Decellularized Umbilical Cord as a Scaffold to Support Healing of Full-Thickness Wounds
Abstract
:1. Introduction
- Different types of collagen, unsulfated and sulfated glycosaminoglycans (GAGs), and fibronectin;
- Numerous growth factors such as insulin-like growth factor (IGF) and protein binding insulin-like growth factors 1, 2, 3, 4, and 6; transforming growth factor alpha (TGF-α) and platelet growth factor (PDGF); fibroblast growth factors (FGFs); epidermal growth factors (EGFs); various isoforms of transforming growth factor beta (TGF-β1, 2, 3); vascular endothelial growth factor (VEGF); cytokines (with a predominance of anti-inflammatory cytokines); and matrix metalloproteinases and inhibitors of matrix metalloproteinases [23,24,26,27,28,29].
2. Materials and Methods
2.1. Umbilical Cord Decellularization
2.2. DNA Quantification
2.3. Biochemical Quantification of the GAGs Content
2.4. Electron Microscopy
2.5. Infrared Spectroscopy
2.6. Western Blotting Analysis
2.7. Determination of Swelling Degree of the UC-Scaffold
2.8. In Vitro Scaffold Biodegradation Assay
2.9. hADSCs Isolation and Cell Culture Maintenance
2.10. Viability of hADSCs Cultured on the UC-Scaffold
2.11. In Vivo Study
2.12. Histological and Immunohistochemical Staining Staining
2.13. Statistical Analysis
3. Results and Discussion
3.1. The UC-Scaffold Characterization
3.2. In Vivo Biocompatibility of the UC-Scaffold
3.3. Wound Healing Activity of the Fabricated UC-Scaffold
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fernández-Guarino, M.; Hernández-Bule, M.L.; Bacci, S. Cellular and Molecular Processes in Wound Healing. Biomedicines 2023, 11, 2526. [Google Scholar] [CrossRef] [PubMed]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Kassymbek, K.; Jimi, S.; Saparov, A. Immunology of Acute and Chronic Wound Healing. Biomolecules 2021, 11, 700. [Google Scholar] [CrossRef] [PubMed]
- Staud, C.J.; Resch, A.; Christ, A.; Borger, A.; Zaussinger, M.; Teufelsbauer, M.; Worel, N.; Radtke, C. Skin Bank Establishment in Treatment of Severe Burn Injuries: Overview and Experience with Skin Allografts at the Vienna Burn Center. J. Clin. Med. 2023, 12, 4717. [Google Scholar] [CrossRef] [PubMed]
- Dell’AversanaOrabona, G.; Maffia, F.; Audino, G.; Abbate, V.; Germano, C.; Bonavolontà, P.; Romano, A.; Villari, R.; Mormile, M.; Califano, L. The Use of Matriderm® for Scalp Full-Thickness Defects Reconstruction: A Case Series. J. Clin. Med. 2022, 11, 6041. [Google Scholar] [CrossRef] [PubMed]
- Dueppers, P.; Bozalka, R.; Kopp, R.; Menges, A.-L.; Reutersberg, B.; Schrimpf, C.; Moreno Rivero, F.J.; Zimmermann, A. The Use of Intact Fish Skin Grafts in the Treatment of Necrotizing Fasciitis of the Leg: Early Clinical Experience and Literature Review on Indications for Intact Fish Skin Grafts. J. Clin. Med. 2023, 12, 6001. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef]
