [69] | Models for studying the recovery of sensory and motor functions after nerve damage using rehabilitation strategies like electrical stimulation. | Insights into therapies that aid nerve recovery and improve sensory function after injuries. |
3.2. Practical Examples
3.2.1. Robotic Exoskeletons
3.2.2. Wearable Sensors and Feedback Systems
3.2.3. Regenerative Medicine and Biomaterials
4. Challenges
4.1. Technical Challenges
4.2. Ethical Considerations
4.2.1. Replacement
4.2.2. Reduction
4.2.3. Refinement
4.3. Translational Challenges
5. Future Directions
5.1. Advancing Computational Models, AI, and Simulations
5.2. Development of Hybrid Bio-Mechanical Devices
5.3. Expanding the Scope of Neural Regeneration Research
5.4. Integrating Rehabilitation Technologies into Broader Healthcare Ecosystems
5.5. Integration of Biomimetic Technologies with Digital Health Platforms
5.6. Strengthening Interdisciplinary Collaboration
6. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Fact Sheets: Rehabilitation; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Wade, D.T. What Is Rehabilitation? An Empirical Investigation Leading to an Evidence-Based Description. Clin. Rehabil. 2020, 34, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Bonnechère, B.; Timmermans, A.; Michiels, S. Current Technology Developments Can Improve the Quality of Research and Level of Evidence for Rehabilitation Interventions: A Narrative Review. Sensors 2023, 23, 875. [Google Scholar] [CrossRef] [PubMed]
- Adans-Dester, C.; Hankov, N.; O’Brien, A.; Vergara-Diaz, G.; Black-Schaffer, R.; Zafonte, R.; Dy, J.; Lee, S.I.; Bonato, P. Enabling Precision Rehabilitation Interventions Using Wearable Sensors and Machine Learning to Track Motor Recovery. NPJ Digit. Med. 2020, 3, 121. [Google Scholar] [CrossRef]
- Churchill, L.; Morrow, M.; Capin, J.J.; Jolley, S.E.; Hare, K.; MaWhinney, S.; Stevens-Lapsley, J.E.; Erlandson, K.M. Using Wearable Technology to Quantify Physical Activity Recovery: Secondary Report From the AFTER (App-Facilitated Tele-Rehabilitation) Program for COVID-19 Survivors Randomized Study. JMIR Rehabil. Assist. Technol. 2023, 10, e43436. [Google Scholar] [CrossRef]
- Olaizola, E.; Morales-Sánchez, R.; Eguiguren Huerta, M. Biomimetic Leadership for 21st Century Companies. Biomimetics 2021, 6, 47. [Google Scholar] [CrossRef]
- Baker, R. The History of Gait Analysis before the Advent of Modern Computers. Gait Posture 2007, 26, 331–342. [Google Scholar] [CrossRef]
- Alexander, R.M. Principles of Animal Locomotion; Princeton University Press: Princeton, NJ, USA, 2013; ISBN 978-1-4008-4951-2. [Google Scholar]
- Noble, G. Clinical Histories Animate Muybridge and Dercum’s Original Photographic Study of Neurologic Gait. Neurology 2021, 97, 1026–1030. [Google Scholar] [CrossRef]
- Mizuno, H.; Muraoka, Y. Computer Graphic Model of Walking Quadruped Animal. Syst. Comput. Jpn. 1995, 26, 84–94. [Google Scholar] [CrossRef]
- Broom, L.; Ellison, B.A.; Worley, A.; Wagenaar, L.; Sörberg, E.; Ashton, C.; Bennett, D.A.; Buchman, A.S.; Saper, C.B.; Shih, L.C.; et al. A Translational Approach to Capture Gait Signatures of Neurological Disorders in Mice and Humans. Sci. Rep. 2017, 7, 3225. [Google Scholar] [CrossRef]
- Clemente, C.J.; De Groote, F.; Dick, T.J.M. Predictive Musculoskeletal Simulations Reveal the Mechanistic Link between Speed, Posture and Energetics among Extant Mammals. Nat. Commun. 2024, 15, 8594. [Google Scholar] [CrossRef]
- Kram, R.; Dawson, T.J. Energetics and Biomechanics of Locomotion by Red Kangaroos (Macropus rufus). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1998, 120, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Ng, T.N. Self-Sustained Robots Based on Functionally Graded Elastomeric Actuators Carrying up to 22 Times Their Body Weight. Adv. Intell. Syst. 2023, 5, 2100085. [Google Scholar] [CrossRef]
- Ion, R.; Monger, B.; Hardie, S.; Henderson, N.; Cumming, J. A Tool to Measure Progress and Outcome in Recovery. Br. J. Ment. Health Nurs. 2013, 2, 211–215. [Google Scholar] [CrossRef]
- Roussel, Y.; Gaudreau, S.F.; Kacer, E.R.; Sengupta, M.; Bui, T.V. Modeling Spinal Locomotor Circuits for Movements in Developing Zebrafish. eLife 2021, 10, e67453. [Google Scholar] [CrossRef] [PubMed]
- John, N.; Kolb, J.; Wehner, D. Mechanical Spinal Cord Transection in Larval Zebrafish and Subsequent Whole-Mount Histological Processing. STAR Protoc. 2022, 3, 101093. [Google Scholar] [CrossRef]
- National Research Council (US) Committee to Update Science, Medicine, and Animals. Science, Medicine, and Animals; The National Academies Collection: Reports Funded by National Institutes of Health; National Academies Press: Washington, DC, USA, 2004; ISBN 978-0-309-08894-7.
