Omega-3 Index and Anti-Arrhythmic Potential of Omega-3 PUFAs
Abstract
:1. Introduction
2. Most Recent Data on the Omega-3 Index (O3I)
3. Mechanisms and Factors Involved in the Development of VF and AF
4. Potential Targets of Omega-3 PUFAs Relevant to Arrhythmias Prevention
5. Anti-arrhythmic Efficacy of the Omega-3 PUFAs
5.1. Omega-3 PUFAs and Prevention of AF and POAF
5.2. Omega-3 PUFAs and Prevention of Malignant Ventricular Arrhythmias
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Von Schacky, C.; Kemper, M.; Haslbauer, R.; Halle, M. Low Omega-3 Index in 106 German elite winter endurance athletes: A pilot study. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Simon, C.; Morio, B.; Dallongeville, J.; Ruidavets, J.B.; Haas, B.; Laillet, B.; Cottel, D.; Ferrières, J.; Arveiler, D. Omega-3 index levels and associated factors in a middle-aged French population: The MONA LISA-NUT Study. Eur. J. Clin. Nutr. 2015, 69, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.J.; Veysey, M.; Lucock, M.; Niblett, S.; King, K.; MacDonald-Wicks, L.; Garg, M.L. Association between omega-3 index and blood lipids in older Australians. J. Nutr. Biochem. 2016, 27, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Fougère, B.; de Souto Barreto, P.; Goisser, S.; Soriano, G.; Guyonnet, S.; Andrieu, S.; Vellas, B.; MAPT Study Group. Red blood cell membrane omega-3 fatty acid levels and physical performance: Cross-sectional data from the MAPT study. Clin. Nutr. 2017, in press. [Google Scholar]
- Xiao, C.W.; Wood, C.M.; Swist, E.; Nagasaka, R.; Sarafin, K.; Gagnon, C.; Fernandez, L.; Faucher, S.; Wu, H.X.; Kenney, L.; et al. Cardio-Metabolic Disease Risks and Their Associations with Circulating 25-Hydroxyvitamin D and Omega-3 Levels in South Asian and White Canadians. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, T.A.; Ambrosini, G.L.; Mori, T.A.; Beilin, L.J.; Oddy, W.H. Omega-3 Index correlates with healthier food consumption in adolescents and with reduced cardiovascular disease risk factors in adolescent boys. Lipids 2011, 46, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Gellert, S.; Schuchardt, J.P.; Hahn, A. Low long chain omega-3 fatty acid status in middle-aged women. Prostaglandins Leukot. Essent. Fat. Acids 2017, 117, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.M.; Sanders, T.A.; Kendall, A.C.; Nicolaou, A.; Gray, R.; Al-Khatib, H.; Hall, W.L. A comparison of heart rate variability, n-3 PUFA status and lipid mediator profile in age- and BMI-matched middle-aged vegans and omnivores. Br. J. Nutr. 2017, 117, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, N., Jr. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef] [PubMed]
- Parletta, N.; Zarnowiecki, D.; Cho, J.; Wilson, A.; Procter, N.; Gordon, A.; Bogomolova, S.; O’Dea, K.; Strachan, J.; Ballestrin, M.; et al. People with schizophrenia and depression have a low omega-3 index. Prostaglandins Leukot. Essent. Fat. Acids 2016, 110, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Allaire, J.; Harris, W.S.; Vors, C.; Charest, A.; Marin, J.; Jackson, K.H.; Tchernof, A.; Couture, P.; Lamarche, B. Supplementation with high-dose docosahexaenoic acid increases the omega-3 Index more than high-dose eicosapentaenoic acid. Prostaglandins Leukot. Essent. Fat. Acids 2017, 120, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Coates, A.M.; Buckley, J.D.; Berry, N.M.; Burres, L.; Beltrame, J.; Howe, P.R.; Schrader, G. There is No Association between the Omega-3 Index and Depressive Symptoms in Patients With Heart Disease Who Are Low Fish Consumers. Heart Lung Circ. 2017, 26, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Masson, S.; Barlera, S.; Milani, V.; Pileggi, S.; Franzosi, M.G.; Marchioli, R.; Tognoni, G.; Tavazzi, L.; Latini, R.; et al. Red blood cell oleic acid levels reflect olive oil intake while omega-3 levels reflect fish intake and the use of omega-3 acid ethyl esters: The Gruppo Italiano per lo Studio della Sopravvivenza nell‘Infarto Miocardico-Heart Failure trial. Nutr. Res. 2016, 36, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Finzi, A.A.; Latini, R.; Barlera, S.; Rossi, M.G.; Ruggeri, A.; Mezzani, A.; Favero, C.; Franzosi, M.G.; Serra, D.; Lucci, D.; et al. Effects of n-3 polyunsaturated fatty acids on malignant ventricular arrhythmias in patients with chronic heart failure and implantable cardioverter-defibrillators: A substudy of the Gruppo Italiano per lo Studio della Sopravvivenza nell‘Insufficienza Cardiaca (GISSI-HF) trial. Am. Heart J. 2011, 161, 338–343. [Google Scholar] [PubMed]