- Sevastianov, V.I.; Basok, Y.B.; Kirsanova, L.A.; Grigoriev, A.M.; Kirillova, A.D.; Nemets, E.A.; Subbot, A.M.; Gautier, S.V. A Comparison of the Capacity of Mesenchymal Stromal Cells for Cartilage Regeneration Depending on Collagen-Based Injectable Biomimetic Scaffold Type. Life 2021, 11, 756. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.; Leal, E.C.; Carvalho, E.; Silva, E.A. Innovative Functional Biomaterials as Therapeutic Wound Dressings for Chronic Diabetic Foot Ulcers. Int. J. Mol. Sci. 2023, 24, 9900. [Google Scholar] [CrossRef] [PubMed]
- Rana, D.; Zreiqat, H.; Benkirane-Jessel, N.; Ramakrishna, S.; Ramalingam, M. Development of decellularized scaffolds for stem cell-driven tissue engineering. J. Tissue Eng. Regen. Med. 2017, 11, 942–965. [Google Scholar] [CrossRef]
- Stoltz, J.F.; Zhang, L.; Ye, J.S.; De Isla, N. Organ reconstruction: Dream or reality for the future. Biomed. Mater. Eng. 2017, 28, S121–S127. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, G.; Zhen, Y.; Liu, N.; Nie, F.; Zhao, Z.; Li, H.; An, Y. Application of decellularization-recellularization technique in plastic and reconstructive surgery. Chin. Med. J. 2023, 136, 2017–2027. [Google Scholar] [CrossRef] [PubMed]
- Sevastianov, V.I.; Basok, Y.B.; Grigoriev, A.M.; Nemets, E.A.; Kirillova, A.D.; Kirsanova, L.A.; Lazhko, A.E.; Subbot, A.; Kravchik, M.V.; Khesuani, Y.D.; et al. Decellularization of cartilage microparticles: Effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. J. Biomed. Mater. Res. A 2023, 111, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Nemets, E.; Basok, Y.; Grigoriev, A.; Ponomareva, A.; Baranova, N.; Kirillova, A.; Kirsanova, L.; Sevastianov, V. Tissue-Specific Scaffolds from Decellularized Organs and Tissues. In Biomimetics of Extracellular Matrices for Cell and Tissue Engineered Medical Products; Sevastianov, V.I., Basok, Y.B., Eds.; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2023; pp. 36–116. [Google Scholar]
- Zhe, M.; Wu, X.; Yu, P.; Xu, J.; Liu, M.; Yang, G.; Xiang, Z.; Xing, F.; Ritz, U. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering. Materials 2023, 16, 3197. [Google Scholar] [CrossRef] [PubMed]
- Mendibil, U.; Ruiz-Hernandez, R.; Retegi-Carrion, S.; Garcia-Urquia, N.; Olalde-Graells, B.; Abarrategi, A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int. J. Mol. Sci. 2020, 21, 5447. [Google Scholar] [CrossRef] [PubMed]
- McInnes, A.D.; Moser, M.A.J.; Chen, X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J. Funct. Biomater. 2022, 13, 240. [Google Scholar] [CrossRef] [PubMed]
- Barbulescu, G.I.; Bojin, F.M.; Ordodi, V.L.; Goje, I.D.; Barbulescu, A.S.; Paunescu, V. Decellularized Extracellular Matrix Scaffolds for Cardiovascular Tissue Engineering: Current Techniques and Challenges. Int. J. Mol. Sci. 2022, 23, 13040. [Google Scholar] [CrossRef]
- Ribeiro-Silva, J.C.; Nolasco, P.; Krieger, J.E.; Miyakawa, A.A. Dynamic Crosstalk between Vascular Smooth Muscle Cells and the Aged Extracellular Matrix. Int. J. Mol. Sci. 2021, 22, 10175. [Google Scholar] [CrossRef]
- Protzman, N.M.; Mao, Y.; Long, D.; Sivalenka, R.; Gosiewska, A.; Hariri, R.J.; Brigido, S.A. Placental-Derived Biomaterials and Their Application to Wound Healing: A Review. Bioengineering 2023, 10, 829. [Google Scholar] [CrossRef]
