Systematic Review of Newborn Screening Programmes for Spinal Muscular Atrophy
Abstract
:1. Introduction
2. Review Methods
2.1. Aims of Review
2.2. Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Study Selection and Data Extraction
2.5. Risk of Bias Assessment
2.6. Calculation of Outcome Measures
2.7. Synthesis Methods
3. Results
3.1. Volume, Type and Setting of Included Studies
Study, Location | Duration (Dates) | Pilot or Routine | Area or Nationwide | Index Test: Method | Index Test: 2nd Tier (S+) | Index Test: Type | Index Test: Multiplex? | Confirmatory Test at SC (S+) | SMN2 Copy No Test (S+) | N SMA Cases | N Screened | Prevalence |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Overviews of geographical areas | ||||||||||||
Global overview [58] | Various | Various | Various | Various | Various | Various | Various | Various | Various | 288 | 3,674,277 | 1 in 12,758 |
USA overview (29 states) [60,61] | Prevalence data for 2018–2020 | Various | Various | Various | Various | Various | Various | Various | Various | 219 | 3,185,560 | 1 in 14,546 |
Canada overview [59] | Various | Various | Various | qPCR; MLPA; MassArray | Various | Various | SMA+SCID | MLPA | Various | - | - | - |
Prospective screening cohort studies | ||||||||||||
UK (Thames Valley) [9] | 8 mo (dates NR) | Pilot | Area | - | - | - | SMA only | - | - | - | 5691 | - |
Belgium (Southern) [10,11,12] | 3 yr (March 2018 to February 2021) | Pilot | Area | RT-qPCR | Repeat PCR x2 then MLPA | Own test | SMA only | MLPA | MLPA (DBS) + seq (new sample) | 10 | 136,339 | 1 in 13,634 |
Germany (Bavaria + NRW) [13,14,15,16,17] | 2 yr (January 2018 to January 2020) | Pilot | Area | qPCR | - | Own test | SMA only | MLPA | MLPA (new sample) | 43 | 297,163 | 1 in 6910 |
Germany (nationwide) [17] | 6 mo (October 2021 to March 2022) | Routine | Nationwide | qPCR | - | - | SMA only | Y (lab discretion) | Lab discretion (new sample) | - | - | 1 in 8554 |
Germany (Heidelberg) [18] | 9 mo (July 2021 to March 2022) | Pilot then routine | Area | qPCR | Repeat PCR | Own test | SMA, SCID, SCD | Y (method NR) | Y (method NR; new sample) | 14 | 96,015 | 1 in 6857 |
Italy (Lazio and Tuscany) [19] | 2 yr (September 2019 to September 2021) | Pilot | Area | RT-qPCR | Repeat PCR | Own test | SMA only | RFLP-PCR + splicing variants | Semi-quant qPCR (new sample) | 15 | 90,885 | 1 in 6059 |
Italy (Liguria) [20] | 1 yr (NR dates) | Pilot | Area | RT-PCR | - | - | SMA+SCID | MLPA | - | 2 | 8434 | 1 in 4217 |
Latvia [21] | 10 mo (February 2021 to Nov 2021) | Pilot | Nationwide | qPCR | Repeat PCR | - | SMA only | qPCR + MLPA | MLPA (new sample) | 2 | 10,411 | 1 in 5205 |
Portugal [22] | - | Pilot | - | RT-PCR | - | Commercial | - | Y (method NR) | Y (method NR; new sample) | 2 | 25,000 | 1 in 12,500 |
Poland (13 districts) [23] | 1 yr (from April 2021) | Routine | Area | PCR-HRM | PCR-RFLP or MLPA | Commercial | - | MLPA | - | 21 | 140,000 | 1 in 6667 |
Ukraine (near Kyiv) [24] | 7 mo (October 2022 to May 2023) | Pilot | Area | - | - | - | - | - | - | 11 | 65,880 | 1 in 5989 |
Norway (nationwide) [25] | 19 mo (September 2021 to April 2023) | Routine | Nationwide | qPCR | - | - | SMA+SCID | ddPCR then whole-gen seq. If het del: check point mutation | ddPCR, then whole-gen seq (NR location) | 10 | - | - |
Australia (NSW + ACT) [26,27,28] | 2.5 yr (August 2018 to January 2021) | Pilot | Area | RT-PCR 4-plex | - | Commercial | SMA+SCID | MLPA | ddPCR + qPCR (new sample) | 23 | 252,081 | 1 in 10,960 |
Australia (Queensland) [29] | 2 wk (in March 2021) | Pilot | Area | Next-gen seq | - | Commercial | SMA only | MLPA | - | 0 | 2552 | - |
Canada (Ontario) [30,31] | 1 yr (from January 2020) | Pilot then routine | Area | PCR (MassArray) | MLPA | Own test | SMA, SCID hearing | Y (method NR) | MLPA (DBS); Y (method NR; new sample) | 5 | 139,800 | 1 in 27,960 |
Canada (Alberta) [32] | 1 yr (February 2022 to February 2023) | Pilot | Area | qPCR | Repeat PCR x2 | - | SMA+SCID | MLPA | MLPA (new sample) | 5 | 47,005 | 1 in 9401 |
USA (California) [33] | 18 mo (June 2020 to December 2021) | Routine | Area | RT-PCR | Repeat PCR + ddPCR | - | SMA+SCID | Multiplex PCR | ddPCR (DBS); PCR (new sample) | 34 | 628,791 | 1 in 18,494 |
USA (Georgia) [34] | 2 yr (February 2019 to February 2021) | Pilot then routine | Area | RT-PCR | - | - | SMA+SCID | Y (method NR) | Y (method NR; new sample) | 16 | 301,418 | 1 in 18,839 |
USA (Kentucky) [35] | 2 yr (August 2019 to July 2021) | Routine | Area | - | - | - | SMA+SCID | Y (method NR) | Y (method NR; new sample) | 11 | 108,511 | 1 in 9865 |
USA (Massachusetts) [36,37] | 3 yr (January 2018 to January 2021) | Routine | Area | RT-qPCR | Tier 2: exon 7 variant. Tier 3: sequencing | Own test | SMA+SCID | Y (method NR) | Sequencing (DBS); Y (method NR; new sample) | 9 | 179,467 | 1 in 19,941 |
USA (New York State) [38,39] | 3 yr (October 2018 to September 2021) | Routine | Area | RT-qPCR | Repeat PCR | Commercial | SMA+SCID | Y (method NR) | qPCR + ddPCR (DBS); Y (method NR; new sample) | 34 | Nearly 650,000 | 1 in 19,118 |
USA (3 hospitals New York City) [40] | 1 yr (January 2016 to January 2017) | Pilot | Area | RT-qPCR | Repeat PCR | Commercial | SMA+SCID | Y (method NR) | Y (method NR; new sample) | 1 | 3826 | 1 in 3826 |
USA (North Carolina) [41] | 26 mo (October 2018 to December 2020) | Pilot | Area | RT-qPCR | Repeat PCR | Commercial | SMA only | ddPCR or MLPA-seq | Y (method NR; new sample) | 1 | 12,065 | 1 in 12,065 |
USA (Wisconsin) [42] | 1 yr (October 2019 to October 2020) | Routine | Area | Multiplex RT-PCR | ddPCR on new DBS punch | Own test | SMA+SCID | Y (method NR) | ddPCR (DBS); Y (method NR; new sample) | 6 | 60,984 | 1 in 10,164 |
USA (Utah) [43] | 5 yr (2018 to 2023) | Routine | Area | - | - | - | - | - | - | 13 | 239,844 | 1 in 18,450 |
