Computation Implemented by the Interaction of Chemical Reaction, Clustering, and De-Clustering of Molecules
Abstract
:1. Introduction
2. Chemical Reaction Dependent on Cluster Size
2.1. General Framework
- An initial condition, consisting of the partition of molecules and the state of each molecule (active or inactive), is set.
- If two randomly chosen clusters satisfy the clustering condition, they combine into one cluster; otherwise, nothing occurs.
- If a randomly chosen cluster satisfies the de-clustering condition, it divides into two clusters; otherwise, nothing occurs.
- Each molecule is activated or inactivated if it satisfies the reaction condition.
- The partition is updated based on procedure instructions 3–4 above, which constitutes one time step.
2.2. Spike Oscillation Derived by Enzyme
2.3. Memory Effect or after Effect of Chemical Reaction
3. Logic Gate Implemented by the Interaction of Activation and Clustering
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Narayan, S.; Muldoon, J.; Finn, M.G.; Folkin, V.V.; Kolb, H.C.; Sharpless, K.B. “On Water”: Unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. 2005, 44, 3275–3279, 3339–3343. [Google Scholar] [CrossRef] [PubMed]
- Klijin, J.E.; Engberts, B.F.N. Fast reaction ‘on water’. Nature 2005, 435, 746–747. [Google Scholar] [CrossRef] [PubMed]
- Kitanosono, T.; Kobayashi, S. Reactions in water involving the “on-water” mechanism. Chem. Eur. J. 2020, 26, 9408–9429. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, Y.; Sugita, Y. Use of single-molecule time-series data for refining conformational dynamics in molecular simulations. Curr. Opin. Struct. Biol. 2020, 61, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Bacic, L.; Sabantsev, A.; Dendl, S. Recent advances in single-molecule fluorescence microscopy render structural biology dynamic. Curr. Opin. Struct. Biol. 2020, 65, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Strogatz, S.H. Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Goldbeter, A. Dissipative structures in biological systems: Bistability, oscillations, spatial patterns and waves. Phil. Trans. R. Soc. 2018, A376, 20170376. [Google Scholar] [CrossRef]
- Hayashi, F.; Suzuki, H.; Iwase, R.; Uzumaki, Y.; Miyake, A.; Shen, J.-R.; Imada, K.; Furukawa, Y.; Yonekura, K.; Namba, K.; et al. ATP-induced hexameric ring structure of the cyanobacterial circadian clock protein KaiC. Genes Cells 2003, 8, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, H.; Kondo, T.; Iwasaki, H. Circadian formation of clock protein complexes by KaiA, KaiB, KaiC, and SasA in cyanobacteria. J. Biol. Chem. 2003, 278, 2388–2395. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, H.; Nishiwaki, T.; Kitayama, Y.; Nakajima, M.; Kondo, T. KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria. Proc. Natl. Acad. Sci. USA 2002, 99, 15788–15793. [Google Scholar] [CrossRef]
- Nakajima, M.; Imai, K.; Ito, H.; Nishiwaki, T.; Murayama, Y.; Iwasaki, H.; Oyama, T.; Kondo, T. Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro. Science 2005, 308, 414–415. [Google Scholar] [CrossRef]
- Rust, M.; Markson, J.S.; Lane, W.S.; Fisher, D.S.; O’Shea, E.K. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 2007, 318, 809–812. [Google Scholar] [CrossRef] [PubMed]
- Pattanayek, R.; Mori, T.; Xu, Y.; Pattanayek, S.; Johnson, C.H.; Egli, M. Structures of KaiC Circadian Clock Mutant Proteins: A New Phosphorylation Site at T426 and Mechanisms of Kinase, ATPase and Phosphatase. PLoS ONE 2009, 4, e7529. [Google Scholar] [CrossRef] [PubMed]