- Dubus, M.; Scomazzon, L.; Chevrier, J.; Ledouble, C.; Baldit, A.; Braux, J.; Gindraux, F.; Boulagnon, C.; Audonnet, S.; Colin, M.; et al. Antibacterial and Immunomodulatory Properties of Acellular Wharton’s Jelly Matrix. Biomedicines 2022, 10, 227. [Google Scholar] [CrossRef]
- Dubus, M.; Scomazzon, L.; Chevrier, J.; Montanede, A.; Baldit, A.; Terryn, C.; Quilès, F.; Thomachot-Schneider, C.; Gangloff, S.C.; Bouland, N.; et al. Decellularization of Wharton’s jelly increases its bioactivity and antibacterial properties. Front. Bioeng. Biotechnol 2022, 10, 828424. [Google Scholar] [CrossRef]
- Ramzan, F.; Ekram, S.; Frazier, T.; Salim, A.; Mohiuddin, O.A.; Khan, I. Decellularized Human Umbilical Tissue-Derived Hydrogels Promote Proliferation and Chondrogenic Differentiation of Mesenchymal Stem Cells. Bioengineering 2022, 9, 239. [Google Scholar] [CrossRef] [PubMed]
- Beiki, B.; Zeynali, B.; Seyedjafari, E. Fabrication of a three dimensional spongy scaffold using human Wharton’s jelly derived extra cellular matrix for wound healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Chaudhuri, G.R.; Janani, G.; Agarwala, M.; Ghosh, D.; Nandi, S.K.; Mandal, B.B. Functionalized Silk Vascular Grafts with Decellularized Human Wharton’s Jelly Improves Remodeling via Immunomodulation in Rabbit Jugular Vein. Adv. Healthc. Mater. 2021, 10, e2100750. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Mantay, M.; Brannan, C.; Griffiths, S. Placental Tissues as Biomaterials in Regenerative Medicine. Biomed Res. Int. 2022, 2022, 6751456. [Google Scholar] [CrossRef] [PubMed]
- Jadalannagari, S.; Converse, G.; McFall, C.; Buse, E.; Filla, M.; Villar, M.T.; Artigues, A.; Mellot, A.J.; Wang, J.; Detamore, M.S.; et al. Decellularized Wharton’s Jelly from human umbilical cord as a novel 3D scaffolding material for tissue engineering applications. PLoS ONE 2017, 12, e0172098. [Google Scholar] [CrossRef] [PubMed]
- Basiri, A.; Farokhi, M.; Azami, M.; Ebrahimi-Barough, S.; Mohamadnia, A.; Rashtbar, M.; Hasanzadeh, E.; Mahmoodi, N.; BaghabanEslaminejad, M.; Ai, J. A silk fibroin/decellularized extract of Wharton’s jelly hydrogel intended for cartilage tissue engineering. Prog. Biomater. 2019, 8, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Azarbarz, N.; Khorsandi, L.; Nejaddehbashi, F.; Neisi, N.; Nejad, D.B. Decellularized Wharton’s jelly scaffold enhances differentiation of mesenchymal stem cells to insulin-secreting cells. Tissue Cell 2022, 79, 101938. [Google Scholar] [CrossRef] [PubMed]
- Foltz, K.M.; Neto, A.E.; Francisco, J.C.; Simeoni, R.B.; Miggiolaro, A.F.R.d.S.; do Nascimento, T.G.; Mogharbel, B.F.; de Carvalho, K.A.T.; Faria-Neto, J.R.; de Noronha, L.; et al. Decellularized Wharton Jelly Implants Do Not Trigger Collagen and Cartilaginous Tissue Production in Tracheal Injury in Rabbits. Life 2022, 12, 942. [Google Scholar] [CrossRef]