- Wilhelm, M.; Tobias, R.; Asskali, F.; Kraehner, R.; Kuly, S.; Klinghammer, L.; Boehles, H.; Daniel, W.G. Red blood cell omega-3 fatty acids and the risk of ventricular arrhythmias in patients with heart failure. Am. Heart J. 2008, 155, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Viviani Anselmi, C.; Ferreri, C.; Novelli, V.; Roncarati, R.; Bronzini, R.; Marchese, G.; Somalvico, F.; Condorelli, G.; Montenero, A.S.; Puca, A.A. Fatty acid percentage in erythrocyte membranes of atrial flutter/fibrillation patients and controls. J. Interv. Card. Electrophysiol. 2010, 27, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Aarsetøy, H.; Pönitz, V.; Nilsen, O.B.; Grundt, H.; Harris, W.S.; Nilsen, D.W. Low levels of cellular omega-3 increase the risk of ventricular fibrillation during the acute ischaemic phase of a myocardial infarction. Resuscitation 2008, 78, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Aarsetoey, H.; Aarsetoey, R.; Lindner, T.; Staines, H.; Harris, W.S.; Nilsen, D.W. Low levels of the omega-3 index are associated with sudden cardiac arrest and remain stable in survivors in the subacute phase. Lipids 2011, 46, 151–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salisbury, A.C.; Harris, W.S.; Amin, A.P.; Reid, K.J.; O’Keefe, J.H., Jr.; Spertus, J.A. Relation between red blood cell omega-3 fatty acid index and bleeding during acute myocardial infarction. Am. J. Cardiol. 2012, 109, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Bersch-Ferreira, Â.C.; Sampaio, G.R.; Gehringer, M.O.; Ross-Fernandes, M.B.; Kovacs, C.; Alves, R.; Pereira, J.L.; Magnoni, C.D.; Weber, B.; Rogero, M.M. Association between polyunsaturated fatty acids and inflammatory markers in patients in secondary prevention of cardiovascular disease. Nutrition 2017, 37, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Bačová, B.; Seč, P.; Certik, M.; Tribulova, N. Intake of n-3 Polyunsaturated Fatty Acids Increases Omega-3 Index in Aged Male and Female Spontaneously Hypertensive Rats. ISRN Nutr. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mitasíková, M.; Smidová, S.; Macsaliová, A.; Knezl, V.; Dlugosová, K.; Okruhlicová, L.; Weismann, P.; Tribulová, N. Aged male and female spontaneously hypertensive rats benefit from n-3 polyunsaturated fatty acids supplementation. Physiol. Res. 2008, 57, 39–48. [Google Scholar]
- Radosinska, J.; Bacova, B.; Knezl, V.; Benova, T.; Zurmanova, J.; Soukup, T.; Arnostova, P.; Slezak, J.; Gonçalvesova, E.; Tribulova, N. Dietary omega-3 fatty acids attenuate myocardial arrhythmogenic factors and propensity of the heart to lethal arrhythmias in a rodent model of human essential hypertension. J. Hypertens. 2013, 31, 1876–1885. [Google Scholar] [CrossRef] [PubMed]
- Alberte, C.; Zipes, D.P. Use of nonantiarrhythmic drugs for prevention of sudden cardiac death. J. Cardiovasc. Electrophysiol. 2003, 14, 87–95. [Google Scholar] [CrossRef]
- Farré, J.; Wellens, H.J. Philippe Coumel: A founding father of modern arrhythmology. Europace 2004, 6, 464–465. [Google Scholar] [CrossRef] [PubMed]
- Tribulova, N.; Szeiffova Bacova, B.; Benova, T.; Viczenczova, C. Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J. Electrocardiol. 2015, 48, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Tribulova, N.; Egan Benova, T.; Szeiffova Bacova, B.; Viczenczova, C.; Barancik, M. New aspects of pathogenesis of atrial fibrillation: Remodelling of intercalated discs. J. Physiol. Pharmacol. 2015, 66, 625–634. [Google Scholar] [PubMed]
- Tribulova, N.; Seki, S.; Radosinska, J.; Kaplan, P.; Babusikova, E.; Knezl, V.; Mochizuki, S. Myocardial Ca2+ handling and cell-to-cell coupling, key factors in prevention of sudden cardiac death. Can. J. Physiol. Pharmacol. 2009, 87, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Tribulova, N.; Knezl, V.; Shainberg, A.; Seki, S.; Soukup, T. Thyroid hormones and cardiac arrhythmias. Vascul. Pharmacol. 2010, 52, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Landstrom, A.P.; Dobrev, D.; Wehrens, X.H.T. Calcium Signaling and Cardiac Arrhythmias. Circ. Res. 2017, 120, 1969–1993. [Google Scholar] [CrossRef] [PubMed]
- Zipes, D.P. Antiarrhythmic therapy in 2014: Contemporary approaches to treating arrhythmias. Nat. Rev. Cardiol. 2014, 12, 68–69. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, B.F. Cardiac arrhythmias: What do we need to know about basic mechanisms? J. Cardiovasc. Electrophysiol. 1999, 10, 414–416. [Google Scholar] [PubMed]
- Manoach, M.; Tribulova, N.; Vogelezang, D.; Thomas, S.; Podzuweit, T. Transient ventricular fibrillation and myosin heavy chain isoform profile. J. Cell. Mol. Med. 2007, 11, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Heijman, J.; Voigt, N.; Nattel, S.; Dobrev, D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ. Res. 2014, 114, 1483–1499. [Google Scholar] [CrossRef] [PubMed]
- Dhein, S. Gap junction channels in the cardiovascular system: Pharmacological and physiological modulation. Trends Pharmacol. Sci. 1998, 19, 229–241. [Google Scholar] [CrossRef]