Brazil (Sao Paulo + Rio Grande do Sul) [45] | NR | Pilot | Area | RT-qPCR | - | Commercial | SMA only | MLPA | MLPA (NR location) | 4 | 40,000 | 1 in 10,000 |
Japan (Kumamoto) [46] | 1 yr (February 2021 to January 2022) | Pilot | Area | RT-PCR | - | Commercial | - | qPCR + MLPA | MLPA (NR location) | 1 | 13,587 | 1 in 13,587 |
Japan (Osaka) [47,48] | 8 mo (February 2021 to September 2021) | Pilot | Area | RT-qPCR | - | - | SMA, SCID, BCD | MLPA | MLPA (new sample) | 0 | 22,951 | - |
Japan (Hyogo) [49] | 18 mo (February 2021 to August 2022) | Pilot | Area | RT-qPCR | Repeat PCR | Commercial | - | MLPA + ddPCR | ddPCR (new sample) | 2 | 8336 | 1 in 4168 |
Japan (49 hosp, 23 prefectures) [50] | 15 mo (January 2018 to April 2019) | Pilot | Nationwide | PCR then RT-mCOP-PCR | PCR-RFLP | Own test | - | Y (method NR) | - | 0 | 4157 | - |
Taiwan (University Hospital) [51,52] | 5 yr (November 2014 to December 2019) | Pilot | Area | RT-PCR | ddPCR | - | SMA+SCID | MLPA | ddPCR (DBS) + MLPA (new sample) | 21 | 364,000 | 1 in 17,333 |
China (6 hospitals) [53] | 4 mo (March 2018 to June 2018) | Pilot | Area | DNA mass spectrometry | - | Own test | - | MLPA | MLPA (NR location) | 3 | 29,364 | 1 in 9788 |
Russia (Moscow) [56] | 2.5 yr (August 2019 to January 2022) | Pilot | Area | PCR melting curve | PCR-RFLP | Commercial | SMA only | MLPA + Sanger sequencing | MLPA (new sample) | 3 | 23,405 | 1 in 7801 |
Russia (Saint Petersburg) [57] | 11 mo (January 2022 to November 2022) | Pilot | Area | RT-PCR | Repeat PCR on new DBS punch | Commercial | SMA only | Different RT-PCR + MLPA | Y (method + location NR) | 4 | 36,140 | 1 in 9035 |
Studies using anonymised DBS samples | ||||||||||||
USA (Ohio) [44] | N/A | Anonymised samples | N/A | PCR | Competitive PCR | Own test | SMA only | N/A | Y (method NR; DBS) | - | 40,103 | 1 in 10,026 |
China (Hunan province) [54] | N/A | Anonymised samples | N/A | RT-PCR | - | Own test | SMA only | N/A | - | - | 753 | - |
China (southwest) [55] | N/A | Anonymised samples | N/A | RT-PCR | Repeat PCR + DNA seq | Own test | SMA only | N/A | - | - | 2000 | - |
3.2. Prevalence of SMA from Newborn Screening Studies
3.3. Methodologies of Screening for SMA
3.3.1. Aims of Screening
3.3.2. Methodologies for Initial Screening of DBS Sample
3.3.3. Methodologies for Second-Tier Testing of DBS Sample
3.3.4. Methodologies for Confirmatory Testing in a Specialist Centre
3.3.5. Methodologies of Testing for SMN2 Copy Number
3.4. Test Accuracy Outcomes from Screening Studies
3.4.1. Overview of Test Accuracy Data
3.4.2. Positive Predictive Value
3.4.3. Negative Predictive Value
3.4.4. Sensitivity
3.4.5. Specificity
3.5. False-Negatives, False-Positives, Incomplete Results and Incidental Findings
3.5.1. False-Negative Cases
3.5.2. False-Positive Cases
3.5.3. Initial Incomplete Results
3.5.4. Incidental Findings, Sibling Diagnosis and Sequence Variants
3.6. Risk of Bias in Included Studies
3.7. Timing of Testing Process
3.8. Workflow and Consent Processes
3.9. Organisational Considerations, Implementation and Barriers
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Medline Search Strategy
- exp “Spinal Muscular Atrophies of Childhood”/
- exp Muscular Atrophy, Spinal/
- (werdnig-hoffman or werdnig hoffman).tw.
- (kugelberg-welander or kugelberg welander).tw.
- spinal muscular atroph*.tw.
- or/1–5
- exp Neonatal Screening/
- ((neonat* or newborn?) adj2 (screen* or detect* or diagnos* or test*)).ti,ab.
- 7 or 8
- 6 and 9
Appendix B. List of Case-Control Studies of Newborn Screening for SMA
Country (State/Area) | Reference | Also Reports Cohort Study | Full Reference |
---|---|---|---|
UK | Adams 2021 | Adams SP, Gravett E, Kent N, et al. Screening of Neonatal UK Dried Blood Spots Using a Duplex SMN1 Screening Assay. International Journal of Neonatal Screening 2021;7:26. doi:10.3390/ijns7040069 | |
Belgium | Boemer 2019 | Y | Boemer F, Caberg JH, Dideberg V, et al. Newborn screening for SMA in Southern Belgium. Neuromuscular Disorders 2019;29(5):343–9. doi:10.1016/j.nmd.2019.02.003 |
Germany (Bavaria) | Czibere 2020 | Y | Czibere L, Burggraf S, Fleige T, et al. High-throughput genetic newborn screening for spinal muscular atrophy by rapid nucleic acid extraction from dried blood spots and 384-well qPCR. European Journal of Human Genetics 2020;28:23–30. doi:10.1038/s41431-019-0476-4 |
Germany (Heidelberg) | Tesorero 2023 | Y | Tesorero, R., J. Janda, F. Horster, P. et al. A High-Throughput Newborn Screening Approach for SCID, SMA, and SCD Combining Multiplex QPCR and Tandem Mass Spectrometry. PLoS ONE 18, no. 3 (2023): e0283024. |
Denmark | Gutierrez-Mateo 2019 | Gutierrez-Mateo C, Timonen A, Vaahtera K, et al. Development of a Multiplex Real-Time PCR Assay for the Newborn Screening of SCID, SMA, and XLA. International Journal of Neonatal Screening 2019;5:39. doi:10.3390/ijns5040039. | |
Netherlands | Strunk 2019 | Strunk A, Abbes A, Stuitje AR, et al. Validation of a Fast, Robust, Inexpensive, Two-Tiered Neonatal Screening Test algorithm on Dried Blood Spots for Spinal Muscular Atrophy. International Journal of Neonatal Screening 2019;5:21. doi:10.3390/ijns5020021. | |
Turkey | Cavdarli 2020 | Cavdarli B, Ozturk FN, Guntekin Ergun S, et al. Intelligent Ratio: A New Method for Carrier and Newborn Screening in Spinal Muscular Atrophy. Genetic Testing & Molecular Biomarkers 2020;24:569–77. doi:10.1089/gtmb.2020.0085 | |
Australia (Queensland) | Shum 2023 | Y | Shum BOV, Henner I, cairns A et al. Technical feasibility of newborn screening for spinal muscular atrophy by next-generation DNA sequencing. Frontiers in Genetics 2023;14. |
Canada (Alberta) | Niri 2023 | Y | Niri, F., J. Nicholls, K. Baptista Wyatt, C., et al. Alberta Spinal Muscular Atrophy Newborn Screening-Results from Year 1 Pilot Project. International Journal of Neonatal Screening 9, no. 3 (2023): 27. |