- Chuprin, J.; Buettner, H.; Seedhom, M.O.; Greiner, D.L.; Keck, J.G.; Ishikawa, F.; Shultz, L.D.; Brehm, M.A. Humanized Mouse Models for Immuno-Oncology Research. Nat. Rev. Clin. Oncol. 2023, 20, 192–206. [Google Scholar] [CrossRef]
- Creed, R.B.; Goldberg, M.S. New Developments in Genetic Rat Models of Parkinson’s Disease. Mov. Disord. 2018, 33, 717–729. [Google Scholar] [CrossRef]
- Fröhlich, E. Animals in Respiratory Research. Int. J. Mol. Sci. 2024, 25, 2903. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, X.; Sun, X.; Qin, Q.; Chen, D.; Jia, M.; Chen, Y. Genetically Modified Rabbit Models for Cardiovascular Medicine. Eur. J. Pharmacol. 2022, 922, 174890. [Google Scholar] [CrossRef]
- Estes, J.D.; Wong, S.W.; Brenchley, J.M. Nonhuman Primate Models of Human Viral Infections. Nat. Rev. Immunol. 2018, 18, 390–404. [Google Scholar] [CrossRef]
- Veldman, M.B.; Lin, S. Zebrafish as a Developmental Model Organism for Pediatric Research. Pediatr. Res. 2008, 64, 470–476. [Google Scholar] [CrossRef]
- Boulet, J.; Cunningham, J.W.; Mehra, M.R. Cardiac Xenotransplantation: Challenges, Evolution, and Advances. JACC Basic Transl. Sci. 2022, 7, 716. [Google Scholar] [CrossRef] [PubMed]
- Ribitsch, I.; Baptista, P.M.; Lange-Consiglio, A.; Melotti, L.; Patruno, M.; Jenner, F.; Schnabl-Feichter, E.; Dutton, L.C.; Connolly, D.J.; van Steenbeek, F.G.; et al. Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do. Front. Bioeng. Biotechnol. 2020, 8, 972. [Google Scholar] [CrossRef] [PubMed]
- Adin, C.A.; Gilor, C. The Diabetic Dog as a Translational Model for Human Islet Transplantation. Yale J. Biol. Med. 2017, 90, 509. [Google Scholar]
- Smith, R.E.; Choudhary, S.; Ramirez, J.A. Ferrets as Models for Viral Respiratory Disease. Comp. Med. 2023, 73, 187. [Google Scholar] [CrossRef] [PubMed]
- Varaganti, P.; Seo, S. Recent Advances in Biomimetics for the Development of Bio-Inspired Prosthetic Limbs. Biomimetics 2024, 9, 273. [Google Scholar] [CrossRef]
- Lee, D.V.; Harris, S.L. Linking Gait Dynamics to Mechanical Cost of Legged Locomotion. Front. Robot. AI 2018, 5, 111. [Google Scholar] [CrossRef]
- Timotius, I.K.; Roelofs, R.F.; Richmond-Hacham, B.; Noldus, L.P.J.J.; von Hörsten, S.; Bikovski, L. CatWalk XT Gait Parameters: A Review of Reported Parameters in Pre-Clinical Studies of Multiple Central Nervous System and Peripheral Nervous System Disease Models. Front. Behav. Neurosci. 2023, 17, 1147784. [Google Scholar] [CrossRef]
- Park, Y.-H.; Lee, D.-H.; Lee, J.-H. A Comprehensive Review: Robot-Assisted Treatments for Gait Rehabilitation in Stroke Patients. Medicina 2024, 60, 620. [Google Scholar] [CrossRef]
- Harris, C.M. Biomimetics of Human Movement: Functional or Aesthetic? Bioinspir. Biomim. 2009, 4, 033001. [Google Scholar] [CrossRef]
- Bai, S.; Christensen, S. Chapter Nine—Biomechanical HRI Modeling and Mechatronic Design of Exoskeletons for Assistive Applications. In Human Modelling for Bio-Inspired Robotics; Ueda, J., Kurita, Y., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 251–272. ISBN 978-0-12-803137-7. [Google Scholar]
- Dawson, T.J.; Taylor, C.R. Energetic Cost of Locomotion in Kangaroos. Nature 1973, 246, 313–314. [Google Scholar] [CrossRef]
