Investigation of the Frequency of Coronary Artery Anomalies in MDCT Coronary Angiography and Comparison of Atherosclerotic Involvement between Anomaly Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. MDCTCA Scanning Protocol
2.2. MDCTCA Imaging Protocol for Coronary Artery Disease
2.3. Statistical Analyses
3. Results
4. Discussion
5. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganga, K.P.; Goyal, A.; Ojha, V.; Deepti, S.; Sharma, S.; Kumar, S. Prevalence Rate of CCAA and CV in Adult Indian Patients Undergoing CTCA. Indian J. Radiol. Imaging 2021, 31, 138–149. [Google Scholar] [PubMed]
- Sidhu, N.S.; Wander, G.S.; Monga, A.; Kaur, A. Incidence, Characteristics and Atherosclerotic Involvement of Coronary Artery Anomalies in Adult Population Undergoing Catheter Coronary Angiography. Cardiol. Res. 2019, 10, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Gentile, F.; Castiglione, V.; De Caterina, R. Coronary Artery Anomalies. Circulation 2021, 144, 983–996. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Basso, C.; Rizzoli, G.; Schiavon, M.; Thiene, G. Does Sports Activity Enhance the Risk of Sudden Death in Adolescentsand and Young Adults? JACC 2003, 42, 1959–1963. [Google Scholar] [CrossRef]
- Drezner, J.A.; Malhotra, A.; Prutkin, J.M.; Papadakis, M.; Harmon, K.G.; Asif, I.M.; Owens, D.S.; Marek, J.C.; Sharma, S. Return to play with hypertrophic cardiomyopathy: Are we moving too fast? A critical review. Br. J. Sports Med. 2021, 55, 1041–1048. [Google Scholar] [CrossRef]
- Thijssen, C.G.E.; Bons, L.R.; Gökalp, A.L.; Van Kimmenade, R.R.J.; Mokhles, M.M.; Pelliccia, A.; Takkenberg, J.J.M.; Roos-Hesselink, J.W. Exercise and sports participation in patients with thoracic aortic disease: A review. Expert Rev. Cardiovasc. Ther. 2019, 17, 251–266. [Google Scholar] [CrossRef]
- Mascia, G.; Arbelo, E.; Solimen, F.; Giaccardi, M.; Brugada, R.; Brugada, J. The long-QT syndrome and exercise practice: Then ever-ending debate. J. Cardiovasc. Electrophysiol. 2018, 29, 489–496. [Google Scholar] [CrossRef]
- Mascia, G.; DellaBona, R.; Ameri, P.; Canepa, M.; Porto, I.; Brignole, M. Brugada syndrome and syncope: A systematic review. J. Cardiyovasc. Electrophysiol. 2020, 31, 3334–3338. [Google Scholar] [CrossRef]
- Lanjewar, C.P.; Kumar, D.; Sabnis, G.R.; Jare, M.; Phutane, M.; Shah, H.C.; Reddy, S.; Borgaonkar, D.; Thummar, A.; Kerkar, P.G. Anomalous origin of coronary artery from the opposite aortic sinus of Valsalva-a single center experience with a therapeutic conundrum. Indian Heart J. 2021, 73, 289–294. [Google Scholar] [CrossRef]
- Greenberg, M.A.; Fish, B.G.; Spindola-Franco, H. Congenital anomalies of the coronary arteries. Classification and significance. Radiol. Clin. N. Am. 1989, 27, 1127–1146. [Google Scholar]
- Tharwat, M.; El Ashtokhy, M.A.; Mahfouz, R.A.; Ibrahim, A.A. Angiographic study of anatomical variations of coronary arteries by using diagnostic catheter. Zagazig Univ. Med. J. 2015, 20, 826–833. [Google Scholar] [CrossRef]
- Somashekhara, G. Clinical and angiographic profile of coronary artery anomalies in patients undergoing coronary angiography. J. Cardiovasc. Med. Surg. 2017, 3, 167–174. [Google Scholar]