USA (New York State) | Kraszewski 2018 | Y | Kraszewski JN, Kay DM, Stevens CF, et al. Pilot study of population-based newborn screening for spinal muscular atrophy in New York state. Genetics in Medicine 2018;20:608–13. doi:10.1038/gim.2017.152 |
USA (Ohio) | Pyatt 2007 | Pyatt RE, Mihal DC, Prior TW. Assessment of liquid microbead arrays for the screening of newborns for spinal muscular atrophy. Clinical Chemistry 2007;53:1879–85. | |
USA (Ohio) | Pyatt 2006 | Pyatt RE, Prior TW. A feasibility study for the newborn screening of spinal muscular atrophy. Genetics in Medicine 2006;8:428–37. | |
Turkey | Kubar 2023 | Kubar A, Gülsüm Temel S, Beken S et al. A new line method; A direct test in spinal muscular atrophy screening for DBS. Molecular Genetics & Genomic Medicine 2023;0:e2270. | |
USA (North Carolina) | Kucera 2021 | Y | Kucera KS, Taylor JL, Robles VR, et al. A Voluntary Statewide Newborn Screening Pilot for Spinal Muscular Atrophy: Results from Early Check. International Journal of Neonatal Screening 2021;7:21. doi:10.3390/ijns7010020 |
USA (North Carolina) | Taylor 2015 | Taylor JL, Lee FK, Yazdanpanah GK, et al. Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency. Clinical Chemistry 2015;61:412–9. doi:10.1373/clinchem.2014.231019 | |
USA | Vidal-Folch 2018 | Vidal-Folch N, Gavrilov D, Raymond K, et al. Multiplex Droplet Digital PCR Method Applicable to Newborn Screening, Carrier Status, and Assessment of Spinal Muscular Atrophy. Clinical Chemistry 2018;64:1753–61. doi:10.1373/clinchem.2018.293712 | |
Brazil | Romanelli Tavares 2021 | Romanelli Tavares VL, Monfardini F, Lourenco NCV, et al. Newborn Screening for 5q Spinal Muscular Atrophy: Comparisons between Real-Time PCR Methodologies and Cost Estimations for Future Implementation Programs. International Journal of Neonatal Screening 2021;7:11. doi:10.3390/ijns7030053 | |
Brazil | Silva 2023 (abstract) | Silva, Jd, da Silva CM, Zauli DA et al. Molecular Assay Evaluation to SMA and SCID Diagnosis in Newborn Dried Blood Spots (DBS). Clinical Chemistry 2023;69:i236-i237. | |
Japan | Ar Rochmah 2017 | Ar Rochmah M, Harahap NIF, Niba ETE, et al. Genetic screening of spinal muscular atrophy using a real-time modified COP-PCR technique with dried blood-spot DNA. Brain & Development 2017;39:774–82. doi:10.1016/j.braindev.2017.04.015 | |
Japan (Osaka) | Kimizu 2021 | Y | Kimizu T, Ida S, Okamoto K, et al. Spinal Muscular Atrophy: Diagnosis, Incidence, and Newborn Screening in Japan. International Journal of Neonatal Screening 2021;7:20. doi:10.3390/ijns7030045 |
Japan (all) | Shinohara 2019 | Y | Shinohara M, Niba ETE, Wijaya YOS, et al. A Novel System for Spinal Muscular Atrophy Screening in Newborns: Japanese Pilot Study. International Journal of Neonatal Screening 2019;5:41. doi:10.3390/ijns5040041 |
Japan | Wijaya 2021 | Wijaya YOS, Nishio H, Niba ETE, et al. Dried Blood Spot Screening System for Spinal Muscular Atrophy with Allele-Specific Polymerase Chain Reaction and Melting Peak Analysis. Genetic Testing & Molecular Biomarkers 2021;25:293–301. doi:10.1089/gtmb.2020.0312 | |
Japan | Wijaya 2021 | Wijaya YOS, Nishio H, Niba ETE, et al. Detection of Spinal Muscular Atrophy Patients Using Dried Saliva Spots. Genes 2021;12:14. doi:10.3390/genes12101621 | |
Taiwan | Chien 2017 | Y | Chien YH, Chiang SC, Weng WC, et al. Presymptomatic Diagnosis of Spinal Muscular Atrophy Through Newborn Screening. Journal of Pediatrics 2017;190:124-129.e1. doi:10.1016/j.jpeds.2017.06.042 |
Taiwan | Er 2012 | Er T-K, Kan T-M, Su Y-F, et al. High-resolution melting (HRM) analysis as a feasible method for detecting spinal muscular atrophy via dried blood spots. Clinica Chimica Acta 2012;413:1781–5. doi:10.1016/j.cca.2012.06.033 | |
Taiwan | Wang 2021 | Wang KC, Fang CY, Chang CC, et al. A rapid molecular diagnostic method for spinal muscular atrophy. Journal of Neurogenetics 2021;35:29–32. doi:10.1080/01677063.2020.1853721 | |
China | Lin 2019 | Y | Lin Y, Lin CH, Yin X, et al. Newborn Screening for Spinal Muscular Atrophy in China Using DNA Mass Spectrometry. Frontiers in Genetics 2019;10:1255. doi:10.3389/fgene.2019.01255 |
China | Liu 2016 | Y | Liu Z, Zhang P, He X, et al. New multiplex real-time PCR approach to detect gene mutations for spinal muscular atrophy. BMC Neurology 2016;16:141. doi:10.1186/s12883-016-0651-y |
China | Pan 2021 | Y | Pan J, Zhang C, Teng Y, et al. Detection of Spinal Muscular Atrophy Using a Duplexed Real-Time PCR Approach With Locked Nucleic Acid-Modified Primers. Annals of Laboratory Medicine 2021;41:101–7. doi:10.3343/alm.2021.41.1.101 |
Russia | Kiselev 2024 | Y | Kiselev A, Maretina M, Shtykalova S, et al. Establishment of a Pilot Newborn Screening Program for Spinal Muscular Atrophy in Saint Petersburg. IJNS. 2024;10:9. doi: 10.3390/ijns10010009 |
Russia | Nazarov 2023 | Nazarov VD, Cherebillo CC, Lapin SV et al. Detection of SMN1 loss with PCR-based screening test. Bulletin of Russian State Medical University 2023; 0(3):21-27. | |
Unclear | Guo 2021 (abstract) | Guo F, Ou Y, Mathur A, et al. Reducing the time to diagnosis for spinal muscular atrophy. Molecular Genetics and Metabolism 2021;132(Supplement 1):S279. doi:10.1016/S1096-7192%2821%2900513-8 |
References
- Wirth, B. Spinal Muscular Atrophy: In the Challenge Lies a Solution. Trends Neurosci. 2021, 44, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Prior, T.W.; Swoboda, K.J.; Scott, H.D.; Hejmanowski, A.Q. Homozygous SMN1 Deletions in Unaffected Family Members and Modification of the Phenotype by SMN2. Am. J. Med. Genet. Pt. A 2004, 130A, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Paik, J. Risdiplam: A Review in Spinal Muscular Atrophy. CNS Drugs 2022, 36, 401–410. [Google Scholar] [CrossRef]
- Blair, H.A. Onasemnogene Abeparvovec: A Review in Spinal Muscular Atrophy. CNS Drugs 2022, 36, 995–1005. [Google Scholar] [CrossRef]
