Emergency CT Scans: Unveiling the Risks of Contrast-Associated Acute Kidney Injury
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartels, E.D.; Brun, G.C.; Gammeltoft, A.; Gjørup, P.A. Acute Annria Following Intravenous Pyelography in a Patient with Myelomatosis. Acta Medica Scand. 2009, 150, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Rencuzogullari, I.; Çağdaş, M.; Karakoyun, S.; Karabağ, Y.; Yesin, M.; Gürsoy, M.O.; Artaç, İ.; İliş, D.; Efe, S.Ç.; Tural, K.; et al. Association of Syntax Score II with Contrast-induced Nephropathy and Hemodialysis Requirement in Patients with ST Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Korean Circ. J. 2018, 48, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, I.; Yildiz, P.O.; Rencuzogullari, I.; Karabag, Y.; Cagdas, M.; Burak, C.; Gurevin, M.S. Association of Serum Osmolarity with Contrast-Induced Nephropathy in Patients With ST-Segment Elevation Myocardial Infarction. Angiology 2019, 70, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Mehran, R.; Aymong, E.D.; Nikolsky, E.; Lasic, Z.; Iakovou, I.; Fahy, M.; Mintz, G.S.; Lansky, A.J.; Moses, J.W.; Stone, G.W.; et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention. J. Am. Coll. Cardiol. 2004, 44, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Shams, E.; Mayrovitz, H.N. Contrast-Induced Nephropathy: A Review of Mechanisms and Risks. Cureus 2021, 13, e14842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Lu, Z.; Wang, F. Advances in the pathogenesis and prevention of contrast-induced nephropathy. Life Sci. 2020, 259, 118379. [Google Scholar] [CrossRef] [PubMed]
- Kwasa, E.A.; Vinayak, S.; Armstrong, R. The role of inflammation in contrast-induced nephropathy. Br. J. Radiol. 2014, 87, 20130738. [Google Scholar] [CrossRef] [PubMed]
- Abellás-Sequeiros, R.; Raposeiras-Roubín, S.; Abu-Assi, E.; González-Salvado, V.; Iglesias-Álvarez, D.; Redondo-Diéguez, A.; González-Ferreiro, R.; Ocaranza-Sánchez, R.; Peña-Gil, C.; García-Acuña, J.; et al. Mehran contrast nephropathy risk score: Is it still useful 10 years later? J. Cardiol. 2016, 67, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Chong, E.; Zed, P.J. N-acetylcysteine for radiocontrast-induced nephropathy: Potential role in the emergency department? Can. J. Emerg. Med. 2004, 6, 253–258. [Google Scholar] [CrossRef]
- Band, R.A.; Gaieski, D.F.; Mills, A.M.; Sease, K.L.; Shofer, F.S.; Robey, J.L.; Hollander, J.E. Discordance between serum creatinine and creatinine clearance for identification of ED patients with abdominal pain at risk for contrast-induced nephropathy. Am. J. Emerg. Med. 2007, 25, 268–272. [Google Scholar] [CrossRef]