- Tang, X.; Wang, X.; Ji, X.; Zhou, Y.; Yang, J.; Wei, Y.; Zhang, W. A Wearable Lower Limb Exoskeleton: Reducing the Energy Cost of Human Movement. Micromachines 2022, 13, 900. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Patel, T.; Sugandh, F.; Dev, J.; Kumar, U.; Adeeb, M.; Kachhadia, M.P.; Puri, P.; Prachi, F.N.U.; Zaman, M.U.; et al. Innovative Approaches and Therapies to Enhance Neuroplasticity and Promote Recovery in Patients With Neurological Disorders: A Narrative Review. Cureus 2023, 15, e41914. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.-W.; Tsai, H.-J. The Promising Role of a Zebrafish Model Employed in Neural Regeneration Following a Spinal Cord Injury. Int. J. Mol. Sci. 2023, 24, 13938. [Google Scholar] [CrossRef]
- Schuster, C.J.; Kao, R.M. Glial Cell Ecology in Zebrafish Development and Regeneration. Heliyon 2020, 6, e03507. [Google Scholar] [CrossRef]
- Joven, A.; Elewa, A.; Simon, A. Model Systems for Regeneration: Salamanders. Development 2019, 146, dev167700. [Google Scholar] [CrossRef]
- Vieira, W.A.; Wells, K.M.; McCusker, C.D. Advancements to the Axolotl Model for Regeneration and Aging. Gerontology 2020, 66, 212–222. [Google Scholar] [CrossRef]
- McCusker, C.; Bryant, S.V.; Gardiner, D.M. The Axolotl Limb Blastema: Cellular and Molecular Mechanisms Driving Blastema Formation and Limb Regeneration in Tetrapods. Regeneration 2015, 2, 54. [Google Scholar] [CrossRef]
- Leemhuis, E.; Favieri, F.; Forte, G.; Pazzaglia, M. Integrated Neuroregenerative Techniques for Plasticity of the Injured Spinal Cord. Biomedicines 2022, 10, 2563. [Google Scholar] [CrossRef]
- Rørvang, M.V.; Nielsen, B.L.; McLean, A.N. Sensory Abilities of Horses and Their Importance for Equitation Science. Front. Vet. Sci. 2020, 7, 633. [Google Scholar] [CrossRef]
- Gupta, A.; Vardalakis, N.; Wagner, F.B. Neuroprosthetics: From Sensorimotor to Cognitive Disorders. Commun. Biol. 2023, 6, 14. [Google Scholar] [CrossRef]
- Ifukube, T.; Sasaki, T.; Peng, C. A Blind Mobility Aid Modeled after Echolocation of Bats. IEEE Trans. Biomed. Eng. 1991, 38, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Sohl-Dickstein, J.; Teng, S.; Gaub, B.M.; Rodgers, C.C.; Li, C.; DeWeese, M.R.; Harper, N.S. A Device for Human Ultrasonic Echolocation. IEEE Trans. Bio-Med. Eng. 2015, 62, 1526. [Google Scholar] [CrossRef] [PubMed]
- Bleckmann, H.; Zelick, R. Lateral Line System of Fish. Integr. Zool. 2009, 4, 13–25. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, Q.; Li, R.; Yang, J.; Liu, Q.; Zhu, B.; Weng, C.; Liu, W.; Hu, P.; Ma, L.; et al. A Comprehensive Review on the Evolution of Bio-Inspired Sensors from Aquatic Creatures. Cell Rep. Phys. Sci. 2024, 5, 102064. [Google Scholar] [CrossRef]
- Kiyotake, E.A.; Martin, M.D.; Detamore, M.S. Regenerative Rehabilitation with Conductive Biomaterials for Spinal Cord Injury. Acta Biomater. 2022, 139, 43–64. [Google Scholar] [CrossRef]
- Chacron, M.J.; Markham, M.R. Editorial: Recent Advances in Electroreception and Electrogeneration. Front. Integr. Neurosci. 2021, 15, 668677. [Google Scholar] [CrossRef]
- Lebedev, M.A.; Nicolelis, M.A.L. Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiol. Rev. 2017, 97, 767–837. [Google Scholar] [CrossRef]
- Haak, B.W.; Westendorp, W.F.; van Engelen, T.S.R.; Brands, X.; Brouwer, M.C.; Vermeij, J.-D.; Hugenholtz, F.; Verhoeven, A.; Derks, R.J.; Giera, M.; et al. Disruptions of Anaerobic Gut Bacteria Are Associated with Stroke and Post-Stroke Infection: A Prospective Case-Control Study. Transl. Stroke Res. 2021, 12, 581–592. [Google Scholar] [CrossRef]