- Strauss, K.A.; Farrar, M.A.; Muntoni, F.; Saito, K.; Mendell, J.R.; Servais, L.; McMillan, H.J.; Finkel, R.S.; Swoboda, K.J.; Kwon, J.M.; et al. Onasemnogene Abeparvovec for Presymptomatic Infants with Two Copies of SMN2 at Risk for Spinal Muscular Atrophy Type 1: The Phase III SPR1NT Trial. Nat. Med. 2022, 28, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
- Kalkman, S.; Wevers, R.A.; Wijburg, F.A.; Leeflang, M.M.G. A Framework for Evaluating Long-Term Impact of Newborn Screening. Eur. J. Hum. Genet. 2024, 32, 146–149. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M.; QUADAS-2 Group. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529. [Google Scholar] [CrossRef]
- Horton, R.; Volkers, A.; Betts, C.; Ramdas, S.; Servais, L. Feasibility and Uptake of Newborn Screening for Spinal Muscular Atrophy in the UK. Arch. Dis. Child. 2023, 108 (Suppl. S2), A200. [Google Scholar]
- Boemer, F.; Caberg, J.H.; Beckers, P.; Dideberg, V.; di Fiore, S.; Bours, V.; Marie, S.; Dewulf, J.; Marcelis, L.; Deconinck, N.; et al. Three Years Pilot of Spinal Muscular Atrophy Newborn Screening Turned into Official Program in Southern Belgium. Sci. Rep. 2021, 11, 19922. [Google Scholar] [CrossRef]
- Boemer, F.; Caberg, J.H.; Dideberg, V.; Dardenne, D.; Bours, V.; Hiligsmann, M.; Dangouloff, T.; Servais, L. Newborn Screening for SMA in Southern Belgium. Neuromuscul. Disord. 2019, 29, 343–349. [Google Scholar] [CrossRef]
- Betts, C.; Dangouloff, T.; Montague-Johnson, C.; Servais, L. Organisational, Ethical, and Regulatory Considerations When Setting up an NBS Program. J. Neuromuscul. Dis. 2022, 9 (Suppl. S1), S73. [Google Scholar] [CrossRef]
- Vill, K.; Schwartz, O.; Blaschek, A.; Glaser, D.; Nennstiel, U.; Wirth, B.; Burggraf, S.; Roschinger, W.; Becker, M.; Czibere, L.; et al. Newborn Screening for Spinal Muscular Atrophy in Germany: Clinical Results after 2 Years. Orphanet J. Rare Dis. 2021, 16, 153. [Google Scholar] [CrossRef]
- Czibere, L.; Burggraf, S.; Fleige, T.; Gluck, B.; Keitel, L.M.; Landt, O.; Durner, J.; Roschinger, W.; Hohenfellner, K.; Wirth, B.; et al. High-Throughput Genetic Newborn Screening for Spinal Muscular Atrophy by Rapid Nucleic Acid Extraction from Dried Blood Spots and 384-Well QPCR. Eur. J. Hum. Genet. 2020, 28, 23–30. [Google Scholar] [CrossRef]
- Muller-Felber, W.; Vill, K.; Schwartz, O.; Glaser, D.; Nennstiel, U.; Wirth, B.; Burggraf, S.; Roschinger, W.; Becker, M.; Durner, J.; et al. Infants Diagnosed with Spinal Muscular Atrophy and 4 SMN2 Copies through Newborn Screening—Opportunity or Burden? J. Neuromuscul. Dis. 2020, 7, 109–117. [Google Scholar] [CrossRef]
- Vill, K.; Kolbel, H.; Schwartz, O.; Blaschek, A.; Olgemoller, B.; Harms, E.; Burggraf, S.; Roschinger, W.; Durner, J.; Glaser, D.; et al. One Year of Newborn Screening for SMA—Results of a German Pilot Project. J. Neuromuscul. Dis. 2019, 6, 503–515. [Google Scholar] [CrossRef]
- Müller-Felber, W.; Blaschek, A.; Schwartz, O.; Gläser, D.; Nennstiel, U.; Brockow, I.; Wirth, B.; Burggraf, S.; Röschinger, W.; Becker, M.; et al. Newbornscreening SMA—From Pilot Project to Nationwide Screening in Germany. J. Neuromuscul. Dis. 2023, 10, 55–65. [Google Scholar] [CrossRef]
- Tesorero, R.; Janda, J.; Horster, F.; Feyh, P.; Mutze, U.; Hauke, J.; Schwarz, K.; Kunz, J.B.; Hoffmann, G.F.; Okun, J.G. A High-Throughput Newborn Screening Approach for SCID, SMA, and SCD Combining Multiplex QPCR and Tandem Mass Spectrometry. PLoS ONE 2023, 18, e0283024. [Google Scholar] [CrossRef]
- Abiusi, E.; Vaisfeld, A.; Fiori, S.; Novelli, A.; Spartano, S.; Faggiano, M.V.; Giovanniello, T.; Angeloni, A.; Vento, G.; Santoloci, R.; et al. Experience of a 2-Year Spinal Muscular Atrophy NBS Pilot Study in Italy: Towards Specific Guidelines and Standard Operating Procedures for the Molecular Diagnosis. J. Med. Genet. 2022, 60, 697–705. [Google Scholar] [CrossRef]
- Bruno, C.; Aloi, C.; Lanza, F.; Salina, A.; Tappino, B.; Traverso, M.; Pedemonte, M.; Brolatti, N.; Volpi, S.; Zara, F.; et al. Newborn Screening (NBS) Program for the Simultaneous Early Diagnosis of Spinal Muscular Atrophy (SMA) and Severe Combined Immunodeficiency (SCID) in Liguria Region, Italy. Acta Myol. 2022, 41 (Suppl. S1), 55–56. [Google Scholar]
- Gailite, L.; Sterna, O.; Konika, M.; Isakovs, A.; Isakova, J.; Micule, I.; Setlere, S.; Diriks, M.; Auzenbaha, M. New-Born Screening for Spinal Muscular Atrophy: Results of a Latvian Pilot Study. Int. J. Neonatal Screen. 2022, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, H.; Ribeiro, D.; Guimaraes, F.; Pinto, C.; Marcao, A.; Sousa, C.; Carvalho, I.; Lopes, L.; Rodrigues, D.; Rocha, H.; et al. Pilot Study on Newborn Screening for Spinal Muscular Atrophy. Endocr. Metab. Immune Disord. Drug Targets 2024, 24, 26. [Google Scholar] [CrossRef] [PubMed]
- Gos, M.; Fraczyk, M.; Wasiluk, J.; Landowska, A.; Jurzyk, M.; Durda, K.; Szczerba, N.; Wawer, W.; Kubiszyn, P.; Jedrzejowska, M.; et al. Implementation of Newborn Screening for Spinal Muscular Atrophy in Poland—One Year Experience. Eur. J. Hum. Genet. 2023, 31 (Suppl. S1), 678. [Google Scholar]
- Olkhovych, N.; Gorovenko, N.; Servais, L. Universal Newborn Screening for Spinal Muscular Atrophy in Ukraine. Lancet 2023, 402, 288–289. [Google Scholar] [CrossRef] [PubMed]
- Wallace, S.; Orstavik, K.; Rowe, A.; Strand, J. P220 National Newborn Screening for SMA in Norway. Neuromuscul. Disord. 2023, 33 (Suppl. S1), S90. [Google Scholar] [CrossRef]
- D’Silva, A.M.; Kariyawasam, D.S.T.; Best, S.; Wiley, V.; Farrar, M.A.; NSW SMA NBS Study Group. Integrating Newborn Screening for Spinal Muscular Atrophy into Health Care Systems: An Australian Pilot Programme. Dev. Med. Child Neurol. 2022, 64, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Kariyawasam, D.S.T.; Russell, J.S.; Wiley, V.; Alexander, I.E.; Farrar, M.A. The Implementation of Newborn Screening for Spinal Muscular Atrophy: The Australian Experience. Genet. Med. 2020, 22, 557–565. [Google Scholar] [CrossRef]