- Sgura, F.A.; Bertelli, L.; Monopoli, D.; Leuzzi, C.; Guerri, E.; Spartà, I.; Politi, L.; Aprile, A.; Amato, A.; Rossi, R.; et al. Mehran Contrast-Induced Nephropathy Risk Score Predicts Short- and Long-Term Clinical Outcomes in Patients With ST-Elevation–Myocardial Infarction. Circ. Cardiovasc. Interv. 2010, 3, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Tumlin, J.; Stacul, F.; Adam, A.; Becker, C.R.; Davidson, C.; Lameire, N.; McCullough, P. A Pathophysiology of contrast-induced nephropathy. Am. J. Cardiol. 2006, 98, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Azzalini, L.; Spagnoli, V.; Ly, H.Q. Contrast-Induced Nephropathy: From Pathophysiology to Preventive Strategies. Can. J. Cardiol. 2016, 32, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.R.; Tang, T.; Gaunt, M.E.; Boyle, J.R. Contrast-Induced Nephropathy. J. Endovasc. Ther. 2007, 14, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Weisbord, S.; Palevsky, P. Prevention of contrast-induced nephropathy with volume expansion. Clin. J. Am. Soc. Nephrol. 2008, 3, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Macneill, B.; Harding, S.; Bazari, H.; Patton, K.; Colon-Hernadez, P.; DeJoseph, D.; Jang, I. Prophylaxis of contrast-induced nephropathy in patients undergoing coronary angiography. Catheter. Cardiovasc. Interv. 2003, 60, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Ozbay, M.B.; Iqbal, P.; Perry, J.C.; Degirmen, S. Letter: Carvedilol vs. Metoprolol: Mitigating Contrast-Induced Nephropathy in Acute Coronary Syndrome Patients. Angiology 2024, 14, 33197241255170. [Google Scholar] [CrossRef] [PubMed]
- Taşkıran, E.; Erbaş, O.; Yiğittürk, G.; Meral, A.; Akar, H.; Taşkıran, D. Exogenously administered adenosine attenuates renal damage in streptozotocin-induced diabetic rats. Ren. Fail. 2016, 38, 1276–1282. [Google Scholar] [CrossRef]
- Bora, E.S.; Arda, D.B.; Erbaş, O. The renoprotective effect of Tibolone in sepsis-induced acute kidney injury. Biomed. Pap. 2024, 168, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bora, E.S.; Erdogan, M.A.; Meral, A.; Karakaya, Z.; Erbas, O. Protective effect of dapagliflozin on colistin-induced renal toxicity. Signa Vitae 2021, 17, 92–97. [Google Scholar]
- Basol, N.; Savas, A.Y.; Meral, A.; Erbas, O. The valuable effects of potent antioxidant curcumin in cisplatin induced liver and kidney injury. Cumhur. Med. J. 2018, 40, 9–18. [Google Scholar] [CrossRef]
- Erbas, O.; Anil Korkmaz, H.; Oltulu, F.; Aktug, H.; Yavasoglu, A.; Akman, L.; Solmaz, V.; Taskiran, D. Oxytocin alleviates cisplatin-induced renal damage in rats. Iran. J. Basic Med. Sci. 2014, 17, 747–752. [Google Scholar] [PubMed] [PubMed Central]
- Yang, Y.; Jiang, S.; Mu, Y.; Liu, C.; Han, Y.; Jiang, J.; Wang, Y. Berberine alleviated contrast-induced acute kidney injury by mitophagy-mediated NLRP3 inflammasome inactivation in a mice model. Toxicol. Appl. Pharmacol. 2024, 486, 116952. [Google Scholar] [CrossRef]
