Breath-Hold Diving-Related Decompression Sickness with Brain Involvement: From Neuroimaging to Pathophysiology
Abstract
:1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schipke, J.D.; Gams, E.; Kallweit, O. Decompression sickness following breath-hold diving. Res. Sports Med. 2006, 14, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, F.; Fahlman, A.; Gardette, B.; Kohshi, K. Decompression sickness in breath-hold divers: A review. J. Sports Sci. 2009, 27, 1519–1534. [Google Scholar] [CrossRef] [PubMed]
- Vann, R.D.; Butler, F.K.; Mitchell, S.J.; Moon, R.E. Decompression illness. Lancet 2011, 377, 153–164. [Google Scholar] [CrossRef]
- Matsuo, R.; Kamouchi, M.; Arakawa, S.; Furuta, Y.; Kanazawa, Y.; Kitazono, T. Magnetic Resonance Imaging in Breath-Hold Divers with Cerebral Decompression Sickness. Case Rep. Neurol. 2014, 6, 23–27. [Google Scholar] [CrossRef]
- Kamtchum Tatuene, J.; Pignel, R.; Pollak, P.; Lovblad, K.O.; Kleinschmidt, A.; Vargas, M.I. Neuroimaging of diving-related decompression illness: Current knowledge and perspectives. AJNR Am. J. Neuroradiol. 2014, 35, 2039–2044. [Google Scholar] [CrossRef] [Green Version]
- Kohshi, K.; Denoble, P.J.; Tamaki, H.; Morimatsu, Y.; Ishitake, T.; Lemaître, F. Decompression Illness in Repetitive Breath-Hold Diving: Why Ischemic Lesions Involve the Brain? Front. Physiol. 2021, 12, 711850. [Google Scholar] [CrossRef] [PubMed]
- Hadanny, A.; Harofeh, A.; Efrati, S. Delayed blood-brain barrier disruption after shallow-water diving demonstrated by magnetic resonance imaging. Diving Hyperb. Med. 2015, 45, 116–120. [Google Scholar]
- Desola, J. Enfermedad por descompresión. Medicina subacuática (I). JANO 2008, 1706, 43–51. [Google Scholar]
- Saadi, A.; Ferenczi, E.A.; Reda, H. Spinal Decompression Sickness in an Experienced Scuba Diver: A Case Report and Review of Literature. Neurohospitalist 2019, 9, 235–238. [Google Scholar] [CrossRef]
- Germonpré, P.; Lafère, P.; Portier, W.; Germonpré, F.L.; Marroni, A.; Balestra, C. Increased Risk of Decompression Sickness When Diving With a Right-to-Left Shunt: Results of a Prospective Single-Blinded Observational Study (The “Carotid Doppler” Study). Front. Physiol. 2021, 12, 763408. [Google Scholar] [CrossRef]
- Liou, K.; Wolfers, D.; Turner, R.; Bennett, M.; Allan, R.; Jepson, N.; Cranney, G. Patent foramen ovale influences the presentation of decompression illness in SCUBA divers. Heart. Lung Circ. 2015, 24, 26–31. [Google Scholar] [CrossRef]
- Honěk, J.; Šrámek, M.; Šefc, L.; Januška, J.; Fiedler, J.; Horváth, M.; Tomek, A.; Novotný, Š.; Honěk, T.; Veselka, J. High-grade patent foramen ovale is a risk factor of unprovoked decompression sickness in recreational divers. J. Cardiol. 2019, 74, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Billinger, M.; Zbinden, R.; Mordasini, R.; Windecker, S.; Schwerzmann, M.; Meier, B.; Seiler, C. Patent foramen ovale closure in recreational divers: Effect on decompression illness and ischaemic brain lesions during long-term follow-up. Heart 2011, 97, 1932–1937. [Google Scholar] [CrossRef]
- Gempp, E.; Blatteau, J.-E. Neurological disorders after repetitive breath-hold diving. Aviat. Space Environ. Med. 2006, 77, 971–973. [Google Scholar]
- Vollmann, R.; Lamperti, M.; Magyar, M.; Simbrunner, J. Magnetic resonance imaging of the spine in a patient with decompression sickness. Clin. Neuroradiol. 2011, 21, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Kohshi, K.; Katoh, T.; Abe, H.; Okudera, T. Neurological accidents caused by repetitive breath-hold dives: Two case reports. J. Neurol. Sci. 2000, 178, 66–69. [Google Scholar] [CrossRef]