- Wotton, T.; Tae Kim, W.; Junek, R.; Farrar, M.; Kariyawasam, D.; Ravine, A. Evaluation of the NSW Newborn Screening Pathway for SMA. Twin Res. Hum. Genet. 2023, 26, 57. [Google Scholar]
- Shum, B.O.V.; Henner, I.; Cairns, A.; Pretorius, C.; Wilgen, U.; Barahona, P.; Ungerer, J.P.J.; Bennett, G. Technical Feasibility of Newborn Screening for Spinal Muscular Atrophy by Next-Generation DNA Sequencing. Front. Genet. 2023, 14, 1095600. [Google Scholar] [CrossRef]
- Kernohan, K.D.; McMillan, H.J.; Yeh, E.; Lacaria, M.; Kowalski, M.; Campbell, C.; Dowling, J.J.; Gonorazky, H.; Marcadier, J.; Tarnopolsky, M.A.; et al. Ontario Newborn Screening for Spinal Muscular Atrophy: The First Year. Can. J. Neurol. Sci. 2022, 49, 821–823. [Google Scholar] [CrossRef]
- McMillan, H.J.; Kernohan, K.D.; Yeh, E.; Amburgey, K.; Boyd, J.; Campbell, C.; Dowling, J.J.; Gonorazky, H.; Marcadier, J.; Tarnopolsky, M.A.; et al. Newborn Screening for Spinal Muscular Atrophy: Ontario Testing and Follow-up Recommendations. Can. J. Neurol. Sci. 2021, 48, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Niri, F.; Nicholls, J.; Baptista Wyatt, K.; Walker, C.; Price, T.; Kelln, R.; Hume, S.; Parboosingh, J.; Lilley, M.; Kolski, H.; et al. Alberta Spinal Muscular Atrophy Newborn Screening—Results from Year 1 Pilot Project. Int. J. Neonatal Screen. 2023, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Matteson, J.; Wu, C.H.; Mathur, D.; Tang, H.; Sciortino, S.; Feuchtbaum, L.; Bishop, T.; Sharma, S.C.; Neogi, P.; Fitzgibbon, I.; et al. California’s Experience with SMA Newborn Screening: A Successful Path to Early Intervention. J. Neuromuscul. Dis. 2022, 9, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Elkins, K.; Wittenauer, A.; Hagar, A.F.; Logan, R.; Sekul, E.; Xiang, Y.; Verma, S.; Wilcox, W.R. Georgia State Spinal Muscular Atrophy Newborn Screening Experience: Screening Assay Performance and Early Clinical Outcomes. Am. J. Med. Genet. Part C Semin. Med. Genet. 2022, 190, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Lakhotia, A.; Toupin, D.; Thamann, A.; Jackson, K.; Sevier, D.; Crutcher, A.; Wei, S.; Arora, V.; Asamoah, A.; Robertson, W. Demographic and Clinical Profiles of Neonates Diagnosed with Spinal Muscular Atrophy (SMA) via the Kentucky Newborn Screening (NBS) Program: A Two-Year Experience. In Proceedings of the 74th Annual Meeting of the American Academy of Neurology, AAN, Seattle, WA, USA, 2–7 April 2022; Volume 98. [Google Scholar]
- Hale, J.E.; Darras, B.T.; Swoboda, K.J.; Estrella, E.; Chen, J.Y.H.; Abbott, M.A.; Hay, B.N.; Kumar, B.; Counihan, A.M.; Gerstel-Thompson, J.; et al. Massachusetts’ Findings from Statewide Newborn Screening for Spinal Muscular Atrophy. Int. J. Neonatal Screen. 2021, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Barton, S.; Kordowska, J.; Eaton, R.B.; Counihan, A.M.; Hale, J.E.; Comeau, A.M. Novel Modification of a Confirmatory SMA Sequencing Assay That Can Be Used to Determine SMN2 Copy Number. Int. J. Neonatal Screen. 2021, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Deng, S.; Chiriboga, C.A.; Kay, D.M.; Irumudomon, O.; Laureta, E.; Delfiner, L.; Treidler, S.O.; Anziska, Y.; Sakonju, A.; et al. Newborn Screening for Spinal Muscular Atrophy in New York State: Clinical Outcomes from the First 3 Years. Neurology 2022, 99, e1527–e1537. [Google Scholar] [CrossRef]
- Kay, D.M.; Stevens, C.F.; Parker, A.; Saavedra-Matiz, C.A.; Sack, V.; Chung, W.K.; Chiriboga, C.A.; Engelstad, K.; Laureta, E.; Farooq, O.; et al. Implementation of Population-Based Newborn Screening Reveals Low Incidence of Spinal Muscular Atrophy. Genet. Med. 2020, 22, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Kraszewski, J.N.; Kay, D.M.; Stevens, C.F.; Koval, C.; Haser, B.; Ortiz, V.; Albertorio, A.; Cohen, L.L.; Jain, R.; Andrew, S.P.; et al. Pilot Study of Population-Based Newborn Screening for Spinal Muscular Atrophy in New York State. Genet. Med. 2018, 20, 608–613. [Google Scholar] [CrossRef]
- Kucera, K.S.; Taylor, J.L.; Robles, V.R.; Clinard, K.; Migliore, B.; Boyea, B.L.; Okoniewski, K.C.; Duparc, M.; Rehder, C.W.; Shone, S.M.; et al. A Voluntary Statewide Newborn Screening Pilot for Spinal Muscular Atrophy: Results from Early Check. Int. J. Neonatal Screen. 2021, 7, 20. [Google Scholar] [CrossRef]
- Baker, M.W.; Mochal, S.T.; Dawe, S.J.; Wiberley-Bradford, A.E.; Cogley, M.F.; Zeitler, B.R.; Piro, Z.D.; Harmelink, M.M.; Kwon, J.M. Newborn Screening for Spinal Muscular Atrophy: The Wisconsin First Year Experience. Neuromuscul. Disord. 2022, 32, 135–141. [Google Scholar] [CrossRef]
- Wong, K.; Cook, S.; Hart, K.; Moldt, S.; Wilson, A.; McIntyre, M.; Rohrwasser, A.; Butterfield, R. P221 A Five-Year Review of Newborn Screening for Spinal Muscular Atrophy in the State of Utah: Lessons Learned. Neuromuscul. Disord. 2023, 33 (Suppl. S1), S90. [Google Scholar] [CrossRef]
- Prior, T.W.; Snyder, P.J.; Rink, B.D.; Pearl, D.K.; Pyatt, R.E.; Mihal, D.C.; Conlan, T.; Schmalz, B.; Montgomery, L.; Ziegler, K.; et al. Newborn and Carrier Screening for Spinal Muscular Atrophy. Am. J. Med. Genet. Part A 2010, 152A, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Netto, A.B.; Brusius-Facchin, A.C.; Lemos, J.F.; Pasetto, F.B.; Brasil, C.S.; Trapp, F.B.; Saute, J.A.M.; Donis, K.C.; Becker, M.M.; Wiest, P.; et al. Neonatal Screening for Spinal Muscular Atrophy: A Pilot Study in Brazil. Genet. Mol. Biol. 2023, 46, e20230126. [Google Scholar] [CrossRef] [PubMed]
- Sawada, T.; Kido, J.; Sugawara, K.; Yoshida, S.; Ozasa, S.; Nomura, K.; Okada, K.; Fujiyama, N.; Nakamura, K. Newborn Screening for Spinal Muscular Atrophy in Japan: One Year of Experience. Mol. Genet. Metab. Rep. 2022, 32, 100908. [Google Scholar] [CrossRef] [PubMed]