- Perruchoud, D.; Pisotta, I.; Carda, S.; Murray, M.M.; Ionta, S. Biomimetic Rehabilitation Engineering: The Importance of Somatosensory Feedback for Brain-Machine Interfaces. J. Neural Eng. 2016, 13, 041001. [Google Scholar] [CrossRef]
- Valle, G.; Katic Secerovic, N.; Eggemann, D.; Gorskii, O.; Pavlova, N.; Petrini, F.M.; Cvancara, P.; Stieglitz, T.; Musienko, P.; Bumbasirevic, M.; et al. Biomimetic Computer-to-Brain Communication Enhancing Naturalistic Touch Sensations via Peripheral Nerve Stimulation. Nat. Commun. 2024, 15, 1151. [Google Scholar] [CrossRef]
- Manzoori, A.R.; Malatesta, D.; Primavesi, J.; Ijspeert, A.; Bouri, M. Evaluation of Controllers for Augmentative Hip Exoskeletons and Their Effects on Metabolic Cost of Walking: Explicit versus Implicit Synchronization. Front. Bioeng. Biotechnol. 2024, 12, 1324587. [Google Scholar] [CrossRef] [PubMed]
- Eng, J.J.; Tang, P.F. Gait Training Strategies to Optimize Walking Ability in People with Stroke: A Synthesis of the Evidence. Expert Rev. Neurother. 2007, 7, 1417. [Google Scholar] [CrossRef] [PubMed]
- Warutkar, V.; Dadgal, R.; Mangulkar, U.R. Use of Robotics in Gait Rehabilitation Following Stroke: A Review. Cureus 2022, 14, e31075. [Google Scholar] [CrossRef]
- Grillner, S.; El Manira, A. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion. Physiol. Rev. 2020, 100, 271–320. [Google Scholar] [CrossRef]
- He, L.-W.; Guo, X.-J.; Zhao, C.; Rao, J.-S. Rehabilitation Training after Spinal Cord Injury Affects Brain Structure and Function: From Mechanisms to Methods. Biomedicines 2023, 12, 41. [Google Scholar] [CrossRef]
- Aderinto, N.; AbdulBasit, M.O.; Olatunji, G.; Adejumo, T. Exploring the Transformative Influence of Neuroplasticity on Stroke Rehabilitation: A Narrative Review of Current Evidence. Ann. Med. Surg. 2023, 85, 4425. [Google Scholar] [CrossRef]
- Van de Crommert, H.W.A.A.; Mulder, T.; Duysens, J. Neural Control of Locomotion: Sensory Control of the Central Pattern Generator and Its Relation to Treadmill Training. Gait Posture 1998, 7, 251–263. [Google Scholar] [CrossRef]
- Greising, S.M.; Weiner, J.I.; Garry, D.J.; Sachs, D.H.; Garry, M.G. Human Muscle in Gene Edited Pigs for Treatment of Volumetric Muscle Loss. Front. Genet. 2022, 13, 948496. [Google Scholar] [CrossRef]
- Higo, N. Non-Human Primate Models to Explore the Adaptive Mechanisms After Stroke. Front. Syst. Neurosci. 2021, 15, 760311. [Google Scholar] [CrossRef]
- Nagasawa, K.; Noguchi, M.; Ikoma, K.; Kubo, T. Static and Dynamic Biomechanical Properties of the Regenerating Rabbit Achilles Tendon. Clin. Biomech. 2008, 23, 832–838. [Google Scholar] [CrossRef]
- Baltzer, W.I. Rehabilitation of Companion Animals Following Orthopaedic Surgery. N. Z. Vet. J. 2020, 68, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Hui, S.P. Regeneration of Zebrafish CNS: Adult Neurogenesis. Neural Plast. 2016, 2016, 5815439. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Murphy, D.J.; Carey-Smith, R.; Wood, D.J.; Zheng, M.H. Treatment of Articular Cartilage Defects With Microfracture and Autologous Matrix-Induced Chondrogenesis Leads to Extensive Subchondral Bone Cyst Formation in a Sheep Model. Am. J. Sports Med. 2016, 44, 2629–2643. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Yao, Z.; Zhao, Y.; Zhang, T.; Wang, J.; Li, S.; Chen, Z. Electrical Stimulation Therapy for Peripheral Nerve Injury. Front. Neurol. 2023, 14, 1081458. [Google Scholar] [CrossRef]