- Gutstein, D.E.; Morley, G.E.; Tamaddon, H.; Vaidya, D.; Schneider, M.D.; Chen, J.; Chien, K.R.; Stuhlmann, H.; Fishman, G.I. Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ. Res. 2001, 88, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Gutstein, D.E. The cardiac gap junction: A potential therapeutic target in the treatment of heart disease. Mt. Sinai J. Med. 2002, 69, 421–424. [Google Scholar] [PubMed]
- Severs, N.J. Gap junction remodelling and cardiac arrhythmogenesis: Cause or coincidence? J. Cell. Mol. Med. 2001, 5, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Hagendorff, A.; Schumacher, B.; Kirchhoff, S.; Lüderitz, B.; Willecke, K. Conduction disturbances and increased atrial vulnerability in connexin40-deficient mice analyzed by transesophageal stimulation. Circulation 1999, 99, 1508–1515. [Google Scholar] [CrossRef] [PubMed]
- Lerner, D.L.; Yamada, K.A.; Schuessler, R.B.; Saffitz, J.E. Accelerated onset and increased incidence of ventricular arrhythmias induced by ischemia in Cx43-deficient mice. Circulation 2000, 101, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Lin, H.; Xiao, J.; Lu, Y.; Luo, X.; Li, B.; Zhang, Y.; Xu, C.; Bai, Y.; Wang, H.; et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 2007, 13, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Y.; Shan, H.; Pan, Z.; Li, X.; Li, B.; Xu, C.; Zhang, B.; Zhang, F.; Dong, D.; et al. MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: A new mechanism for ischaemic cardioprotection. Cardiovasc. Res. 2009, 84, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Slagsvold, K.H.; Johnsen, A.B.; Rognmo, O.; Høydal, M.A.; Wisløff, U.; Wahba, A. Mitochondrial respiration and microRNA expression in right and left atrium of patients with atrial fibrillation. Physiol. Genom. 2014, 46, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Akar, F.G.; O’Rourke, B. Mitochondria are sources of metabolic sink and arrhythmias. Pharmacol. Ther. 2011, 131, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Akar, F.G. Mitochondrial targets for arrhythmia suppression: Is there a role for pharmacological intervention? J. Interv. Card. Electrophysiol. 2013, 37, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Gourraud, J.B.; Andrade, J.G.; Macle, L.; Mondésert, B. Pharmacolo-gical Tests in Atrial Fibrillation Ablation. Arrhythm. Electrophysiol. Rev. 2016, 5, 170–176. [Google Scholar] [CrossRef]
- Albert, C.M. n-3 polyunsaturated fatty acids for atrial fibrillation recurrence: Is the horse already out of the barn? J. Am. Coll. Cardiol. 2014, 64, 1449–1451. [Google Scholar] [CrossRef] [PubMed]
- Orenes-Piñero, E.; Valdés, M.; Lip, G.Y.; Marín, F. A comprehensive insight of novel antioxidant therapies for atrial fibrillation management. Drug Metab. Rev. 2015, 47, 388–400. [Google Scholar] [PubMed]
- Lau, D.H.; Nattel, S.; Kalman, J.M.; Sanders, P. Modifiable Risk Factors and Atrial Fibrillation. Circulation 2017, 136, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Zakkar, M.; Ascione, R.; James, A.F.; Angelini, G.D.; Suleiman, M.S. Inflammation, oxidative stress and postoperative atrial fibrillation in cardiac surgery. Pharmacol. Ther. 2015, 154, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Dobrev, D.; Nattel, S. New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet 2010, 375, 1212–1223. [Google Scholar] [CrossRef]
- Mollace, V.; Gliozzi, M.; Carresi, C.; Musolino, V.; Oppedisano, F. Re-assessing the mechanism of action of n-3 PUFAs. Int. J. Cardiol. 2013, 170, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Endo, J.; Arita, M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J. Cardiol. 2016, 67, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Parahuleva, M.S.; Kanse, S.; Hölschermann, H.; Zheleva, K.; Zandt, D.; Worsch, M.; Parviz, B.; Güttler, N.; Tillmanns, H.; et al. Association of circulating factor seven activating protease (FSAP) and of oral Omega-3 fatty acids supplements with clinical outcome in patients with atrial fibrillation: The OMEGA-AF study. J. Thromb. Thrombolysis 2014, 37, 317–325. [Google Scholar] [CrossRef] [PubMed]
- McLennan, P.L. Cardiac physiology and clinical efficacy of dietary fish oil clarified through cellular mechanisms of omega-3 polyunsaturated fatty acids. Eur. J. Appl. Physiol. 2014, 114, 1333–1356. [Google Scholar] [CrossRef] [PubMed]
- Nodari, S.; Triggiani, M.; Campia, U.; Dei Cas, L. Omega-3 Polyunsaturated Fatty Acid Supplementation: Mechanism and Current Evidence in Atrial Fibrillation. J. Atr. Fibrillation 2012, 5, 718. [Google Scholar] [PubMed]