- Accurso, G.; Cortegiani, A.; Caruso, S.; Danile, O.; Garbo, D.; Iozzo, P.; Vitale, F.; Raineri, S.M.; Gregoretti, C.; Giarratano, A. Two episodes of Taravana syndrome in a breath-hold diver with hyperhomocysteinemia. Clin. Case Rep. 2018, 6, 817–820. [Google Scholar] [CrossRef] [Green Version]
- Kohshi, K.; Tamaki, H.; Lemaître, F.; Okudera, T.; Ishitake, T.; Denoble, P.J. Brain damage in commercial breath-hold divers. PLoS ONE 2014, 9, e105006. [Google Scholar] [CrossRef]
- Cortegiani, A.; Foresta, G.; Strano, G.; Strano, M.T.; Montalto, F.; Garbo, D.; Raineri, S.M. An atypical case of Taravana syndrome in a breath-hold underwater fishing champion: A case report. Case Rep. Med. 2013, 2013, 939704. [Google Scholar] [CrossRef] [PubMed]
- Undersea and Hyperbaric Medical Society (UHMS). UHMS Best Practice Guidelines—Prevention and Treatment of Decompression Sickness and Arterial Gas Embolism; Undersea and Hyperbaric Medical Society (UHMS): North Palm Beach, FL, USA, 2011. [Google Scholar]
- Naval Sea Systems Command. Treatment of Decompression Sickness. In US Navy Diving Manual; Revision 6; Naval Sea Systems Command: Washington, DC, USA, 2008. [Google Scholar]
- Mehrabian, H.; Detsky, J.; Soliman, H.; Sahgal, A.; Stanisz, G.J. Advanced Magnetic Resonance Imaging Techniques in Management of Brain Metastases. Front. Oncol. 2019, 9, 440. [Google Scholar] [CrossRef]
- Sánchez-Villalobos, J.M.; Serna-Berna, A.; Salinas-Ramos, J.; Escolar-Pérez, P.P.; Martínez-Alonso, E.; Achel, D.G.; Alcaraz, M. Volumetric modulated arc radiosurgery for brain metastases from breast cancer: A single-center study. Colomb. Med. 2021, 52, e2004567. [Google Scholar] [CrossRef] [PubMed]
- Doelken, M.; Lanz, S.; Rennert, J.; Alibek, S.; Richter, G.; Doerfler, A. Differentiation of cytotoxic and vasogenic edema in a patient with reversible posterior leukoencephalopathy syndrome using diffusion-weighted MRI. Diagn. Interv. Radiol. 2007, 13, 125–128. [Google Scholar] [PubMed]
- Sener, R.N. Diffusion MRI: Apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Comput. Med. Imaging Graph. 2001, 25, 299–326. [Google Scholar] [CrossRef]
- James, P.B. Hyperbaric oxygenation in fluid microembolism. Neurol. Res. 2007, 29, 156–161. [Google Scholar] [CrossRef]
- Chryssanthou, C.; Springer, M.; Lipschitz, S. Blood-brain and blood-lung barrier alteration by dysbaric exposure. Undersea Biomed. Res. 1977, 4, 117–129. [Google Scholar]
- Nohara, A.; Yusa, T. Reversibility in blood-brain barrier, microcirculation, and histology in rat brain after decompression. Undersea Hyperb. Med. 1997, 24, 15–21. [Google Scholar]
- Chryssanthou, C.; Palaia, T.; Goldstein, G.; Stenger, R. Increase in blood-brain barrier permeability by altitude decompression. Aviat. Space Environ. Med. 1987, 58, 1082–1086. [Google Scholar]
- Zhang, K.; Jiang, Z.; Ning, X.; Yu, X.; Xu, J.; Buzzacott, P.; Xu, W. Endothelia-Targeting Protection by Escin in Decompression Sickness Rats. Sci. Rep. 2017, 7, 41288. [Google Scholar] [CrossRef] [Green Version]
- Theunissen, S.; Guerrero, F.; Sponsiello, N.; Cialoni, D.; Pieri, M.; Germonpré, P.; Obeid, G.; Tillmans, F.; Papadopoulou, V.; Hemelryck, W.; et al. Nitric oxide-related endothelial changes in breath-hold and scuba divers. Undersea Hyperb. Med. 2013, 40, 135–144. [Google Scholar] [PubMed]
- Theunissen, S.; Schumacker, J.; Guerrero, F.; Tillmans, F.; Boutros, A.; Lambrechts, K.; Mazur, A.; Pieri, M.; Germonpré, P.; Balestra, C. Dark chocolate reduces endothelial dysfunction after successive breath-hold dives in cool water. Eur. J. Appl. Physiol. 2013, 113, 2967–2975. [Google Scholar] [CrossRef]