- Maioli, M.; Toso, A.; Leoncini, M.; Gallopin, M.; Musilli, N.; Bellandi, F. Persistent Renal Damage After Contrast-Induced Acute Kidney Injury:Incidence, Evolution, Risk Factors, and Prognosis. Circulation 2012, 125, 3099–3107. [Google Scholar] [CrossRef]
- Wi, J.; Ko, Y.; Shin, D.; Kim, J.; Kim, B.; Choi, D.; Ha, J.; Hong, M.; Jang, Y. Prediction of Contrast-Induced Nephropathy with Persistent Renal Dysfunction and Adverse Long-term Outcomes in Patients with Acute Myocardial Infarction Using the Mehran Risk Score. Clin. Cardiol. 2013, 36, 46–53. [Google Scholar] [CrossRef]
- Kakroo, S.A.; Rama-Kumari, N.; Archana Remala, A. Study of Risk Factors and Applicability of Mehran Risk Score in Predicting Contrast Induced Nephropathy in Patients Undergoing Percutaneous Coronary Intervention Patients—A Prospective Observational Cohort Study. Cardiol. Res. Rep. 2022, 4, 1–6. [Google Scholar] [CrossRef]
- Nusca, A.; Mangiacapra, F.; Sticchi, A.; Polizzi, G.; D’Acunto, G.; Ricottini, E.; Melfi, R.; Gallo, P.; Miglionico, M.; Giannone, S.; et al. Usefulness of Adding Pre-procedural Glycemia to the Mehran Score to Enhance Its Ability to Predict Contrast-induced Kidney Injury in Patients Undergoing Percutaneous Coronary Intervention Development and Validation of a Predictive Model. Am. J. Cardiol. 2021, 155, 16–22. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Liu, W.; Deng, J.; Liu, J.; Zhou, Y.; Feng, L.; Chen, J. The impact of the stress hyperglycemia ratio on the risk of contrast-associated acute kidney injury in patients undergoing coronary angiography: A large real-world cohort study. Diabetol. Metab. Syndr. 2024, 16, 107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Selistre, L.d.S.; de Souza, V.C.; Dubourg, L.; Wagner, M.B.; Filho, J.R.H.; Saitovitch, D. Contrast-induced nephropathy after computed tomography. J. Bras. Nefrol. 2015, 37, 27–31. [Google Scholar] [CrossRef]
- Lencioni, R.; Fattori, R.; Morana, G.; Stacul, F. Contrast-induced nephropathy in patients undergoing computed tomography (CONNECT)—A clinical problem in daily practice? A multicenter observational study. Acta Radiol. 2010, 51, 741–750. [Google Scholar] [CrossRef]
- Diogo, L.P.; Bahlis, L.F.; Carvalhal, G.F. Computerized Tomography Contrast Induced Nephropathy (CIN) among adult inpatients. J. Bras. Nefrol. 2014, 36. [Google Scholar] [CrossRef]
- Hinson, J.S.; Ehmann, M.R.; Fine, D.M.; Fishman, E.K.; Toerper, M.F.; Rothman, R.E.; Klein, E.Y. Risk of Acute Kidney Injury After Intravenous Contrast Media Administration. Ann. Emerg. Med. 2017, 69, 577–586.e4. [Google Scholar] [CrossRef]
- Mitchell, A.M.; Jones, A.E.; Tumlin, J.A.; Kline, J.A. Incidence of Contrast-Induced Nephropathy after Contrast-Enhanced Computed Tomography in the Outpatient Setting. Clin. J. Am. Soc. Nephrol. 2010, 5, 4–9. [Google Scholar] [CrossRef]