- Calder, P.C. Mechanisms of action of (n-3) fatty acids. J. Nutr. 2012, 142, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Allaire, J.; Couture, P.; Leclerc, M.; Charest, A.; Marin, J.; Lépine, M.C.; Talbot, D.; Tchernof, A.; Lamarche, B. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: The Comparing EPA to DHA (ComparED) Study. Am. J. Clin. Nutr. 2016, 104, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.; Le Guennec, J.Y. Cardioprotective effects of omega 3 fatty acids: Origin of the variability. J. Muscle Res. Cell. Motil. 2017, 38, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Fenton, J.I.; Gurzell, E.A.; Davidson, E.A.; Harris, W.S. Red blood cell PUFAs reflect the phospholipid PUFA composition of major organs. Prostaglandins Leukot. Essent. Fat. Acids 2016, 112, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, A.; Leifert, W.R.; Patten, G.S.; McMurchie, E.J. Termination of asynchronous contractile activity in rat atrial myocytes by n-3 polyunsaturated fatty acids. Mol. Cell. Biochem. 2000, 206, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C.; Pareo, I. Omega-3 in antiarrhythmic therapy: Cons position. High Blood Press Cardiovasc. Prev. 2012, 19, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Den Ruijter, H.M.; Verkerk, A.O.; Coronel, R. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids. Front. Physiol. 2010, 1, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sutherland, F.; Rosso, R.; Teh, A.W.; Lee, G.; Heck, P.M.; Feldman, A.; Medi, C.; Watt, S.; Garg, M.L.; et al. Effects of chronic omega-3 polyunsaturated fatty acid supplementation on human atrial electrophysiology. Heart Rhythm. 2011, 8, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sutherland, F.; Lee, J.M.; Robinson, T.; Heck, P.M.; Wong, M.C.; Kelland, N.F.; Garg, M.L.; Sparks, P.B. Effects of high dose intravenous fish oil on human atrial electrophysiology: implications for possible anti- and pro-arrhythmic mechanisms in atrial fibrillation. Int. J. Cardiol. 2013, 168, 2754–2760. [Google Scholar] [CrossRef] [PubMed]
- Endo, J.; Sano, M.; Isobe, Y.; Fukuda, K.; Kang, J.X.; Arai, H.; Arita, M. 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload induced maladaptive cardiac remodeling. J. Exp. Med. 2014, 211, 1673–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadeen, A.; Laurent, G.; dos Santos, C.C.; Hu, X.; Connelly, K.A.; Holub, B.J.; Mangat, I.; Dorian, P. n-3 Polyunsaturated fatty acids alter expression of fibrotic and hypertrophic genes in a dog model of atrial cardiomyopathy. Heart Rhythm. 2010, 7, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Kuda, O. Bioactive metabolites of docosahexaenoic acid. Biochimie 2017, 136, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.; Oger, C.; Thireau, J.; Roussel, J.; Mercier-Touzet, O.; Faure, D.; Pinot, E.; Farah, C.; Taber, D.F.; Cristol, J.P.; et al. Nonenzymatic lipid mediators, neuroprostanes, exert the antiarrhythmic properties of docosahexaenoic acid. Free Radic. Biol. Med. 2015, 86, 269–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadeen, A.; Connelly, K.A.; Leong-Poi, H.; Hu, X.; Fujii, H.; Van Krieken, R.; Laurent, G.; Holub, B.J.; Bazinet, R.P.; Dorian, P. Docosahexaenoic Acid, but Not Eisosapentaenoic Acid, Supplementation Reduces Vulnerability to Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2012, 5, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Baum, J.R.; Dolmatova, E.; Tan, A.; Duffy, H.S. Omega 3 fatty acid inhibition of inflammatory cytokine-mediated Connexin43 regulation in the heart. Front. Physiol. 2012, 3, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suenari, K.; Chen, Y.C.; Kao, Y.H.; Cheng, C.C.; Lin, Y.K.; Kihara, Y.; Chen, Y.J.; Chen, S.A. Eicosapentaenoic acid reduces the pulmonary vein arrhythmias through nitric oxide. Life Sci. 2011, 89, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.Y.; Yasuda, S.; Tsuburaya, R.; Ito, Y.; Shiroto, T.; Hao, K.; Aizawa, K.; Kikuchi, Y.; Ito, K.; Shimokawa, H. Long-term treatment with eicosapentaenoic acid ameliorates myocardial ischemia-reperfusion injury in pigs in vivo. -Involvement of Rho-kinase pathway inhibition. Circ. J. 2011, 75, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Van Borren, M.M.; den Ruijter, H.M.; Baartscheer, A.; Ravesloot, J.H.; Coronel, R.; Verkerk, A.O. Dietary Omega-3 Polyunsaturated Fatty Acids Suppress NHE-1 Upregulation in a Rabbit Model of Volume- and Pressure-Overload. Front. Physiol. 2012, 3, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rohrbach, S. Effects of dietary polyunsaturated fatty acids on mitochondria. Curr. Pharm. Des. 2009, 15, 4103–4116. [Google Scholar] [CrossRef] [PubMed]
- Arnold, C.; Markovic, M.; Blossey, K.; Wallukat, G.; Fischer, R.; Dechend, R.; Konkel, A.; von Schacky, C.; Luft, F.C.; Muller, D.N.; et al. Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of {omega}-3 fatty acids. J. Biol. Chem. 2010, 285, 32720–32733. [Google Scholar] [CrossRef] [PubMed]