- Kumar, P.; Bhatia, M. Coronary Artery Disease Reporting and Data System: A Comprehensive Review. J. Cardiovasc. Imaging 2022, 30, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Ete, T.; Kavi, G.; Mishra, A.; Jha, P.K.; Malviya, A.; Megeji, R.D. Coronary artery ectasia, an enigma in cardiology: A case report with review of literature. Heart India 2016, 4, 149–152. [Google Scholar]
- Mavrogeni, S. Coronary artery ectasia: From diagnosis to treatment. Hellenic. J. Cardiol. 2010, 51, 158–163. [Google Scholar]
- Yamanaka, O.; Hobbs, R.E. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Catheter. Cardiovasc. Diagn. 1990, 21, 28–40. [Google Scholar] [CrossRef]
- Yildiz, A.; Okcun, B.; Peker, T.; Arslan, C.; Olcay, A.; Bulent, V. Prevalence of coronary artery anomalies in 12,457 adult patients who underwent coronary angiography. Clin. Cardiol. 2010, 33, 60–64. [Google Scholar] [CrossRef]
- Angelini, P.; Velasco, J.A.; Flamm, S. Coronary anomalies: Incidence, pathophysiology, and clinical relevance. Circulation 2002, 105, 2449–2454. [Google Scholar] [CrossRef]
- Greenspan, M.; Iskandrian, A.S.; Catherwood, E.; Kimbiris, D.; Bemis, C.E.; Segal, B.L. Myocardial bridging of the LAD: Evaluation using exercise thallium-201 myocardial scintigraphy. Catheter. Cardiovasc. Diagn. 1980, 6, 173–180. [Google Scholar] [CrossRef]
- Spindola-Franco, H.; Grose, R.; Solomon, N. Dual left anterior descending coronary artery: Angiographic description of important variants and surgical implications. Am. Heart J. 1983, 105, 445–455. [Google Scholar] [CrossRef]
- Kaku, B.; Shimizu, M.; Yoshio, H.; Ino, H.; Mizuno, S.; Kanaya, H.; Ishise, S.; Mabuchi, H. Clinical features of prognosis of Japanese patients with anomalous origin of the coronary artery. Jpn. Circ. J. 1996, 60, 731–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namgung, J.; Kim, J.A. The prevalence of coronary anomalies in a single center of Korea: Origination, course, and termination anomalies of aberrant coronary arteries detected by ECG-gated cardiac MDCT. BMC Cardiovasc. Disord. 2014, 14, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawale, J.M.; Chaurasia, A.S.; Nalawade, D.D.; Choudalwar, P.; Borikar, N.; Tiwari, D. Study of clinical profille, incidence, pattern, and atherosclerotic involvement of congenital coronary artery anomalies in adults undergoing coronary angiography: A study from a tertiary care institute in western part of India. Heart India 2018, 6, 133–140. [Google Scholar] [CrossRef]
- Eid, A.H.; Itani, Z.; Al-Tannir, M.; Sayegh, S.; Samaha, A. Primary congenital anomalies of the coronary arteries and relation to atherosclerosis: An angiographic study in Lebanon. J. Cardiothorac. Surg. 2009, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Seo, J.B.; Do, K.H.; Heo, J.N.; Lee, J.S.; Song, J.W.; Choe, Y.H.; Kim, T.H.; Yong, H.S.; Choi, S.I.; et al. Coronary artery anomalies: Classification and ECG-gated multi-detector row CT findings with angiographic correlation. Radiographics 2006, 26, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Marwah, A.; Shrivastva, S. Anomalous origin of right coronary artery from pulmonary artery. Ann. Pediatric Cardiol. 2012, 5, 95–96. [Google Scholar]