- Nash, K.; Hafeez, A.; Hou, S. Hospital-acquired renal insufficiency. Am. J. Kidney Dis. 2002, 39, 930–936. [Google Scholar] [CrossRef]
- Levy, E.M.; Viscoli, C.M.; Horwitz, R.I. The effect of acute renal failure on mortality. A cohort analysis. JAMA 1996, 275, 1489–1494. [Google Scholar] [CrossRef]
- Heinrich, M.C.; Häberle, L.; Müller, V.; Bautz, W.; Uder, M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: Meta-analysis of randomized controlled trials. Radiology 2009, 250, 68–86. [Google Scholar] [CrossRef]
- Rozenbaum, Z.; Chang, M.F.; Wiley, J.; Gholam, A.; Irimpen, A.; Alsaad, A.A. Safety of ultra-low contrast coronary angiography in patients with acute kidney injury. Clin. Cardiol. 2024, 47, e24282. [Google Scholar] [CrossRef]
- Omigbodun, A.; Vaishnav, J.Y.; Hsieh, S.S. Rapid measurement of the low contrast detectability of CT scanners. Med. Phys. 2021, 48, 1054–1063. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kane, G.C.; Doyle, B.J.; Lerman, A.; Barsness, G.W.; Best, P.J.; Rihal, C.S. Ultra-low contrast volumes reduce rates of contrast-induced nephropathy in patients with chronic kidney disease undergoing coronary angiography. J. Am. Coll. Cardiol. 2008, 51, 89–90. [Google Scholar] [CrossRef]
- Yap, L.P.P.; Sani, F.M.; Chung, E.; Gowdh, N.F.M.; Ng, W.L.; Wong, J.H.D. Customised weight-based volume contrast media protocol for multiphase abdominal computed tomography. Singap. Med. J. 2024. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Yuan, D.M.; Qi, K.M.; Zhang, M.M.; Zhang, W.M.; Wei, N.M.; Li, L.; Lv, P.; Gao, J.; Liu, J.M. Feasibility Analysis of Individualized Low Flow Rate Abdominal Contrast-Enhanced Computed Tomography in Chemotherapy Patients: Dual-Source Computed Tomography with Low Tube Voltage. J. Comput. Assist. Tomogr. 2024. [Google Scholar] [CrossRef] [PubMed]
- Araki, K.; Yoshizako, T.; Yoshida, R.; Tada, K.; Kitagaki, H. Low-voltage (80-kVp) abdominopelvic computed tomography allows 60% contrast dose reduction in patients at risk of contrast-induced nephropathy. Clin. Imaging 2018, 51, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, D.; Porta, M.; Maino, C.; Riva, L.; Ragusi, M.; Giandola, T.; Franco, P.N.; Cangiotti, C.; Gandola, D.; De Vito, A.; et al. Feasibility of Low-Dose and Low-Contrast Media Volume Approach in Computed Tomography Cardiovascular Imaging Reconstructed with Model-Based Algorithm. Tomography 2024, 10, 286–298. [Google Scholar] [CrossRef] [PubMed]
Variables | CA-AKI (n = 84) | No CA-AKI (n = 448) | p | |
---|---|---|---|---|
Mean ± SD (Min–Max) | Mean ± SD (Min–Max) | |||
Amount of contrast/mL | 52.38 ± 12.95 (30–60) | 53.78 ± 11.8 (5–60) | 0.36 | |
Age/year | 68.64 ± 16.82 (26–99) | 55.19 ± 18.61 (18–99) | <0.001 | |
HCT | 36.15 ± 7.68 (19.2–55.5) | 36.6 ± 6.6 (13.5–60.6) | <0.001 | |
1. Creatinine—mg/dL | 1.43 ± 0.87 (0.51–5.86) | 1.04 ± 0.45 (0.47–7.3) | <0.001 | |