- Westphal, C.; Konkel, A.; Schunc, W.H. CYP-eicosanoids a new link between omega-3 fatty acids and cardiac disease? Prostaglandins Other Lipid Mediat. 2011, 96, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, A.; Astolfi, A.; Morandi, L.; Pession, A.; Danesi, F.; Di Nunzio, M.; Biagi, P.; Pession, A. N−3 PUFAs modulate global gene expression profile in cultured rat cardiomyocytes. Implications in cardiac hypertrophy and heart failure. FEBS Lett. 2007, 581, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Deckelbaum, RJ.; Worgall, T.S.; Seo, T. n3 fatty acids and gene expression. Am. J. Clin. Nutr. 2006, 83, 1520–1525. [Google Scholar]
- Dhein, S.; Michaelis, B.; Mohr, F.W. Antiarrhythmic and electrophysiological effects of long-chain ω-3 polyunsaturated fatty acids. Naunyn.-Schmiedebergs Arch. Pharmacol. 2005, 371, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Benova, T.; Knezl, V.; Viczenczova, C.; Bacova, B.S.; Radosinska, J.; Tribulova, N. Acute anti-fibrillating and defibrillating potential of atorvastatin, melatonin, eicosapentaenoic acid and docosahexaenoic acid demonstrated in isolated heart model. J. Physiol. Pharmacol. 2015, 66, 83–89. [Google Scholar] [PubMed]
- Fischer, R.; Dechend, R.; Qadri, F.; Markovic, M.; Feldt, S.; Herse, F.; Park, J.K.; Gapelyuk, A.; Schwarz, I.; Zacharzowsky, U.B.; et al. Dietary n-3 polyunsaturated fatty acids and direct renin inhibition improve electrical remodeling in a model of high human renin hypertension. Hypertension 2008, 51, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Bacova, B.; Radosinska, J.; Knezl, V.; Kolenova, L.; Weismann, P.; Navarova, J.; Barancik, M.; Mitasikova, M.; Tribulova, N. Omega-3 fatty acids and atorvastatin suppress ventricular fibrillation inducibility in hypertriglyceridemic rat hearts: Implication of intracellular coupling protein, connexin-43. J. Physiol. Pharmacol. 2010, 61, 717–723. [Google Scholar] [PubMed]
- Anna, Z.; Angela, S.; Barbara, B.; Jana, R.; Tamara, B.; Csilla, V.; Victor, D.; Oleksiy, M.; Narcisa, T. Heart-protective effect of n-3 PUFA demonstrated in a rat model of diabetic cardiomyopathy. Mol. Cell. Biochem. 2014, 389, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Petersen, F.; Rodrigo, R.; Richter, M.; Kostin, S. The effects of polyunsaturated fatty acids and antioxidant vitamins on atrial oxidative stress, nitrotyrosine residues, and connexins following extracorporeal circulation in patients undergoing cardiac surgery. Mol. Cell. Biochem. 2017, in press. [Google Scholar] [CrossRef] [PubMed]
- Dhein, S.; Rothe, S.; Busch, A.; Rojas Gomez, D.M.; Boldt, A.; Reutemann, A.; Seidel, T.; Salameh, A.; Pfannmüller, B.; Rastan, A.; Kostelka, M.; Mohr, F.W. Effects of metoprolol therapy on cardiac gap junction remodelling and conduction in human chronic atrial fibrillation. Br. J. Pharmacol. 2011, 164, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, C.; Wang, H.; Zhao, J.; Liu, L.; Lee, J.; He, Y.; Zheng, Q. n-3 polyunsaturated fatty acids prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Int. J. Cardiol. 2011, 153, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Ninio, D.M.; Murphy, K.J.; Howe, P.R.; Saint, D.A. Dietary fish oil protects against stretch-induced vulnerability to atrial fibrillation in a rabbit model. J. Cardiovasc. Electrophysiol. 2005, 16, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Le Gran, B.; Letienne, R.; Dupont-Passelaigue, E.; Lantoine-Adam, F.; Longo, F.; David-Dufilho, M.; Michael, G.; Nishida, K.; Catheline, D.; Legrand, P.; et al. F 16915 prevents heart failure-induced atrial fibrillation: A promising new drug as upstream therapy. Naunyn. Schmiedebergs. Arch. Pharmacol. 2014, 387, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Sarrazin, J.F.; Comeau, G.; Daleau, P.; Kingma, J.; Plante, I.; Fournier, D.; Molin, F. Reduced incidence of vagally induced atrial fibrillation and expression levels of connexins by n-3 polyunsaturated fatty acids in dogs. J. Am. Coll. Cardiol. 2007, 50, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Rupp, H.; Rupp, T.P.; Alter, P.; Maisch, B. Mechanisms involved in the differential reduction of omega-3 and omega-6 highly unsaturated fatty acids by structural heart disease resulting in “HUFA deficiency”. Can. J. Physiol. Pharmacol. 2012, 90, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Lemaitre, R.N.; King, I.B.; Song, X.; Sacks, F.M.; Rimm, E.B.; Heckbert, S.R.; Siscovick, D.S.; Mozaffarian, D. Association of plasma phospholipid long-chain ω-3 fatty acids with incident atrial fibrillation in older adults: The cardiovascular health study. Circulation 2012, 125, 1084–1093. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, J.K.; Mursu, J.; Voutilainen, S.; Tuomainen, T.P. Serum long-chain n-3 polyunsaturated fatty acids and risk of hospital diagnosis of atrial fibrillation in men. Circulation 2009, 120, 2315–2321. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, R.G.; Skuladottir, G.V.; Indridason, O.S.; Sullivan, T.R.; Bjorgvinsdottir, L.; Sanders, P.; Arnar, D.O.; Gibson, R.A.; Heidarsdottir, R.; Cleland, L.G.; et al. U-shaped relationship between tissue docosahexaenoic acid and atrial fibrillation following cardiac surgery. Metaanal. Eur. J. Clin. Nutr. 2014, 68, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Rix, T.A.; Joensen, A.M.; Riahi, S.; Lundbye-Christensen, S.; Overvad, K.; Schmidt, E.B. Marine n-3 fatty acids in adipose tissue and development of atrial fibrillation: A Danish cohort study. Heart 2013, 99, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Kirkegaard, E.; Svensson, M.; Strandhave, C.; Schmidt, E.B.; Jørgensen, K.A.; Christensen, J.H. Marine n-3 fatty acids, atrial fibrillation and QT interval in haemodialysis patients. Br. J. Nutr. 2012, 107, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Nodari, S.; Triggiani, M.; Campia, U.; Manerba, A.; Milesi, G.; Cesana, B.M.; Gheorghiade, M.; Dei Cas, L. N-3 Polyunsaturated Fatty Acids in the prevention of Atrial Fibrillation Recurrences After Electrical Cardioversion:A prospective, Randomized Study. Circulation 2011, 124, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Qu, S.; Kassotis, J.T. Effect of Omega-3 Polyunsaturated Fatty Acid Supplementation in Patients with Atrial Fibrillation. J. Atr. Fibrillation 2012, 5, 1–12. [Google Scholar]
- Kumar, S.; Sutherland, F.; Stevenson, I.; Lee, J.M.; Garg, M.L.; Sparks, P.B. Effects of long-term ω-3 polyunsaturated fatty acid supplementation on paroxysmal atrial tachyarrhythmia burden in patients with implanted pacemakers: Results from a prospective randomised study. Int. J. Cardiol. 2013, 168, 3812–3817. [Google Scholar] [CrossRef] [PubMed]
- Chiuve, S.E.; Sandhu, R.K.; Moorthy, M.V.; Glynn, R.J.; Albert, C.M. Dietary Fat Intake Is Differentially Associated with Risk of Paroxysmal Compared with Sustained Atrial Fibrillation in Women. J. Nutr. 2015, 145, 2092–2101. [Google Scholar] [CrossRef] [PubMed]
- Sorice, M.; Tritto, F.P.; Sordelli, C.; Gregorio, R.; Piazza, L. N-3 polyunsaturated fatty acids reduces post-operative atrial fibrillation incidence in patients undergoing “on-pump” coronary artery bypass graft surgery. Monaldi Arch. Chest Dis. 2011, 76, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Wilbring, M.; Ploetze, K.; Bormann, S.; Waldow, T.; Matschke, K. Omega-3 polyunsaturated Fatty acids reduce the incidence of postoperative atrial fibrillation in patients with history of prior myocardial infarction undergoing isolated coronary artery bypass grafting. Thorac. Cardiovasc. Surg. 2014, 62, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Heidt, M.C.; Vician, M.; Stracke, S.K.; Stadlbauer, T.; Grebe, M.T.; Boening, A.; Vogt, P.R.; Erdogan, A. Beneficial effects of intravenously administered N-3 fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: A prospective randomized study. Thorac. Cardiovasc. Surg. 2009, 57, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, S.; di Niro, V.; Di Castelnuovo, A.; Gianfagna, F.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Prevention of postoperative atrial fibrillation in open heart surgery patients by preoperative supplementation of n-3 polyunsaturated fatty acids: An updated meta-analysis. J. Thorac. Cardiovasc. Surg. 2013, 146, 906–911. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Yang, L.; Tian, J.; Yang, K.; Wu, J.; Yao, Y. Efficacy and safety of omega-3fatty acids for the prevention of atrial fibrillation: A meta-analysis. Can. J. Cardiol. 2013, 29, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, R.; Korantzopoulos, P.; Cereceda, M.; Asenjo, R.; Zamorano, J.; Villalabeitia, E.; Baeza, C.; Aguayo, R.; Castillo, R.; Carrasco, R.; et al. A randomized controlled trial to prevent post-operative atrial fibrillation by antioxidant reinforcement. J. Am. Coll. Cardiol. 2013, 62, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Yan, X.L.; Chen, Y.W.; Tang, R.B.; Du, X.; Dong, J.Z.; Ma, C.S. Omega-3 fatty acids for postoperative atrial fibrillation: Alone or in combination with antioxidant vitamins? Heart Lung Circ. 2014, 23, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Bjorgvinsdottir, L.; Indridason, O.S.; Heidarsdottir, R.; Skogstrand, K.; Arnar, D.O.; Torfason, B.; Hougaard, D.M.; Palsson, R.; Skuladottir, G.V. Inflammatory response following heart surgery and association with n-3 and n-6 long-chain polyunsaturated fatty acids in plasma and red blood cell membrane lipids. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Stanger, O.; Aigner, I.; Schimetta, W.; Wonisch, W. Antioxidant supplementation attenuates oxidative stress in patients undergoing coronary artery bypass graft surgery. Tohoku J. Exp. Med. 2014, 232, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Kajikawa, Y.; Otani, S.; Yamada, Y.; Takemoto, S.; Hirota, M.; Ikeda, M.; Iwagaki, H.; Saito, S.; Fujiwara, T. Protective effect of eicosapentaenoic acid on insulin resistance in hyperlipidemic patients and on the postoperative course of cardiac surgery patients: The possible involvement of adiponectin. Acta Med. Okayama 2014, 68, 349–361. [Google Scholar] [PubMed]