- Lu, J.-H.; Hsia, K.; Su, C.-K.; Pan, Y.-H.; Ma, H.; Chiou, S.-H.; Lin, C.-H. A Novel Dressing Composed of Adipose Stem Cells and Decellularized Wharton’s Jelly Facilitated Wound Healing and Relieved Lymphedema by Enhancing Angiogenesis and Lymphangiogenesis in a Rat Model. J. Funct. Biomater 2023, 14, 104. [Google Scholar] [CrossRef]
- Silini, A.R.; Ramuta, T.Ž.; Pires, A.S.; Banerjee, A.; Dubus, M.; Gindraux, F.; Kerdjoudj, H.; Maciulatis, J.; Weidinger, A.; Wolbank, S.; et al. Methods and criteria for validating the multimodal functions of perinatal derivatives when used in oncological and antimicrobial applications. Front. Bioeng. Biotechnol. 2022, 10, 958669. [Google Scholar] [CrossRef]
- Kehtari, M.; Beiki, B.; Zeynali, B.; Hosseini, F.S.; Soleimanifar, F.; Kaabi, M.; Soleimani, M.; Enderami, S.E.; Kabiri, M.; Mahboudi, H. Decellularized Wharton’s jelly extracellular matrix as a promising scaffold for promoting hepatic differentiation of human induced pluripotent stem cells. J. Cell. Biochem. 2019, 120, 6683–6697. [Google Scholar] [CrossRef] [PubMed]
- Kočí, Z.; Výborný, K.; Dubišová, J.; Vacková, I.; Jäger, A.; Lunov, O.; Jiráková, K.; Kubinová, Š. Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues. Tissue Eng. Part C Methods 2017, 23, 333–345. [Google Scholar] [CrossRef]
- Basok, Y.B.; Kondratenko, A.A.; Kalyuzhnaya, L.I.; Vorobyov, K.A.; Sevastyanov, V.I. Decellularized umbilical cord stroma in tissue engineering and regenerative medicine: A systematic review. Russ. J. Transplantol. Art. Org. 2023, 25, 82–98. [Google Scholar] [CrossRef]
- Parnell, L.K.S.; Volk, S.W. The Evolution of Animal Models in Wound Healing Research: 1993-2017. Adv. Wound Care 2019, 8, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, M.; Hague, A.; Baguneid, M.; Alonso-Rasgado, T.; Bayat, A. Wound healing and cutaneous scarring models of the human skin. In Skin Tissue Models; Elsevier: Amsterdam, The Netherlands, 2018; pp. 201–221. [Google Scholar] [CrossRef]
- Masson-Meyers, D.S.; Andrade, T.A.M.; Caetano, G.F.; Guimaraes, F.R.; Leite, M.N.; Leite, S.N.; Frade, M.A.C. Experimental models and methods for cutaneous wound healing assessment. Int. J. Exp. Pathol. 2020, 101, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkova, A.V.; Vakhrushev, I.V.; Basok, Y.B.; Grigor’ev, A.M.; Kirsanova, L.A.; Lupatov, A.Y.; Sevastianov, V.I.; Yarygin, K.N. Chondrogeneic Potential of MSC from Different Sources in Spheroid Culture. Bull. Exp. Biol. Med. 2021, 170, 528–536. [Google Scholar] [CrossRef] [PubMed]
- GOST 33215-2014 “Guidelines for Accommodation and Care of Laboratory Animals. Rules for Equipment of Premises and Organization of Procedures”. Available online: https://bioethics.msu.ru/knowledge/standarts (accessed on 25 May 2024).
- GOST 33216-2014 “Guidelines for Accommodation and Care of Laboratory Animals. Rules for the Accommodation and Care of Laboratory Rodents and Rabbits”. Available online: https://bioethics.msu.ru/knowledge/standarts (accessed on 25 May 2024).
- Biological Evaluation of Medical Devices. Part 2: Animal Welfare Requirements. International Standard ISO 10993-2:2022, ISO 10993-2:2022. Available online: https://www.iso.org/standard/78866.html (accessed on 25 May 2024).