- Ozyurtlu, F.; Acet, H.; Bilik, M.Z.; Tasal, A. A Rare Coronary Artery Anomaly: Single Coronary Artery Originate from Right Sinus Valsalva R-IIP Sub-Group Type. Cardiol. Res. 2012, 3, 140–142. [Google Scholar] [CrossRef] [Green Version]
- Pergola, V.; Cabrelle, G.; Barbiero, G.; Dellino, C.M.; Reffo, E.; Di Salvo, G.; Motta, R. Single coronary artery originating from right sinus. Role of MDCT and a review of literature. Monaldi Arch. Chest Dis. 2021, 92. [Google Scholar] [CrossRef]
- Yun, G.; Nam, T.H.; Chun, E.J. Coronary artery fistulas: Pathophysiology, imaging findings, and management. Radiographics 2018, 38, 688–703. [Google Scholar] [CrossRef]
- Challoumas, D.; Pericleous, A.; Dimitrakaki, I.A.; Danelatos, C.; Dimitrakakis, G. Coronary arteriovenous fistulae: A review. Int. J. Angiol. 2014, 23, 1–10. [Google Scholar]
- Brothers, J.A.; Kim, T.S.; Fogel, M.A.; Whitehead, K.K.; Tonia, M.; Morrison, M.S.M.; Paridon, S.M.; Harris, M.A. Cardiac magnetic resonance imaging characterizes stenosis, perfusion, and fibrosis preoperatively and postoperatively in children with anomalous coronary arteries. J. Thorac. Cardiovasc. Surg. 2016, 152, 205–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.P.; Iung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur. Heart J. 2021, 42, 563645. [Google Scholar] [CrossRef] [PubMed]
- Stout, K.K.; Daniels, C.J.; Aboulhosn, J.A.; Bozkurt, B.; Broberg, C.S.; Colman, J.M.; Crumb, S.R.; Joseph, A.; Dearani, J.A.; Fuller, S.; et al. 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 73, e81–e192. [Google Scholar] [CrossRef] [PubMed]
Congenital Coronary Artery Anomalies |
---|
|
|
|
|
|
|
|
|
|
|
|
|
Coronary Artery Anomalies | n (%) |
---|---|
Origin Anomalies n = 37 (27.2%) | |
High take-off | 3 (2.2) |
High take-off RCA | 3(2.2) |
Multiple ostium | 12 (8.8) |
No LMCA + LAD and LCX orginating from left coronary sinus | 12 (8.8) |
Single coronary artery | 2 (1.5) |
Origin of the coronary artery from the pulmonary artery | 1 (0.7) |
RCA orginating from the pulmonary artery (ARCAPA syndrome) | 1(0.7) |
Origin of the coronary artery from the contralateral or non-coronary sinus | 19 (13.9) |
RCA orginating from the left coronary sinus | 14 (10.2) |
LCX orginating from the right coronary sinus | 2 (1.5) |
LMCA orginating from the right coronary sinus | 1 (0.7) |
RCA orginating from the non-coronary sinus | 2 (1.5) |
Course Anomalies n = 97 (71.3%) | |
Myocardial bridging | 57 (41.9) |
LAD myocardial bridging | 54 (39.7) |
LAD and LCX myocardial bridging | 3 (2.2) |
Artery duplication | 40 (29.4) |
LAD duplication | 40 (29.4) |
Termination Anomalies n = 2 (1.5%) | |
Coronary arterial fistulas | 2 (1.5) |
Left atrium-PDA fistula | 1 (0.75) |
Pulmonary artery-LAD fistula | 1 (0.75) |
Non-cardiac termination | 0 (0) |
Total n = 136 (100%) | 136 (100) |
Feature | Origin A | Course A | Termination A | Total | p * |