- Watanabe, E.; Sobue, Y.; Sano, K.; Okuda, K.; Yamamoto, M.; Ozaki, Y. Eicosapentaenoic acid for the prevention of recurrent atrial fibrillation. Ann. Noninvasive Electrocardiol. 2011, 16, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Darghosian, L.; Free, M.; Li, J.; Gebretsadik, T.; Bian, A.; Shintani, A.; McBride, B.F.; Solus, J.; Milne, G.; Crossley, G.H.; et al. Effect of omega-three polyunsaturated fatty acids on inflammation, oxidative stress, and recurrence of atrial fibrillation. Am. J. Cardiol. 2015, 115, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Lomivorotov, V.V.; Efremov, S.M.; Pokushalov, E.A.; Romanov, A.B.; Ponomarev, D.N.; Cherniavsky, A.M.; Shilova, A.N.; Karaskov, A.M.; Lomivorotov, V.N. Randomized trial of fish oil infusion to prevent atrial fibrillation after cardiac surgery: Data from an implantable continuous cardiac monitor. J. Cardiothorac. Vasc. Anesth. 2014, 28, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Macchia, A.; Grancelli, H.; Varini, S.; Nul, D.; Laffae, N.; Mariani, J.; Ferrante, D.; Badra, R.; Figal, J.; Ramos, S.; et al. Omega-3 fatty acids for the prevention of recurrent symptomatic atrial fibrillation: Results of the FORWARD (Randomized Trial to Assess Efficacy of PUFA for the Maintenance of Sinus Rhythm in Persistent Atrial Fibrillation) trial. J. Am. Coll. Catdiol. 2013, 61, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Nigam, A.; Talajic, M.; Roy, D.; Nattel, S.; Lambert, J.; Nozza, A.; Jones, P.; Ramprasath, V.R.; O’Hara, G.; Kopecky, S.; et al. Fish oil for the reduction of atrial fibrillation recurrence, inflammation, and oxidative stress. J. Am. Coll. Cardiol. 2014, 64, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.; Shkoza, M.; Scappini, L.; Roberti, L.; Capucci, A. Omega-3 PUFAs and atrial fibrillation: Have we made up our mind yet? Ann. Noninvasive Electrocardiol. 2013, 18, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Korantzopoulos, P.; Shehata, M.; Li, G.; Wang, X.; Kaul, S. Prevention of atrial fibrillation with omega-3 fatty acids: A meta-analysis of randomised clinical trials. Heart 2011, 97, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Mariani, J.; Doval, H.C.; Nul, D.; Varini, S.; Grancelli, H.; Ferrante, D.; Tognoni, G.; Macchia, A. N-3 polyunsaturated fatty acids to prevent atrial fibrillation: Updated systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2013, 2, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Armaganijan, L.; Lopes, R.D.; Healey, J.S.; Piccini, J.P.; Nair, G.M.; Morillo, C.A. Do omega-3 fatty acids prevent atrial fibrillation after open heart surgery? A meta-analysis of randomized controlled trials. Clinics (Sao Paulo) 2011, 66, 1923–1928. [Google Scholar] [PubMed]
- Benedetto, U.; Angeloni, E.; Melina, G.; Danesi, T.H.; Di Bartolomeo, R.; Lechiancole, A.; Refice, S.; Roscitano, A.; Comito, C.; Sinatra, R. n-3 Polyunsaturated fatty acids for the prevention of postoperative atrial fibrillation: A meta-analysis of randomized controlled trials. J. Cardiovasc. Med. (Hagerstown) 2013, 14, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Doi, M.; Nosaka, K.; Miyoshi, T.; Iwamoto, M.; Kajiya, M.; Okawa, K.; Nakayama, R.; Takagi, W.; Takeda, K.; Hirohata, S.; et al. Early eicosapentaenoic acid treatment after percutaneous coronary intervention reduces acute inflammatory responses and ventricular arrhythmias in patients with acute myocardial infarction: A randomized, controlled study. Int. J. Cardiol. 2014, 176, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, K.; Himeno, H.; Kirigaya, J.; Otomo, F.; Matsushita, K.; Nakahashi, H.; Shimizu, S.; Nitta, M.; Yano, H.; Endo, M.; et al. Impact of n-3 polyunsaturated fatty acids in predicting ischemia/reperfusion injury and progression of myocardial damage after reperfusion in patients with ST-segment elevation acute myocardial infarction. J. Cardiol. 