eGFR | 56 ± 26.4 (9–118) | 81.21 ± 21.76 (7–133) | <0.001 | |
2. Creatinine—mg/dL | 3.25 ± 1.43 (1.24–8.06) | 1.18 ± 2.77 (0.37–42) | <0.001 | |
Systolic BP/mmHg | 119.35 ± 25.81 (69–220) | 126.01 ± 17.79 (85–210) | <0.001 | |
Variables | n (%) | n (%) | p | |
Gender | Male | 45 (15.9) | 238 (84.1) | 0.52 |
Female | 39 (15.7) | 210 (84.3) | ||
DM | None | 43 (10.2) | 379 (89.8) | <0.001 |
Exist | 41 (37.3) | 69 (62.7) | ||
CHF | None | 48 (10.3) | 420 (89.7) | <0.001 |
Exist | 36 (56.3) | 28 (43.8) | ||
CCI | ≤5 | 38 (8.8) | 392 (91.2) | <0.001 |
>5 | 45 (44.6) | 56 (55.4) | ||
Urgent HD | No | 55 (11.0) | 446 (89.0) | <0.001 |
Yes | 29 (93.5) | 2 (6.5) | ||
Clinical Decision | Discharged | 13 (5.2) | 239 (94.8) | <0.001 |
Ward | 36 (18.2) | 162 (81.8) | ||
ICU | 35 (42.7) | 47 (57.3) | ||
Mortality | Survived | 56 (11.4) | 434 (88.6) | <0.001 |
Deceased | 28 (66.7) | 14 (33.3) | ||
Mehran Score | ≤5 | 14 (3.8) | 353 (96.2) | <0.001 |
6–10 | 21 (20.0) | 84 (80.0) | ||
11–15 | 38 (79.2) | 10 (20.8) | ||
≥16 | 11 (91.7) | 1 (8.3) |
Variables in the Equation | |||||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | Wald | df | Sig. | Exp (B) | 95% CI for EXP (B) | |||
Lower | Upper | ||||||||
Step 1 a | Age | −0.002 | 0.011 | 0.019 | 1 | 0.889 | 0.998 | 0.976 | 1.021 |
HCT | 0.066 | 0.08 | 0.672 | 1 | 0.412 | 1.068 | 0.913 | 1.25 | |
Creatinine | −0.533 | 0.302 | 3.112 | 1 | 0.078 | 0.587 | 0.324 | 1.061 | |
eGFR | −0.02 | 0.009 | 4.669 | 1 | 0.031 | 0.981 | 0.963 | 0.998 | |
Systolic BP | −0.001 | 0.01 | 0.014 | 1 | 0.907 | 0.999 | 0.979 | 1.019 | |
DM (1) | 0.269 | 0.384 | 0.492 | 1 | 0.483 | 1.309 | 0.617 | 2.78 | |
CHF (1) | 0.686 | 0.469 | 2.145 | 1 | 0.143 | 1.986 | 0.793 | 4.976 | |
CCI (1) | −0.095 | 0.438 | 0.047 | 1 | 0.827 | 0.909 | 0.385 | 2.144 | |
Mehran score | 30.098 | 3 | 0 | ||||||
Mehran score (1) | 1.524 | 0.502 | 9.207 | 1 | 0.002 | 4.589 | 1.715 | 12.277 | |
Mehran score (2) | 3.914 | 0.732 | 28.565 | 1 | 0 | 50.079 | 11.922 | 210.354 | |
Mehran score (3) | 4.847 | 1.373 | 12.458 | 1 | 0 | 127.402 | 8.633 | 1880.122 | |
Constant | −1.424 | 1.956 | 0.53 | 1 | 0.467 | 0.241 | |||
Variables in the Equation | |||||||||
B | S.E. | Wald | df | Sig. | Exp(B) | 95% CI for EXP (B) | |||
Lower | Upper | ||||||||
Step 2 a | eGFR | −0.011 | 0.007 | 2.359 | 1 | 0.125 | 0.989 | 0.975 | 1.003 |
Mehran score | 78.878 | 3 | 0 | ||||||
Mehran score (1) | 1.713 | 0.376 | 20.767 | 1 | 0 | 5.544 | 2.654 | 11.581 | |
Mehran score (2) | 4.211 | 0.493 | 72.974 | 1 | 0 | 67.414 | 25.655 | 177.149 | |
Mehran score (3) | 5.085 | 1.129 | 20.281 | 1 | 0 | 161.568 | 17.67 | 1477.301 | |
Constant | −2.301 | 0.648 | 12.604 | 1 | 0 | 0.1 |
Mortality Table | ||||
---|---|---|---|---|
Variables | None (n = 490) | Yes (n = 42) | p | |
Mean ± SD (Min–Max) | Mean ± SD (Min–Max) | |||