---|---|---|---|---|---|
(n = 37) | (n = 97) | (n = 2) | (n = 136) | ||
n (%) | n (%) | n (%) | n (%) | ||
Female | 18 (48.6) | 38 (39.2) | 2 (100) | 58 (42.6) | 0.320 |
Male | 38 (39.2) | 59 (60.8) | 0 (0) | 78 (57.4) | |
Mean Age ± SD | 59.1 ± 11.9 | 57.0 ±12.0 | 60.5 ± 7.8 | 57.6 ± 11.9 | 0.373 |
Hypertension | 21 (56.8) | 43 (44.3) | 0 (0) | 64 (47.1) | 0.198 |
Diabetes Mellitus | 3 (8.1) | 22 (22.7) | 0 (0) | 25 (18.4) | 0.053 |
Hypercholesterolemia | 20 (54.1) | 39 (40.2) | 1 (50) | 60 (44.1) | 0.149 |
Smoking history | 10 (27.0) | 38 (39.2) | 0 (0) | 48 (35.3) | 0.190 |
Family history | 18 (48.6) | 40 (41.2) | 0 (0) | 58 (42.6) | 0.439 |
Feature | Origin A | Course A | Termination A | Total | p ** |
---|---|---|---|---|---|
(n = 37) | (n = 97) | (n = 2) | (n = 136) | ||
n (%) | n (%) | n (%) | n (%) | ||
CAD-RADS 0 | 16 (43.2) | 60 (61.9) | 1 (50.0) | 77 (56.6) | |
CAD-RADS 1 | 8 (21.6) | 13 (13.4) | 1 (50.0) | 22 (16.2) | |
CAD-RADS 2 | 5 (13.5) | 12 (12.4) | 0 (0) | 17 (12.5) | |
CAD-RADS 3 | 4 (10.8) | 9 (9.3) | 0 (0) | 13 (9.6) | 0.220 |
CAD-RADS 4 | 3 (8.1) | 3 (3.1) | 0 (0) | 6 (4.4) | |
CAD-RADS 5 | 1 (2.7) | 0 (0) | 0 (0) | 1 (0.7) | |
CAD-RADS 0,1,2 | 29 (78.4) | 85 (87.6) | 2 (100) | 116 (85.3) | 0.179 |
CAD-RADS 3,4,5 | 8 (21.6) | 12 (12.4) | 0 (0) | 20 (14.7) | |
Number of vessels | |||||
affected * | |||||
1 | 10 (27.0) | 15 (15.5) | 1 (50) | 26 (19.1) | |
2 | 5 (13.5) | 11 (11.3) | 0 (0) | 16 (11.8) | |
3 | 5 (13.5) | 6 (6.2) | 0 (0) | 11 (8.1) | 0.312 |
4 | 1 (2.7) | 4 (4.1) | 0 (0) | 5 (3.7) | |
5 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
6 | 0 (0) | 1 (1.0) | 0 (0) | 1 (0.7) |
Characteristic | Normal Vessel Total n = 387 n (%) | Vessel with Anomaly Total n = 157 n (%) | p |
---|---|---|---|
Atherosclerotic involvement | 69 (17.8) | 45 (28.7) | 0.005 |
No atherosclerotic involvement | 318 (82.2) | 112 (71.3) | |
≥50% stenosis | 14 (3.6) | 13 (8.3) | 0.023 |
Normal or <50% stenosis | 373 (96.4) | 144 (91.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şahin, T.; Ilgar, M. Investigation of the Frequency of Coronary Artery Anomalies in MDCT Coronary Angiography and Comparison of Atherosclerotic Involvement between Anomaly Types. Tomography 2022, 8, 1631-1641. https://doi.org/10.3390/tomography8030135
Şahin T, Ilgar M. Investigation of the Frequency of Coronary Artery Anomalies in MDCT Coronary Angiography and Comparison of Atherosclerotic Involvement between Anomaly Types. Tomography. 2022; 8(3):1631-1641. https://doi.org/10.3390/tomography8030135
Chicago/Turabian StyleŞahin, Tuna, and Mehtap Ilgar. 2022. "Investigation of the Frequency of Coronary Artery Anomalies in MDCT Coronary Angiography and Comparison of Atherosclerotic Involvement between Anomaly Types" Tomography 8, no. 3: 1631-1641. https://doi.org/10.3390/tomography8030135
APA StyleŞahin, T., & Ilgar, M. (2022). Investigation of the Frequency of Coronary Artery Anomalies in MDCT Coronary Angiography and Comparison of Atherosclerotic Involvement between Anomaly Types. Tomography, 8(3), 1631-1641. https://doi.org/10.3390/tomography8030135