- Emberly, E.; Wingreen, N.S. Hourglass model for a protein-based circadian oscillator. Phys. Rev. Lett. 2006, 96, 038303. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Ito, H.; Kondo, T. In vitro regulation of circadian phosphorylation rhythm of cyanobacterial clock protein KaiC by KaiA and KaiB. FEBS Lett. 2010, 584, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Kageyama, H.; Mutsuda, M.; Nakajima, M.; Oyama, T.; Kondo, T. Autonomous synchronization of the circadian KaiC phosphorylation rhythm. Nat. Struct. Mol. Biol. 2007, 14, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Murayama, Y.; Kori, H.; Oshima, C.; Kondo, T.; Iwasaki, H.; Ito, H. Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation. Proc. Natl. Acad. Sci. USA 2017, 114, 5641–5646. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, N.; Ito, H.; Tokuda, I.T.; Iwasaki, H. Damped circadian oscillation in the absence of KaiA in Synechococcus. Nat. Commun. 2020, 11, 2242. [Google Scholar] [CrossRef] [PubMed]
- Mutoh, R.; Iwata, K.; Iida, T.; Ishiura, M.; Onai, K. Rhythmic adenosine triphosphate release from the cyanobacterial circadian clock protein KaiC revealed by real-time monitoring of bioluminescence using firefly luciferase. Genes Cells 2021, 26, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Furuike, Y.; Mukaiyama, A.; Ouyang, D.; Ito-Miwa, K.; Simon, D.; Yamashita, E.; Kondo, T.; Akiyama, S. Elucidation of master allostery essential for circadian clock oscillation in cyanobacteria. Sci. Adv. 2022, 8, eabm8990. [Google Scholar] [CrossRef]
- Furuike, Y.; Mukaiyama, A.; Koda, S.; Simon, D.; Ouyang, D.; Ito-Miwa, K.; Saito, S.; Yamashita, E.; Nishiwaki-Ohkawa, T.; Terauchi, K.; et al. Regulation mechanisms of the dual ATPase in KaiC. Proc. Natl. Acad. Sci. USA 2020, 119, e2119627119. [Google Scholar] [CrossRef]
- Mukaiyama, A.; Furuike, Y.; Yamashita, E.; Akiyaam, S. Highly sensitive tryptophan fluorescence probe for detecting rhythmic conformational changes of KaiC in the cyanobacterial circadian clock system. Biochem. J. 2022, 479, 1505–1515. [Google Scholar] [CrossRef] [PubMed]
- Sasai, M. Mechanism of autonomous synchronization of the circadian KaiABC rhythm. Sci. Rep. 2021, 11, 4713. [Google Scholar] [CrossRef] [PubMed]
- Sasai, M. Role of the reaction-structure coupling in temperature compensation of the KaiABC circadian rhythm. PloS Comput. Biol. 2022, 18, e1010494. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Chavan, A.G.; LiWanga, A.; Goldena, S.S. Synchronization of the circadian clock to the environment tracked in real time. Proc. Natl. Acad. Sci. USA 2023, 120, e2221453120. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Elowitz, M.B. Programmable protein circuit design. Cell 2021, 184, 2284–2301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Cao, Y.; Ouyang, Q.; Tu, Y. The energy cost and optimal design for synchronization of coupled molecular oscillators. Nature Phys. 2020, 16, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, S.; Aono, M.; Gunji, Y.P. Robust and emergent Physarum-computing. BioSystems 2004, 73, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Whiting, J.; de Lacy Costello, B.P.J.; Adamatzky, A. Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems 2014, 124, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Adamatzky, A.; Jones, J.; Mayne, R.; Tsuda, S.; Whiting, J. Logical gates and circuits implemented in slime mould. In Advances in Physarum Machines; Adamatzky, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 37–74. [Google Scholar]
- Gunji, Y.P.; Nishiyama, Y.; Adamatzky, A. Robust soldier crab ball gate. Complex Syst. 2011, 20, 94–104. [Google Scholar]
- Katz, E.; Privman, V. Enzyme-based logic systems for information processing. Chem. Soc. Rev. 2010, 39, 1835–1857. [Google Scholar] [CrossRef]
- Katz, E. Enzyme-Based Computing Systems; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Chandra, F.A.; Buzi, G.; Doyle, J.C. Glycolytic oscillations and limits on robust efficiency. Science 2011, 333, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Madsen, M.F.; Danø, S.; Sørensen, P.G. On the mechanisms of glycolytic oscillations in yeast. FEBS J. 2005, 272, 2648–2660. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361. [Google Scholar] [CrossRef]
- Gillespie, D.T. Approximated accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 2001, 115, 1716–1733. [Google Scholar] [CrossRef]