- Gorgey, A.S. Robotic Exoskeletons: The Current Pros and Cons. World J. Orthop. 2018, 9, 112. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, W.; Benali, A.; Lu, D.; Kok, S.Y.; Wang, R. Towards Human-like Walking with Biomechanical and Neuromuscular Control Features: Personalized Attachment Point Optimization Method of Cable-Driven Exoskeleton. Front. Aging Neurosci. 2024, 16, 1327397. [Google Scholar] [CrossRef]
- Spence, A.J.; Wilshin, S.D.; Byrnes, G. The Economy of Terrestrial Locomotion. Curr. Biol. 2022, 32, R676–R680. [Google Scholar] [CrossRef]
- Williamson, J.L.; Lichtwark, G.A.; Sawicki, G.S.; Dick, T.J.M. The Influence of Elastic Ankle Exoskeletons on Lower Limb Mechanical Energetics during Unexpected Perturbations. R. Soc. Open Sci. 2023, 10, 221133. [Google Scholar] [CrossRef]
- Rojek, I.; Dorożyński, J.; Mikołajewski, D.; Kotlarz, P. Overview of 3D Printed Exoskeleton Materials and Opportunities for Their AI-Based Optimization. Appl. Sci. 2023, 13, 8384. [Google Scholar] [CrossRef]
- Fazio, R.D.; Mastronardi, V.M.; Vittorio, M.D.; Visconti, P. Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview. Sensors 2023, 23, 1856. [Google Scholar] [CrossRef]
- Porciuncula, F.; Roto, A.V.; Kumar, D.; Davis, I.; Roy, S.; Walsh, C.J.; Awad, L.N. Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances. PM R J. Inj. Funct. Rehabil. 2018, 10, S220. [Google Scholar] [CrossRef] [PubMed]
- Chamorro-Moriana, G.; Moreno, A.J.; Sevillano, J.L. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review. Sensors 2018, 18, 142. [Google Scholar] [CrossRef] [PubMed]
- Moinuddin, A.; Goel, A.; Sethi, Y. The Role of Augmented Feedback on Motor Learning: A Systematic Review. Cureus 2021, 13, e19695. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yao, K.; Jia, S.; Huang, Y.; Zhao, G.; Zhang, B.; Liu, Y.; Yu, X. Advances in Materials for Haptic Skin Electronics. Matter 2024, 7, 2826–2845. [Google Scholar] [CrossRef]
- Pyun, K.R.; Kwon, K.; Yoo, M.J.; Kim, K.K.; Gong, D.; Yeo, W.-H.; Han, S.; Ko, S.H. Machine-Learned Wearable Sensors for Real-Time Hand-Motion Recognition: Toward Practical Applications. Natl. Sci. Rev. 2024, 11, nwad298. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.-M.; Gan, Y.-C.; Qiu, X.-Z.; Gao, Z.-C.; Wang, H.; Chen, S.-X.; Xiong, Y.; Liu, G.-H.; Lin, S.-E.; et al. Biomimetic Natural Biomaterials for Tissue Engineering and Regenerative Medicine: New Biosynthesis Methods, Recent Advances, and Emerging Applications. Mil. Med. Res. 2023, 10, 16. [Google Scholar] [CrossRef]
- Gómez, C.M.A.; Echeverri, K. Salamanders: The Molecular Basis of Tissue Regeneration and Its Relevance to Human Disease. Curr. Top. Dev. Biol. 2021, 145, 235. [Google Scholar] [CrossRef]
- Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Development of Biomaterial Scaffold for Nerve Tissue Engineering: Biomaterial Mediated Neural Regeneration. J. Biomed. Sci. 2009, 16, 108. [Google Scholar] [CrossRef]
- Yari, D.; Saberi, A.; Salmasi, Z.; Ghoreishi, S.A.; Etemad, L.; Movaffagh, J.; Ganjeifar, B. Recent Advances in the Treatment of Spinal Cord Injury. Arch. Bone Jt. Surg. 2024, 12, 380. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, Z.; Zou, X.; You, X.; Cai, Z.; Huang, J. Advancements in Tissue Engineering for Articular Cartilage Regeneration. Heliyon 2024, 10, e25400. [Google Scholar] [CrossRef]