- Bullard, J.D.; Lei, J.; Lim, J.J.; Massee, M.; Fallon, A.M.; Koob, T.J. Evaluation of dehydrated human umbilical cord biological properties for wound care and soft tissue healing. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chiu, G.; Lipe, B.; Hopkins, R.A.; Lillis, J.; Ashton, J.M.; Paul, S.; Aljitawi, O.S. Decellularized Wharton jelly matrix: A biomimetic scaffold for ex vivo hematopoietic stem cell culture. Blood Adv. 2019, 3, 1011–1026. [Google Scholar] [CrossRef]
- Penolazzi, L.; Pozzobon, M.; Bergamin, L.S.; D’Agostino, S.; Francescato, R.; Bonaccorsi, G.; De Bonis, P.; Cavallo, M.; Lambertini, E.; Piva, R. Extracellular Matrix from Decellularized Wharton’s Jelly Improves the Behavior of Cells from Degenerated Intervertebral Disc. Front. Bioeng. Biotechnol. 2020, 8, 262. [Google Scholar] [CrossRef]
- Yuan, Z.; Cao, F.; Gao, C.; Yang, Z.; Guo, Q.; Wang, Y. Decellularized Human Umbilical Cord Wharton Jelly Scaffold Improves Tendon Regeneration in a Rabbit Rotator Cuff Tendon Defect Model. Am. J. Sports Med. 2022, 50, 371–383. [Google Scholar] [CrossRef]
- Converse, G.L.; Li, D.; Buse, E.E.; Hopkins, R.A.; Aljitawi, O.S. Wharton’s Jelly Matrix Decellularization for Tissue Engineering Applications. Methods Mol. Biol. 2017, 1577, 25–33. [Google Scholar] [CrossRef]
- Výborný, K.; Vallová, J.; Kočí, Z.; Kekulová, K.; Jiráková, K.; Jendelová, P.; Hodan, J.; Kubinová, Š. Genipin and EDC crosslinking of extracellular matrix hydrogel derived from human umbilical cord for neural tissue repair. Sci. Rep. 2019, 9, 10674. [Google Scholar] [CrossRef] [PubMed]
- Talebi, M.; NozadCharoudeh, H.; Movassaghpour Akbari, A.A.; Baradaran, B.; Kazemi, T. Acellular Wharton’s Jelly, Potentials in T-Cell Subtypes Differentiation, Activation and Proliferation. Adv. Pharm. Bull. 2020, 10, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.H.; Chang, J.; Kyriakides, T.R. Inadequate Processing of Decellularized Dermal Matrix Reduces Cell Viability in Vitro and Increases Apoptosis and Acute Inflammation in Vivo. Biores. Open Access 2016, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Crapo, P.M.; Gilbert, T.W.; Badylak, S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011, 32, 3233–3243. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.J.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Bružauskaitė, I.; Bironaitė, D.; Bagdonas, E.; Bernotienė, E. Scaffolds and cells for tissue regeneration: Different scaffold pore sizes-different cell effects. Cytotechnology 2016, 68, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, N.S.; Bond, A.R.; Bruno, V.D.; Joseph, J.; Johnson, J.L.; Suleiman, M.S.; George, S.J.; Ascione, R. Effective decellularisation of human saphenous veins for biocompatible arterial tissue engineering applications: Bench optimisation and feasibility in vivo testing. J. Tissue Eng. 2021, 12, 2041731420987529. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Vora, S.D.; Asodiya, F.A.; Kumar, N.; Gangwar, A.K. Fourier transform infrared spectroscopy of the animal tissues. In Real Perspective of Fourier Transforms and Current Developments in Superconductivity; Arcos, J.M.V., Ed.; IntechOpen Ltd.: London, UK, 2021. [Google Scholar] [CrossRef]