2015, 66, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Madsen, T.; Christensen, J.H.; Thøgersen, A.M.; Schmidt, E.B.; Toft, E. Intravenous infusion of n-3 polyunsaturated fatty acids and inducibility of ventricular tachycardia in patients with implantable cardioverter defibrillator. Europace 2010, 12, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Weisman, D.; Beinart, R.; Erez, A.; Koren-Morag, N.; Goldenberg, I.; Eldar, M.; Glikson, M.; Luria, D. Effect of supplemented intake of omega-3 fatty acids on arrhythmias in patients with ICD: Fish oil therapy may reduce ventricular arrhythmia. J. Interv. Card. Electrophysiol. 2017, 49, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Tsuburaya, R.; Yasuda, S.; Ito, Y.; Shiroto, T.; Gao, J.Y.; Ito, K.; Shimokawa, H. Eicosapentaenoic acid reduces ischemic ventricular fibrillation via altering monophasic action potential in pigs. J. Mol. Cell. Cardiol. 2011, 51, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Pepe, S.; McLennan, P. (n-3) Long Chain PUFA Dose-Dependently Increase Oxygen Utilization Efficiency and Inhibit Arrhythmias after Saturated Fat Feeding in Rats. J. Nutr. 2007, 137, 2377–2383. [Google Scholar] [PubMed]
- Milberg, P.; Frommeyer, G.; Kleideiter, A.; Fischer, A.; Osada, N.; Breithardt, G.; Fehr, M.; Eckardt, L. Antiarrhythmic effects of free polyunsaturated fatty acids in an experimental model of LQT2 and LQT3 due to suppression of early afterdepolarizations and reduction of spatial and temporal dispersion of repolarization. Heart Rhythm. 2011, 8, 1492–11500. [Google Scholar] [CrossRef] [PubMed]
- Zeghichi-Hamri, S.; de Lorgeril, M.; Salen, P.; Chibane, M.; de Leiris, J.; Boucher, F.; Laporte, F. Protective effect of dietary n-3 polyunsaturated fatty acids on myocardial resistance to ischemia-reperfusion injury in rats. Nutr. Res. 2010, 30, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Abeywardena, M.Y.; Adams, M.; Dallimore, J.; Kitessa, S.M. Rise in DPA Following SDA-Rich Dietary Echium Oil Less Effective in Affording Anti-Arrhythmic Actions Compared to High DHA Levels Achieved with Fish Oil in Sprague-Dawley Rats. Nutrients 2016, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Khoueiry, G.; Abi Rafeh, N.; Sullivan, E.; Saiful, F.; Jaffery, Z.; Kenigsberg, D.N.; Krishnan, S.C.; Khanal, S.; Bekheit, S.; Kowalski, M. Do omega-3 polyunsaturated fatty acids reduce risk of sudden cardiac death and ventricular arrhythmias? A meta-analysis of randomized trials. Heart Lung. 2013, 42, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Billman, G.E.; Carnes, C.A.; Adamson, P.B.; Vanoli, E.; Schwartz, P.J. Dietary omega-3 fatty acids and susceptibility to ventricular fibrillation: Lack of protection and a proarrhythmic effect. Circ. Arrhythm. Electrophysiol. 2012, 5, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Belevych, A.E.; Ho, H.T.; Terentyeva, R.; Bonilla, I.M.; Terentyev, D.; Carnes, C.A.; Gyorke, S.; Billman, G.E. Dietary omega-3 fatty acids promote arrhythmogenic remodeling of cellular Ca2+ handling in a postinfarction model of sudden cardiac death. PLoS ONE 2013, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, I.M.; Nishijima, Y.; Vargas-Pinto, P.; Baine, S.H.; Sridhar, A.; Li, C.; Billman, G.E.; Carnes, C.A. Chronic Omega-3 Polyunsaturated Fatty Acid Treatment Variably Affects Cellular Repolarization in a Healed Post-MI Arrhythmia Model. Front. Physiol. 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mączewski, M.; Duda, M.; Marciszek, M.; Kołodziejczyk, J.; Dobrzyń, P.; Dobrzyń, A.; Mackiewicz, U. Omega-3 Fatty Acids Do Not Protect Against Arrhythmias in Acute Nonreperfused Myocardial Infarction Despite Some Antiarrhythmic Effects. J. Cell. Biochem. 2016, 117, 2570–2582. [Google Scholar] [CrossRef] [PubMed]
- Albert, C.M. Omega-3 Fatty Acids, Ventricular Arrhythmias, and Sudden Cardiac Death: Antiarrhythmic, Proarrhythmic or Neither. Circ. Arrhythm. Electrophysiol. 2012, 5, 456–459. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tribulova, N.; Szeiffova Bacova, B.; Egan Benova, T.; Knezl, V.; Barancik, M.; Slezak, J. Omega-3 Index and Anti-Arrhythmic Potential of Omega-3 PUFAs. Nutrients 2017, 9, 1191. https://doi.org/10.3390/nu9111191
Tribulova N, Szeiffova Bacova B, Egan Benova T, Knezl V, Barancik M, Slezak J. Omega-3 Index and Anti-Arrhythmic Potential of Omega-3 PUFAs. Nutrients. 2017; 9(11):1191. https://doi.org/10.3390/nu9111191
Chicago/Turabian StyleTribulova, Narcis, Barbara Szeiffova Bacova, Tamara Egan Benova, Vladimir Knezl, Miroslav Barancik, and Jan Slezak. 2017. "Omega-3 Index and Anti-Arrhythmic Potential of Omega-3 PUFAs" Nutrients 9, no. 11: 1191. https://doi.org/10.3390/nu9111191
APA StyleTribulova, N., Szeiffova Bacova, B., Egan Benova, T., Knezl, V., Barancik, M., & Slezak, J. (2017). Omega-3 Index and Anti-Arrhythmic Potential of Omega-3 PUFAs. Nutrients, 9(11), 1191. https://doi.org/10.3390/nu9111191