- Golebiowska, A.A.; Intravaia, J.T.; Sathe, V.M.; Kumbar, S.G.; Nukavarapu, S.P. Decellularized Extracellular Matrix Biomaterials for Regenerative Therapies: Advances, Challenges and Clinical Prospects. Bioact. Mater. 2024, 32, 98–123. [Google Scholar] [CrossRef] [PubMed]
- Krishani, M.; Shin, W.Y.; Suhaimi, H.; Sambudi, N.S. Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels 2023, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Pheby, D.; Henehan, G.; Brown, R.; Sieving, P.; Sykora, P.; Marks, R.; Falsini, B.; Capodicasa, N.; Miertus, S.; et al. Ethical Considerations Regarding Animal Experimentation. J. Prev. Med. Hyg. 2022, 63, E255. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yuan, M.; Guo, Y.-S.; Shen, X.-Y.; Gao, Z.-K.; Bi, X. The Role of Enriched Environment in Neural Development and Repair. Front. Cell. Neurosci. 2022, 16, 890666. [Google Scholar] [CrossRef]
- Peyré-Tartaruga, L.A.; Coertjens, M. Locomotion as a Powerful Model to Study Integrative Physiology: Efficiency, Economy, and Power Relationship. Front. Physiol. 2018, 9, 1789. [Google Scholar] [CrossRef]
- Zhou, S.; Li, Y.; Wang, Q.; Lyu, Z. Integrated Actuation and Sensing: Toward Intelligent Soft Robots. Cyborg. Bionic Syst. 2024, 5, 0105. [Google Scholar] [CrossRef]
- Domínguez-Oliva, A.; Hernández-Ávalos, I.; Martínez-Burnes, J.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Mota-Rojas, D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals 2023, 13, 1223. [Google Scholar] [CrossRef]
- Maestri, E. The 3Rs Principle in Animal Experimentation: A Legal Review of the State of the Art in Europe and the Case in Italy. BioTech 2021, 10, 9. [Google Scholar] [CrossRef]
- Pastorino, P.; Prearo, M.; Barceló, D. Ethical Principles and Scientific Advancements: In Vitro, in Silico, and Non-Vertebrate Animal Approaches for a Green Ecotoxicology. Green Anal. Chem. 2024, 8, 100096. [Google Scholar] [CrossRef]
- Moore, T.Y.; Clifton, G.T. Jumping over Fences: Why Field- and Laboratory-Based Biomechanical Studies Can and Should Learn from Each Other. J. Exp. Biol. 2023, 226, jeb245284. [Google Scholar] [CrossRef]
- Richter, S.H. Challenging Current Scientific Practice: How a Shift in Research Methodology Could Reduce Animal Use. Lab Anim. 2024, 53, 9. [Google Scholar] [CrossRef] [PubMed]
- Bate, S.; Karp, N.A. A Common Control Group—Optimising the Experiment Design to Maximise Sensitivity. PLoS ONE 2014, 9, e114872. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.; João, F.; Amado, S.; Alvites, R.D.; Maurício, A.C.; Esteves, B.; Sousa, A.C.; Lopes, B.; Sousa, P.; Dias, J.R.; et al. Biomechanical Gait Analysis in Sheep: Kinematic Parameters. Front. Bioeng. Biotechnol. 2024, 12, 1370101. [Google Scholar] [CrossRef] [PubMed]
- Mokalled, M.H.; Poss, K.D. A Regeneration Toolkit. Dev. Cell 2018, 47, 267. [Google Scholar] [CrossRef]
- McCusker, C.; Gardiner, D.M. The Axolotl Model for Regeneration and Aging Research: A Mini-Review. Gerontology 2011, 57, 565–571. [Google Scholar] [CrossRef]
- Leenaars, C.H.C.; Kouwenaar, C.; Stafleu, F.R.; Bleich, A.; Ritskes-Hoitinga, M.; De Vries, R.B.M.; Meijboom, F.L.B. Animal to Human Translation: A Systematic Scoping Review of Reported Concordance Rates. J. Transl. Med. 2019, 17, 223. [Google Scholar] [CrossRef]