Amount of contrast/mL | 53.72 ± 11.86 (5–60) | 51.67 ± 13.42 (30–60) | 0.31 | |
Age/year | 56.16 ± 18.68 (18–99) | 70.74 ± 17.24 (26–99) | <0.001 | |
HCT | 39.21 ± 6.78 (13.5–60.6) | 37.17 ± 7.83 (22.2–54.6) | 0.11 | |
1. Creatinine—mg/dL | 1.07 ± 0.48 (0.47–5.86) | 1.42 ± 1.07 (0.51–7.3) | <0.001 | |
eGFR | 78.23 ± 23.58 (9–133) | 65.6 ± 29.8 (7–114) | 0.01 | |
2. Creatinine—mg/dL | 1.39 ± 2.74 (0.37–42) | 2.84 ± 1.82 (0.59–8.06) | <0.001 | |
Systolic BP/mmHg | 125.29 ± 19.44 (69–220) | 121.05 ± 18.69 (85–167) | 0.33 | |
Variables | n (%) | n (%) | p | |
Gender | Male | 258 (91.2) | 25 (8.8) | 0.39 |
Female | 232 (93.2) | 17 (6.8) | ||
Contrast nephropathy | No | 434 (96.9) | 14 (3.1) | <0.001 |
Yes | 56 (66.7) | 28 (33.3) | ||
DM | None | 396 (93.8) | 26 (6.2) | <0.001 |
Exist | 94 (85.5) | 16 (14.59) | ||
CHF | None | 437 (93.4) | 31 (6.6) | 0.01 |
Exist | 53 (82.8) | 11 (17.29) | ||
CCI | ≤5 | 409 (95.1) | 21 (4.9) | <0.001 |
>5 | 80 (79.2) | 21 (20.8) | ||
Mehran score | ≤5 | 354 (96.5) | 13 (3.5) | <0.001 |
6–10 | 90 (85.7) | 15 (14.3) | ||
11–15 | 38 (79.2) | 10 (20.8) | ||
≥16 | 8 (66.7) | 4 (33.3) | ||
Urgent HD | No | 477 (95.2) | 24 (4.8) | <0.001 |
Yes | 13 (41.9) | 18 (58.1) |
B | SE | Wald | df | Sig. | Exp (B) | 95% CI for EXP(B) | |||
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
Step 2 a | Age | 0.031 | 0.012 | 6.847 | 1 | 0.009 | 1.031 | 1.008 | 1.056 |
Contrast nephropathy (1) | 2.758 | 0.459 | 36.128 | 1 | 0.000 | 15.765 | 6.414 | 38.746 | |
Mehran score | 4.496 | 3 | 0.213 | ||||||
Mehran score (1) | 0.476 | 0.472 | 1.016 | 1 | 0.313 | 1.610 | 0.638 | 4.060 | |
Mehran score (2) | −0.627 | 0.602 | 1.087 | 1 | 0.297 | 0.534 | 0.164 | 1.737 | |
Mehran score (3) | −0.337 | 0.811 | 0.172 | 1 | 0.678 | 0.714 | 0.146 | 3.498 | |
Constant | −5.423 | 0.794 | 46.606 | 1 | 0.000 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorgun, O.; Karaali, R.; Arıkan, C.; Kanter, E.; Yurtsever, G. Emergency CT Scans: Unveiling the Risks of Contrast-Associated Acute Kidney Injury. Tomography 2024, 10, 1064-1073. https://doi.org/10.3390/tomography10070080
Sorgun O, Karaali R, Arıkan C, Kanter E, Yurtsever G. Emergency CT Scans: Unveiling the Risks of Contrast-Associated Acute Kidney Injury. Tomography. 2024; 10(7):1064-1073. https://doi.org/10.3390/tomography10070080
Chicago/Turabian StyleSorgun, Omay, Rezan Karaali, Cüneyt Arıkan, Efe Kanter, and Güner Yurtsever. 2024. "Emergency CT Scans: Unveiling the Risks of Contrast-Associated Acute Kidney Injury" Tomography 10, no. 7: 1064-1073. https://doi.org/10.3390/tomography10070080
APA StyleSorgun, O., Karaali, R., Arıkan, C., Kanter, E., & Yurtsever, G. (2024). Emergency CT Scans: Unveiling the Risks of Contrast-Associated Acute Kidney Injury. Tomography, 10(7), 1064-1073. https://doi.org/10.3390/tomography10070080