- Madden, L.A.; Laden, G. Gas bubbles may not be the underlying cause of decompression illness—The at-depth endothelial dysfunction hypothesis. Med. Hypotheses 2009, 72, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Madden, L.A.; Chrismas, B.C.; Mellor, D.; Vince, R.V.; Midgley, A.W.; McNaughton, L.R.; Atkin, S.L.; Laden, G. Endothelial function and stress response after simulated dives to 18 msw breathing air or oxygen. Aviat. Space Environ. Med. 2010, 81, 41–45. [Google Scholar] [CrossRef]
- Anderson, R.-C.; Patel, V.; Sheikh-Bahaei, N.; Liu, C.S.J.; Rajamohan, A.G.; Shiroishi, M.S.; Kim, P.E.; Go, J.L.; Lerner, A.; Acharya, J. Posterior Reversible Encephalopathy Syndrome (PRES): Pathophysiology and Neuro-Imaging. Front. Neurol. 2020, 11, 463. [Google Scholar] [CrossRef]
- Fischer, M.; Schmutzhard, E. Posterior reversible encephalopathy syndrome. J. Neurol. 2017, 264, 1608–1616. [Google Scholar] [CrossRef] [Green Version]
- Lamy, C.; Oppenheim, C.; Mas, J.L. Posterior reversible encephalopathy syndrome. Handb. Clin. Neurol. 2014, 121, 1687–1701. [Google Scholar] [CrossRef]
- Andreux, F.; Marro, B.; El Khoury, N.; Seilhean, D.; Alamowitch, S. Reversible encephalopathy associated with cholesterol embolism syndrome: Magnetic resonance imaging and pathological findings. J. Neurol. Neurosurg. Psychiatry 2007, 78, 180–182. [Google Scholar] [CrossRef] [Green Version]
- Fugate, J.E.; Claassen, D.O.; Cloft, H.J.; Kallmes, D.F.; Kozak, O.S.; Rabinstein, A.A. Posterior reversible encephalopathy syndrome: Associated clinical and radiologic findings. Mayo Clin. Proc. 2010, 85, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Fitz-Clarke, J.R. Breath-Hold Diving. Compr. Physiol. 2018, 8, 585–630. [Google Scholar] [CrossRef]
- Kjeld, T.; Pott, F.C.; Secher, N.H. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans. J. Appl. Physiol. 2009, 106, 1243–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, H.; Ibaraki, M.; Kanno, I.; Fukuda, H.; Miura, S. Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J. Cereb. Blood Flow Metab. 2005, 25, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Przybyłowski, T.; Bangash, M.-F.; Reichmuth, K.; Morgan, B.J.; Skatrud, J.B.; Dempsey, J.A. Mechanisms of the cerebrovascular response to apnoea in humans. J. Physiol. 2003, 548, 323–332. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Villalobos, J.M.; Fortuna-Alcaraz, M.L.; Serrano-Velasco, L.; Pujante-Escudero, Á.; Garnés-Sánchez, C.M.; Pérez-Garcilazo, J.E.; Olea-González, A.; Pérez-Vicente, J.A. Breath-Hold Diving-Related Decompression Sickness with Brain Involvement: From Neuroimaging to Pathophysiology. Tomography 2022, 8, 1172-1183. https://doi.org/10.3390/tomography8030096
Sánchez-Villalobos JM, Fortuna-Alcaraz ML, Serrano-Velasco L, Pujante-Escudero Á, Garnés-Sánchez CM, Pérez-Garcilazo JE, Olea-González A, Pérez-Vicente JA. Breath-Hold Diving-Related Decompression Sickness with Brain Involvement: From Neuroimaging to Pathophysiology. Tomography. 2022; 8(3):1172-1183. https://doi.org/10.3390/tomography8030096
Chicago/Turabian StyleSánchez-Villalobos, José Manuel, María Lorenza Fortuna-Alcaraz, Laura Serrano-Velasco, Ángel Pujante-Escudero, Carmen María Garnés-Sánchez, Jorge Edverto Pérez-Garcilazo, Agustín Olea-González, and José Antonio Pérez-Vicente. 2022. "Breath-Hold Diving-Related Decompression Sickness with Brain Involvement: From Neuroimaging to Pathophysiology" Tomography 8, no. 3: 1172-1183. https://doi.org/10.3390/tomography8030096