- Kimizu, T.; Ida, S.; Oki, K.; Shima, M.; Nishimoto, S.; Nakajima, K.; Ikeda, T.; Mogami, Y.; Yanagihara, K.; Matsuda, K.; et al. Newborn Screening for Spinal Muscular Atrophy in Osaka—Challenges in a Japanese Pilot Study. Brain Dev. 2023, 45, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Kimizu, T.; Ida, S.; Okamoto, K.; Awano, H.; Niba, E.T.E.; Wijaya, Y.O.S.; Okazaki, S.; Shimomura, H.; Lee, T.; Tominaga, K.; et al. Spinal Muscular Atrophy: Diagnosis, Incidence, and Newborn Screening in Japan. Int. J. Neonatal Screen. 2021, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, Y.; Bo, R.; Nishio, H.; Matsumoto, H.; Matsui, K.; Yano, Y.; Sugawara, M.; Ueda, G.; Wijaya, Y.O.S.; Niba, E.T.E.; et al. PCR-Based Screening of Spinal Muscular Atrophy for Newborn Infants in Hyogo Prefecture, Japan. Genes 2022, 13, 2110. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, M.; Niba, E.T.E.; Wijaya, Y.O.S.; Takayama, I.; Mitsuishi, C.; Kumasaka, S.; Kondo, Y.; Takatera, A.; Hokuto, I.; Morioka, I.; et al. A Novel System for Spinal Muscular Atrophy Screening in Newborns: Japanese Pilot Study. Int. J. Neonatal Screen. 2019, 5, 41. [Google Scholar] [CrossRef]
- Weng, W.C.; Hsu, Y.K.; Chang, F.M.; Lin, C.Y.; Hwu, W.L.; Lee, W.T.; Lee, N.C.; Chien, Y.H. CMAP Changes upon Symptom Onset and during Treatment in Spinal Muscular Atrophy Patients: Lessons Learned from Newborn Screening. Genet. Med. 2021, 23, 415–420. [Google Scholar] [CrossRef]
- Chien, Y.H.; Chiang, S.C.; Weng, W.C.; Lee, N.C.; Lin, C.J.; Hsieh, W.S.; Lee, W.T.; Jong, Y.J.; Ko, T.M.; Hwu, W.L. Presymptomatic Diagnosis of Spinal Muscular Atrophy through Newborn Screening. J. Pediatr. 2017, 190, 124–129.e1. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, C.H.; Yin, X.; Zhu, L.; Yang, J.; Shen, Y.; Yang, C.; Chen, X.; Hu, H.; Ma, Q.; et al. Newborn Screening for Spinal Muscular Atrophy in China Using DNA Mass Spectrometry. Front. Genet. 2019, 10, 1255. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhang, C.; Teng, Y.; Zeng, S.; Chen, S.; Liang, D.; Li, Z.; Wu, L. Detection of Spinal Muscular Atrophy Using a Duplexed Real-Time PCR Approach with Locked Nucleic Acid-Modified Primers. Ann. Lab. Med. 2021, 41, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, P.; He, X.; Liu, S.; Tang, S.; Zhang, R.; Wang, X.; Tan, J.; Peng, B.; Jiang, L.; et al. New Multiplex Real-Time PCR Approach to Detect Gene Mutations for Spinal Muscular Atrophy. BMC Neurol. 2016, 16, 141. [Google Scholar] [CrossRef] [PubMed]
- Mikhalchuk, K.; Shchagina, O.; Chukhrova, A.; Zabnenkova, V.; Chausova, P.; Ryadninskaya, N.; Vlodavets, D.; Kutsev, S.I.; Polyakov, A. Pilot Program of Newborn Screening for 5q Spinal Muscular Atrophy in the Russian Federation. Int. J. Neonatal Screen. 2023, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, A.; Maretina, M.; Shtykalova, S.; Al-Hilal, H.; Maslyanyuk, N.; Plokhih, M.; Serebryakova, E.; Frolova, M.; Shved, N.; Krylova, N.; et al. Establishment of a Pilot Newborn Screening Program for Spinal Muscular Atrophy in Saint Petersburg. Int. J. Neonatal Screen. 2024, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Dangouloff, T.; Vrscaj, E.; Servais, L.; Osredkar, D.; the SMA NBS World Study Group. Newborn Screening Programs for Spinal Muscular Atrophy Worldwide: Where We Stand and Where to Go. Neuromuscul. Disord. 2021, 31, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Groulx-Boivin, E.; Osman, H.; Chakraborty, P.; Lintern, S.; Oskoui, M.; Selby, K.; Van Caeseele, P.; Wyatt, A.; McMillan, H.J. Variability in Newborn Screening Across Canada: Spinal Muscular Atrophy and Beyond. Can. J. Neurol. Sci. 2024, 51, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Gaviglio, A.; McKasson, S.; Singh, S.; Ojodu, J. Infants with Congenital Diseases Identified through Newborn Screening-United States, 2018–2020. Int. J. Neonatal Screen. 2023, 9, 23. [Google Scholar] [CrossRef]
- Singh, S.; Ojodu, J.; Kemper, A.R.; Lam, W.K.K.; Grosse, S.D. Implementation of Newborn Screening for Conditions in the United States First Recommended during 2010–2018. Int. J. Neonatal Screen. 2023, 9, 20. [Google Scholar] [CrossRef]
- Dangouloff, T.; Boemer, F.; Servais, L. Newborn Screening of Neuromuscular Diseases. Neuromuscul. Disord. 2021, 31, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Hale, K.; Ojodu, J.; Singh, S. Landscape of Spinal Muscular Atrophy Newborn Screening in the United States: 2018–2021. Int. J. Neonatal Screen. 2021, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Institute for Quality and Efficiency in Health Care. Newborn Screening for 5q-Linked Spinal Muscular Atrophy IQWiG Reports—Commission No. S18-02; Institute for Quality and Efficiency in Health Care: Berlin, Germany, 2020; Volume 4, p. 22. [Google Scholar]
- Jedrzejowska, M. Advances in Newborn Screening and Presymptomatic Diagnosis of Spinal Muscular Atrophy. Degener. Neurol. Neuromuscul. Dis. 2020, 10, 39–47. [Google Scholar] [CrossRef]
- UK National Screening Committee (UK NSC) (Costello Medical). Screening for Spinal Muscular Atrophy: External Review against Programme Appraisal Criteria for the UK National Screening Committee (UK NSC); UK National Screening Committee: London, UK, 2018. [Google Scholar]
- Schroth, M.; Friesz, M.; Belter, L.; Curry, M.; Glascock, J. Implementation of Spinal Muscular Atrophy Newborn Screening Acrossthe US. In Proceedings of the 74th Annual Meeting of the American Academy of Neurology, AAN, Seattle, WA, USA, 2–7 April 2022; Volume 98. [Google Scholar]
- Aragon-Gawinska, K.; Mouraux, C.; Dangouloff, T.; Servais, L. Spinal Muscular Atrophy Treatment in Patients Identified by Newborn Screening—A Systematic Review. Genes 2023, 14, 1377. [Google Scholar] [CrossRef] [PubMed]