- Nashchekina, Y.; Nikonov, P.; Mikhailova, N.; Nashchekin, A. Collagen Scaffolds Treated by Hydrogen Peroxide for Cell Cultivation. Polymers 2021, 13, 4134. [Google Scholar] [CrossRef]
- Wang, C.; Li, G.; Cui, K.; Chai, Z.; Huang, Z.; Liu, Y.; Chen, S.; Huang, H.; Zhang, K.; Han, Z.; et al. Sulfated glycosaminoglycans in decellularized placenta matrix as critical regulators for cutaneous wound healing. Acta Biomater. 2021, 122, 199–210. [Google Scholar] [CrossRef]
- Tracy, L.E.; Minasian, R.A.; Caterson, E.J. Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care 2016, 5, 119–136. [Google Scholar] [CrossRef]
- Boudko, S.P.; Danylevych, N.; Hudson, B.G.; Pedchenko, V.K. Basement membrane collagen IV: Isolation of functional domains. Methods Cell Biol. 2018, 143, 171–185. [Google Scholar] [CrossRef]
- Gimeno-LLuch, I.; Benito-Jardón, M.; Guerrero-Barberà, G.; Burday, N.; Costell, M. The Role of the Fibronectin Synergy Site for Skin Wound Healing. Cells 2022, 11, 2100. [Google Scholar] [CrossRef] [PubMed]
- Lo, D.D.; Zimmermann, A.S.; Nauta, A.; Longaker, M.T.; Lorenz, H.P. Scarless fetal skin wound healing update. Birth Defects Res. C Embryo Today 2012, 96, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Le, M.; Naridze, R.; Morrison, J.; Biggs, L.C.; Rhea, L.; Schutte, B.C.; Kaartinen, V.; Dunnwald, M. Transforming growth factor Beta 3 is required for excisional wound repair in vivo. PLoS ONE 2012, 7, e48040. [Google Scholar] [CrossRef] [PubMed]
- Rother, S.; Ruiz-Gómez, G.; Balamurugan, K.; Koehler, L.; Fiebig, K.M.; Galiazzo, V.D.; Hempel, U.; Moeller, S.; Schnabelrauch, M.; Waltenberger, J.; et al. Hyaluronan/Collagen Hydrogels with Sulfated Glycosaminoglycans Maintain VEGF165 Activity and Fine-Tune Endothelial Cell Response. ACS Appl. Biol. Mater. 2021, 4, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Kalyuzhnaya, L.I.; Sokolova, M.O.; Chernov, V.E.; Zemlyanoy, D.A.; Chebotarev, S.V.; Chalisova, N.I.; Kondratenko, A.A.; Grechanaya, Y.S.; Edomenko, N.V.; Alexander-Sinclair, E.I. The effect of the cell-free matrix of the human umbilical cord on the growth dynamics and viability of cultured human and animal cells ex vivo. Genes Cells 2021, 16, 72–79. [Google Scholar] [CrossRef]
- Monfared-Hajishirkiaee, R.; Ehtesabi, H.; Najafinobar, S.; Masoumian, Z. Multifunctional chitosan/carbon dots/sodium alginate/zinc oxide double-layer sponge hydrogel with high antibacterial, mechanical and hemostatic properties. OpenNano 2023, 12, 100162. [Google Scholar] [CrossRef]
- Bhoopathy, J.; VedakumariSathyaraj, W.; Yesudhason, B.V.; Rajendran, S.; Dharmalingam, S.; Seetharaman, J.; Muthu, R.; Murugesan, R.; Raghunandhakumar, S.; Anandasadagopan, S.K. Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds—Preparation, characterisation, and evaluation. Artif. Cells Nanomed. Biotechnol. 2024, 52, 35–45. [Google Scholar] [CrossRef]
- Delgado, L.M.; Bayon, Y.; Pandit, A.; Zeugolis, D.I. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Eng. Part B Rev. 2015, 21, 298–313. [Google Scholar] [CrossRef]
- Khalid, K.A.; Nawi, A.F.M.; Zulkifli, N.; Barkat, M.A.; Hadi, H. Aging and Wound Healing of the Skin: A Review of Clinical and Pathophysiological Hallmarks. Life 2022, 12, 2142. [Google Scholar] [CrossRef] [PubMed]
- Dziki, J.L.; Huleihel, L.; Scarritt, M.E.; Badylak, S.F. Extracellular Matrix Bioscaffolds as Immunomodulatory Biomaterials. Tissue Eng. Part A 2017, 23, 1152–1159. [Google Scholar] [CrossRef] [PubMed]