- Gillespie, D.T. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 2007, 58, 35–55. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Fujiwara, Y.; Takabayashi, J. Artificial life applications of a class of P systems: Abstract rewriting systems on multisets. In Multiset Processing; Claude, C.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2235, pp. 299–346. [Google Scholar]
- Banarte, J.-P.; Fradet, P.; Radenac, Y. Generalised multisets for chemical programming. Math. Struct. Comp. Sci. 2006, 16, 557–580. [Google Scholar]
- Davey, B.A.; Priestley, H.A. Introduction to Lattices and Order; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Moon, T.A.; Lou, C.; Tamsir, A.; Stanton, B.C.; Voigt, C.A. Genetic programs constructed from layered logic gates in single cells. Nature 2012, 491, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Wang, J.; Wang, E.; Dong, S. Propelling DNA Computing with Materials’ Power: Recent Advancements in Innovative DNA Logic Computing Systems and Smart Bio-Applications. Adv. Sci. 2020, 7, 2001766. [Google Scholar] [CrossRef]
- Miyamoto, T.; Razavi, S.; DeRose, R.; Inoue, T. Synthesizing Biomolecule-Based Boolean Logic Gates. ACS Synth. Biol. 2013, 2, 72–82. [Google Scholar] [CrossRef]
- Erbas-Cakmak, S.; Kolemen, S.; Sedgwick, A.C.; Gunnlaugsson, T.; James, T.D.; Yoon, J.; Akkaya, E.U. Molecular logic gates: The past, present and future. Chem. Soc. Rev. 2018, 47, 2228–2248. [Google Scholar] [CrossRef]
- Helou, C.E.; Buskohl, P.R.; Tabor, C.E.; Harne, R.L. Digital logic gates in soft, conductive mechanical metamaterials. Nature Commun. 2021, 12, 1633. [Google Scholar] [CrossRef] [PubMed]
- Progogine, I.; Nicolis, G. Self-Organization in Non-Equilibrium Systemsm, from Dissipaticve Structures to Order through Fluctuations; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Matsuno, K. Temporal cohesion as a candidate for negentropy in biological thermodynamics. BioSystems 2023, 230, 104957. [Google Scholar] [CrossRef] [PubMed]
- Igamberdiev, A.U. Biological thermodynamics: Ervin Bauer and the unification of life science and physics. BioSystems 2024, 235, 105089. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Fagerholm, E.D.; Zarghami, T.S.; Parr, T.; Hipólito, I.; Magrou, L.; Razi, A. Parcels and particles: Markov blankets in the brain. Netw. Neurosci. 2021, 5, 211–251. [Google Scholar] [CrossRef] [PubMed]
- Gunji, Y.P.; Uragami, D. Breaking of the trade-off principle between computational universality and efficiency by asynchronous updating. Entropy 2020, 22, 1049. [Google Scholar] [CrossRef] [PubMed]
- Gunji, Y.P.; Uragami, D. Computational power of asynchronously tuned automata enhancing the unfolded edge of chaos. Entropy 2021, 23, 1376. [Google Scholar] [CrossRef]
- Conrad, M. Adaptability, The Significance of Variability from Molecule to Ecosystem; Plenum Press: New York, NY, USA, 1983. [Google Scholar]
- Wolfram, S. Universality and complexity in cellular automata. Physica D 1984, 10, 1–35. [Google Scholar] [CrossRef]
- Wolfram, S. A New Kind of Science. 2002. Available online: https://www.wolframscience.com (accessed on 23 May 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunji, Y.P.; Adamatzky, A. Computation Implemented by the Interaction of Chemical Reaction, Clustering, and De-Clustering of Molecules. Biomimetics 2024, 9, 432. https://doi.org/10.3390/biomimetics9070432
Gunji YP, Adamatzky A. Computation Implemented by the Interaction of Chemical Reaction, Clustering, and De-Clustering of Molecules. Biomimetics. 2024; 9(7):432. https://doi.org/10.3390/biomimetics9070432
Chicago/Turabian StyleGunji, Yukio Pegio, and Andrew Adamatzky. 2024. "Computation Implemented by the Interaction of Chemical Reaction, Clustering, and De-Clustering of Molecules" Biomimetics 9, no. 7: 432. https://doi.org/10.3390/biomimetics9070432
APA StyleGunji, Y. P., & Adamatzky, A. (2024). Computation Implemented by the Interaction of Chemical Reaction, Clustering, and De-Clustering of Molecules. Biomimetics, 9(7), 432. https://doi.org/10.3390/biomimetics9070432