Study, Location | N Screened | N Testing Positive | N SMA Cases | TP | FP | FN | TN | PPV | NPV | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|---|---|---|---|
Overviews of geographical areas | |||||||||||
Global overview [58] | 3,674,277 | 307 | 288 | 288 | 19 | 0 | 3,673,970 | 94% | 100% | 100% | 100% |
Prospective screening cohort studies | |||||||||||
Belgium (southern) [10,11,12] | 136,339 | 9 | 10 | 9 | 0 | 1 (comp heteroz) | 136,329 | 100% | 100% | 100% [homoz del] 90% [all SMA] | 100% |
Germany (Bavaria + NRW) [13,14,15,16,17] | 297,163 | 43 | 43 | 43 | 0 | 0 | 297,120 | 100% | 100% | 100% | 100% |
Germany (nationwide) [17] | - | 50 | 47 | 46 | 4 | 1 (comp heteroz) | - | 92% | - | 100% [homoz del] 98% [all SMA] | - |
Germany (Heidelberg) [18] | 96,015 | 14 | 14 | 14 | 0 | 0 | 96,001 | 100% | 100% | 100% | 100% |
Italy (Lazio and Tuscany) [19] | 90,885 | 15 | 15 | 15 | 0 | 0 | 90,870 | 100% | 100% | 100% | 100% |
Latvia [21] | 10,411 | 2 | 2 | 2 | 0 | 0 | 10,409 | 100% | 100% | 100% | 100% |
Australia (NSW + ACT) [26,27,28] | 252,081 | 22 | 23 | 21 | 1 | 2 | 252,057 | 95% | 100% | 91% | 100% |
Australia (Queensland) [29] | 2552 | 0 | 0 | 0 | 0 | 0 | 2552 | - | 100% | - | 100% |
Canada (Ontario) [30,31] | 139,800 | 5 | 5 | 5 | 0 | 0 | 139,795 | 100% | 100% | 100% | 100% |
Canada (Alberta) [32] | 47,005 | 6 | 5 | 5 | 1 | 0 | 46,999 | 83% | 100% | 100% | 100% |
USA (California) [33] | 628,791 | 34 | 34 | 34 | 0 | 0 | 628,757 | 100% | 100% | 100% | 100% |
USA (Georgia) [34] | 301,418 | 39 | 16 | 15 | 24 | 1 | 301,378 | 38% | 100% | 94% | 100% |
USA (Kentucky) [35] | 108,511 | 16 | 11 | 11 | 5 | 0 | 108,495 | 69% | 100% | 100% | 100% |
USA (Massachusetts) [36,37] | 179,467 | 10 | 9 | 9 | 1 | 0 | 179,457 | 90% | 100% | 100% | 100% |
USA (New York State) [38,39] | Nearly 650,000 | 34 | 34 | 34 | 0 | 0 | 649,966 | 100% | 100% | 100% | 100% |
USA (3 hospitals New York City) [40] | 3826 | 1 | 1 | 1 | 0 | 0 | 3825 | 100% | 100% | 100% | 100% |
USA (North Carolina) [41] | 12,065 | 2 | 1 | 1 | 1 | 0 | 12,063 | 50% | 100% | 100% | 100% |
USA (Wisconsin) [42] | 60,984 | 6 | 6 | 6 | 0 | 0 | 60,978 | 100% | 100% | 100% | 100% |
USA (Utah) [43] | 239,844 | 14 | 13 | 13 | 1 | 0 | 239,830 | 93% | 100% | 100% | 100% |
Brazil [45] | 40,000 | 5 | 4 | 4 | 1 | 0 | 39,995 | 80% | 100% | 100% | 100% |
Japan (Kumamoto) [46] | 13,587 | 1 | 1 | 1 | 0 | 0 | 13,586 | 100% | 100% | 100% | 100% |
Japan (Osaka) [47,48] | 22,951 | 0 | 0 | 0 | 0 | 0 | 22,951 | - | 100% | - | 100% |
Japan (Hyogo) [49] | 8336 | 12 | 2 | 2 | 10 | 0 | 8324 | 17% | 100% | 100% | 100% |
Japan (49 hosp, 23 prefectures) [50] | 4157 | 0 | 0 | 0 | 0 | 0 | 4157 | - | 100% | - | 100% |
Taiwan (University Hospital [51,52] | 364,000 | - | 21 | 20 | - | 1 (comp heteroz) | - | - | - | 100% [homoz del] 95% [all SMA] | - |
China (6 hospitals) [53] | 29,364 | 3 | 3 | 3 | 0 | 0 | 29,361 | 100% | 100% | 100% | 100% |
Russia (Moscow) [56] | 23,405 | 3 | 3 | 3 | 0 | 0 | 23,402 | 100% | 100% | 100% | 100% |
Russia (Saint Petersburg) [57] | 36,140 | 4 | 4 | 4 | 0 | 0 | 36,136 | 100% | 100% | 100% | 100% |
Studies using anonymised DBS samples | |||||||||||
USA (Ohio) [44] | 40,103 | 4 | - | 4 | 0 | - | - | 100% | - | - | - |
China (southwest) [55] | 2000 | 23 | - | 1 | 22 | - | - | 4% | - | - | - |
Study, Location | Index Test: Method | N Screened | False-Negatives | False-Positives | Initial Incomplete Results | Additional Findings |
---|---|---|---|---|---|---|
Prospective screening cohort studies | ||||||
Belgium (southern) [10,11,12] | Index: RT-qPCR 2nd tier: Repeat PCR x2 then MLPA Confirmatory: MLPA | 136,339 |
| - | - |
|
Germany (Bavaria + NRW) [13,14,15,16,17] | Index: qPCR; 2nd tier: NR Confirmatory: MLPA | 297,163 | - | - | - |
|
Germany (nationwide) [17] | Index: qPCR; 2nd tier: NR Confirmatory: Y (lab discretion) | NR |
| FP: n = 4:
| - | - |
Italy (Lazio and Tuscany) [19] | Index: RT-qPCR 2nd tier: Repeat PCR Confirmatory: RFLP-PCR + splicing variants | 90,885 | - | - |
|
|
Latvia [21] | Index: qPCR 2nd tier: Repeat PCR Confirmatory: qPCR + MLPA | 10,411 | - | - |
| - |
Australia (NSW + ACT) [26,27,28] | Index: RT-PCR 4-plex; 2nd tier: NR Confirmatory: MLPA | 252,081 | FN: n = 2:
|
| - | - |
Canada (Alberta) [32] | Index: qPCR 2nd tier: Repeat PCR x2 Confirmatory: MLPA | 47,005 | - |
|
| - |
USA (California) [33] | Index: RT-PCR 2nd tier: Repeat PCR + ddPCR Confirmatory: Multiplex PCR | 628,791 | - | - |
| - |
USA (Georgia) [34] | Index: RT-PCR; 2nd tier: NR Confirmatory: Y (method NR) | 301,418 |
| FP: n = 24
|
| - |
USA (Kentucky) [35] | Index: NR; 2nd tier: NR Confirmatory: Y (method NR) | 108,511 | - |
| - | - |
USA (Massachusetts) [36,37] | Index: RT-qPCR 2nd tier: Tier 2: exon 7 variant. Tier 3: sequencing Confirmatory: Y (method NR) | 179,467 | - |
|
|
|
USA (New York State) [38,39] | Index: RT-qPCR 2nd tier: Repeat PCR Confirmatory: Y (method NR) | 3826 | - | - |
|
|
USA (North Carolina) [41] | Index: RT-qPCR 2nd tier: Repeat PCR Confirmatory: ddPCR or MLPA-seq | 12,065 | - |
|
|
|
USA (Utah) [43] | Index: NR; 2nd tier: NR Confirmatory: NR | 239,844 | - |
| - | - |
Brazil [45] | Index: RT-qPCR; 2nd tier: NR Confirmatory: MLPA | 40,000 | - |
|
| - |
Japan (Osaka) [47,48] | Index: RT-qPCR; 2nd tier: NR Confirmatory: MLPA | 22,951 | - | - |
| - |
Japan (Hyogo) [49] | Index: RT-qPCR; 2nd tier: Repeat PCR Confirmatory: MLPA + ddPCR | 8336 | - |
| - | - |
Taiwan (University Hospital) [51,52] | Index: RT-PCR; 2nd tier: ddPCR Confirmatory: MLPA | 364,000 |
|
|
| - |
Russia (Moscow) [56] | Index: PCR melting curve 2nd tier: PCR-RFLP Confirmatory: MLPA + sequencing | 36,140 | - | - |
|
|
Studies using anonymised DBS samples | ||||||
USA (Ohio) [44] | Index: PCR; 2nd tier: Competitive PCR Confirmatory: N/A | 40,103 | - | - |
| - |
China (southwest) [55] | Index: RT-PCR; 2nd tier: PCR + seq Confirmatory: N/A | 2000 | - |
| - | - |