- Galili, U. Acceleration of wound healing by α-gal nanoparticles interacting with the natural anti-Gal antibody. J. Immunol. Res. 2015, 2015, 589648. [Google Scholar] [CrossRef] [PubMed]
- Kesting, M.R.; Wolff, K.D.; Hohlweg-Majert, B.; Steinstraesser, L. The role of allogenic amniotic membrane in burn treatment. J. Burn Care Res. 2008, 29, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Grada, A.; Mervis, J.; Falanga, V. Research Techniques Made Simple: Animal Models of Wound Healing. J. Invest. Dermatol. 2018, 138, 2095–2105.e1. [Google Scholar] [CrossRef]
- Kurian, A.G.; Singh, R.K.; Sagar, V.; Lee, J.H.; Kim, H.W. Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. Nanomicro Lett. 2024, 16, 110. [Google Scholar] [CrossRef]
Infrared Wavenumber Spectra (cm−1) | Tentative Assignment | Main Associated Compound | |||
---|---|---|---|---|---|
WJ | UC-Scaffold | Incubation in | |||
Collagenase | Hyaluronidase | ||||
3278.80 | 3287.67 | 3283.64 | 3271.40 | Amide A | Hydrogen bonds, –CH3, –CH2 |
2931.74 | 2929.18 | 2916.52 | 2926.72 | Amide B | |
1633.06 | 1632.84 | 1633.66 | 1631.62 | Amide I | Collagen, –C=O |
1538.20 | 1538.96 | 1539.84 | 1537.80 | Amide II | Collagen, –NH2 |
1453.78 | 1453.02 | 1462.34 | 1454.18 | - | –CH3 |
1337.09 | 1336.75 | 1337.93 | 1337.93 | Amide III | Collagen |
1234.95 | 1235.51 | 1237.99 | 1235.95 | Amide III | Collagen, GAGs |
1203.86 | 1203.06 | - | 1203.32 | Amide III | Collagen |
1158.94 | 1160.91 | 1162.53 | 1160.49 | - | Collagen (carbohydrate moiety), GAGs |
1077.12 | 1079.42 | 1078.91 | 1078.91 | - | Collagen, sulfated GAGs |
1030.70 | 1031.42 | 1034.04 | - | - | Collagen, GAGs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondratenko, A.A.; Tovpeko, D.V.; Volov, D.A.; Kalyuzhnaya, L.I.; Chernov, V.E.; Glushakov, R.I.; Sirotkina, M.Y.; Zemlyanoy, D.A.; Bildyug, N.B.; Chebotarev, S.V.; et al. Decellularized Umbilical Cord as a Scaffold to Support Healing of Full-Thickness Wounds. Biomimetics 2024, 9, 405. https://doi.org/10.3390/biomimetics9070405
Kondratenko AA, Tovpeko DV, Volov DA, Kalyuzhnaya LI, Chernov VE, Glushakov RI, Sirotkina MY, Zemlyanoy DA, Bildyug NB, Chebotarev SV, et al. Decellularized Umbilical Cord as a Scaffold to Support Healing of Full-Thickness Wounds. Biomimetics. 2024; 9(7):405. https://doi.org/10.3390/biomimetics9070405
Chicago/Turabian StyleKondratenko, Albina A., Dmitry V. Tovpeko, Daniil A. Volov, Lidia I. Kalyuzhnaya, Vladimir E. Chernov, Ruslan I. Glushakov, Maria Y. Sirotkina, Dmitry A. Zemlyanoy, Natalya B. Bildyug, Sergey V. Chebotarev, and et al. 2024. "Decellularized Umbilical Cord as a Scaffold to Support Healing of Full-Thickness Wounds" Biomimetics 9, no. 7: 405. https://doi.org/10.3390/biomimetics9070405
APA StyleKondratenko, A. A., Tovpeko, D. V., Volov, D. A., Kalyuzhnaya, L. I., Chernov, V. E., Glushakov, R. I., Sirotkina, M. Y., Zemlyanoy, D. A., Bildyug, N. B., Chebotarev, S. V., Alexander-Sinclair, E. I., Nashchekin, A. V., Belova, A. D., Grigoriev, A. M., Kirsanova, L. A., Basok, Y. B., & Sevastianov, V. I. (2024). Decellularized Umbilical Cord as a Scaffold to Support Healing of Full-Thickness Wounds. Biomimetics, 9(7), 405. https://doi.org/10.3390/biomimetics9070405