- Tanaka, E.; Reddien, P.W. The Cellular Basis for Animal Regeneration. Dev. Cell 2011, 21, 172. [Google Scholar] [CrossRef]
- Barré-Sinoussi, F.; Montagutelli, X. Animal Models Are Essential to Biological Research: Issues and Perspectives. Future Sci. OA 2015, 1, FSO63. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.-W.; et al. Artificial Intelligence: A Powerful Paradigm for Scientific Research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef]
- Preethichandra, D.M.G.; Piyathilaka, L.; Sul, J.-H.; Izhar, U.; Samarasinghe, R.; Arachchige, S.D.; de Silva, L.C. Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends. Sensors 2024, 24, 7095. [Google Scholar] [CrossRef]
- Spanagel, R. Ten Points to Improve Reproducibility and Translation of Animal Research. Front. Behav. Neurosci. 2022, 16, 869511. [Google Scholar] [CrossRef] [PubMed]
- Bonnechère, B. Unlocking the Black Box? A Comprehensive Exploration of Large Language Models in Rehabilitation. Am. J. Phys. Med. Rehabil. 2024, 103, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, H.; Nosrati, M. Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics 2023, 8, 442. [Google Scholar] [CrossRef] [PubMed]
- Dresser, L.P.; Kohn, M.A. Artificial Intelligence and the Evaluation and Treatment of Stroke. Del. J. Public Health 2023, 9, 82. [Google Scholar] [CrossRef] [PubMed]
- Calisti, M.; Giorelli, M.; Levy, G.; Mazzolai, B.; Hochner, B.; Laschi, C.; Dario, P. An Octopus-Bioinspired Solution to Movement and Manipulation for Soft Robots. Bioinspir. Biomim. 2011, 6, 036002. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Wang, J.; Wang, Q.; Shang, L. Biohybrid Materials: Structure Design and Biomedical Applications. Mater. Today Bio 2022, 16, 100352. [Google Scholar] [CrossRef]
- Citeroni, M.R.; Ciardulli, M.C.; Russo, V.; Porta, G.D.; Mauro, A.; Khatib, M.E.; Mattia, M.D.; Galesso, D.; Barbera, C.; Forsyth, N.R.; et al. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int. J. Mol. Sci. 2020, 21, 6726. [Google Scholar] [CrossRef]
- Velikic, G.; Maric, D.M.; Maric, D.L.; Supic, G.; Puletic, M.; Dulic, O.; Vojvodic, D. Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases. Int. J. Mol. Sci. 2024, 25, 993. [Google Scholar] [CrossRef]
- Gaj, T.; Sirk, S.J.; Shui, S.; Liu, J. Genome-Editing Technologies: Principles and Applications. Cold Spring Harb. Perspect. Biol. 2016, 8, a023754. [Google Scholar] [CrossRef]
- Daniels, K.; Mourad, J.; Bonnechère, B. Exploring the Use of Mobile Health for the Rehabilitation of Long COVID Patients: A Scoping Review. Healthcare 2024, 12, 451. [Google Scholar] [CrossRef]
- Lebleu, J.; Daniels, K.; Pauwels, A.; Dekimpe, L.; Mapinduzi, J.; Poilvache, H.; Bonnechère, B. Incorporating Wearable Technology for Enhanced Rehabilitation Monitoring after Hip and Knee Replacement. Sensors 2024, 24, 1163. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Xiao, J.; Zeng, B.; Wang, Q. ICTs and Interventions in Telerehabilitation and Their Effects on Stroke Recovery. Front. Neurol. 2023, 14, 1234003. [Google Scholar] [CrossRef] [PubMed]
- Genge, C.; McNeil, H.; Debergue, P.; Freeman, S. Technology to Support Aging in Place: Key Messages for Policymakers and Funders. Front. Psychol. 2023, 14, 1287486. [Google Scholar] [CrossRef] [PubMed]
Animal Model | Research Area | Purpose/Insight | Examples/Applications |
---|---|---|---|
Mice | Immuno-Oncology [19] | Study tumor growth, metastasis, and response to treatments due to their similar genetic and physiological traits to humans. | Development of immunotherapies and targeted treatments for cancers like breast cancer. |
Rats | Neurology [20] | Used to model neurodegenerative diseases, helping researchers understand brain function and disease progression. | Testing new drugs for Parkinson’s and exploring potential treatments for brain injuries. |
Guinea Pigs | Respiratory Disorders [21] | Models for studying asthma, chronic obstructive pulmonary disease (COPD), and tuberculosis due to similar respiratory systems. | Development of inhalers, vaccines, and medications for asthma and respiratory conditions. |
Rabbits | Cardiovascular Medicine [22] | Used for studying atherosclerosis and heart disease because of their susceptibility to cholesterol-induced heart conditions. | Development of heart disease treatments and cholesterol-lowering drugs. |
Non-Human Primates (e.g., macaques) | Infectious Disease Research [23] | Study immune responses and potential vaccines for viruses like HIV/AIDS and COVID-19, closely mimicking human immune response. | Development of HIV vaccines, testing efficacy of new antiviral drugs. |
Zebrafish | Developmental Biology [24] | Study of vertebrate development, genetic functions, and effects of genetic mutations, due to transparent embryos and fast reproduction. | Insights into genetic disorders, drug screenings, and developmental processes. |
Pigs | Organ Transplantation [25] | Used in transplantation studies due to anatomical and physiological similarities to humans, such as heart and liver structure. | Research into xenotransplantation and testing new surgical techniques for organ transplants. |
Sheep | Orthopedics and Regenerative Medicine [26] | Studying bone healing, joint replacement, and tissue regeneration, reflecting similar bone size and healing processes as humans. | Development of joint replacement materials and testing new surgical procedures. |
Dogs | Diabetes Research [27] | Used for studying type 1 diabetes due to their similar insulin response mechanisms. | Development of insulin therapies and devices for glucose monitoring. |
Ferrets | Influenza and Respiratory Viruses [28] | Used to model respiratory infections as they show similar symptoms to humans when infected. | Study of flu virus transmission and vaccine development for influenza. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonnechère, B. Animals as Architects: Building the Future of Technology-Supported Rehabilitation with Biomimetic Principles. Biomimetics 2024, 9, 723. https://doi.org/10.3390/biomimetics9120723
Bonnechère B. Animals as Architects: Building the Future of Technology-Supported Rehabilitation with Biomimetic Principles. Biomimetics. 2024; 9(12):723. https://doi.org/10.3390/biomimetics9120723
Chicago/Turabian StyleBonnechère, Bruno. 2024. "Animals as Architects: Building the Future of Technology-Supported Rehabilitation with Biomimetic Principles" Biomimetics 9, no. 12: 723. https://doi.org/10.3390/biomimetics9120723
APA StyleBonnechère, B. (2024). Animals as Architects: Building the Future of Technology-Supported Rehabilitation with Biomimetic Principles. Biomimetics, 9(12), 723. https://doi.org/10.3390/biomimetics9120723