Study, Location | Patient Selection | Index Test | Ref Standard | Flow + Timing | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Consecutive or Random Sample | Case-Control Design Avoided | Avoided Inappropriate Exclusions | Risk of Bias Overall | Concerns Re Applicability to Question | Interpreted without Knowledge of Ref Standard | If Threshold Used, Was It Pre-Specified (None Required: Y) | Risk of Bias Overall | Concerns re Applicability to Question | Likely to Correctly Classify Condition | Interpreted without Knowledge of Index Test | Risk of Bias Overall | Concerns Re Applicability to Question | Appropriate Interval between Tests (If Condition will Not Change, Score Y) | All Patients Received (Same) Ref Standard | All Patients Included in Analysis | Risk of Bias Overall | |
Overviews of geographical areas | |||||||||||||||||
Global overview [58] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
USA overview (29 states) [60,61] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Canada overview [59] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Prospective screening cohort studies | |||||||||||||||||
UK (Thames Valley) [9] | U | Y | U | Uncl | Low | Y | Y | Low | Low | S+: U | N | High | Low | Y | N | Y | High |
Belgium (southern) [10,11,12] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Germany (Bavaria + NRW) [13,14,15,16,17] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Germany (nationwide) [17] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Germany (Heidelberg) [18] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Italy (Lazio and Tuscany) [19] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Italy (Liguria) [20] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Latvia [21] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Portugal [22] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Poland (13 districts) [23] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Ukraine (near Kyiv) [24] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Norway (nationwide) [25] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Australia (NSW + ACT) [26,27,28] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Australia (Queensland) [29] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Canada (Ontario) [30,31] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Canada (Alberta) [32] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
USA (California) [33] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
USA (Georgia State) [34] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
USA (Kentucky) [35] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
USA (Massachusetts) [36,37] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
USA (New York State) [38,39] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
USA (3 hospitals New York City) [40] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
USA (North Carolina) [41] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
USA (Wisconsin) [42] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
USA (Utah) [43] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Brazil (Sao Paulo + Rio Grande) [45] | U | Y | U | Uncl | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Japan (Kumamoto) [46] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Japan (Osaka) [47,48] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Japan (Hyogo) [49] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Japan (49 hosp, 23 prefectures) [50] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Taiwan (University Hospital) [51,52] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
China (6 hospitals) [53] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Russia (Moscow) [56] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Russia (Saint Petersburg) [57] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Overviews of geographical areas | |||||||||||||||||
USA (Ohio) [44] | U | Y | U | Uncl | Low | Y | Y | Low | Low | Y | N | High | Low | Y | N | Y | High |
China (Hunan province) [54] | Y | Y | Y | Low | Low | U | Y | Uncl | Low | U | N | High | Uncl | U | N | Y | High |
China (southwest) [55] | Y | Y | Y | Low | Low | Y | Y | Low | Low | S+: Y | N | High | Low | Y | N | Y | High |
Study, Location | Median Time in Days (Range or Interquartile Range) from Birth to: | ||||||
---|---|---|---|---|---|---|---|
DBS Sampling | DBS Receipt | Initial Screening Results | Parent Contact | Specialist Consultation | Confirmatory Results | Start of Treatment | |
Belgium (southern) [10,11,12] | 3 (3–4) | 6 (4–13) | 18 (9–31) 1st tier 21 (10–35) 2nd tier | 20 (9–35) | 21 (10–37) | 38 (29–54) | |
Germany (Bavaria + NRW) [13,14,15,16,17] | 6 (3–9) | 7 (6–45) | 8 (6–54) | 13 (9–14) | 19 (7–728) | ||
Germany (nationwide) [17] | 7 (4–15) | 8 (4–15) | 10 (5–46) | 13 (9–19) | 27 (13–66) | ||
Italy (Lazio and Tuscany) [19] | 6 (5–9) | 11 (7–21) | 17 (11–62) | ||||
Italy (Liguria) [20] | 13 | ||||||
Latvia [21] | 11 | ||||||
Poland [23] | 9 | 15 | |||||
Norway [25] | NR (13–18) | ||||||
Australia (NSW + ACT) [26,27,28] | 3 (2–15) | 15 (10–23) | 25 (15–39) | ||||
Canada (Ontario) [30,31] | 1 | 3 (3–6) | 8 (5–13) | 9 (6–15) | 11 (9–16) | 14 (12–24) | 24 (18–32) |
Canada (Alberta) [32] | 1 | 2 (1–3) | 7 (6–8) | 15 (13–27) | 29 (25–72) | ||
USA (California) [33] | 5 (1–10) | 8 (5–15) | 12 (3–27) | 33 (17–79) | |||
USA (Georgia state) [34] | 5 (1–6) | 33 (15–46) | 106 (28–189) | ||||
USA (Kentucky) [35] | NR (2–13) | 48 (16–331) | |||||
USA (Massachusetts) [36,37] | 2 (1–2) | 4 (3–6) | 7 (0–26) | 18 (8–171) | |||
USA (New York State) [38,39] | 7 (4–12) | 9 (1–58) | 35 (11–180) | ||||
USA (New York State pilot) [40] | 3 | 5 | 15 | ||||
USA (North Carolina) [41] | 28 (19–36) | 30 | |||||
USA (Wisconsin) [42] | 1 (1–2) | 3 (3–6) | 19 (11–57) | ||||
Brazil [45] | 6 (4–60) | 75 (45–90) | |||||
Japan (Kumamoto) [46] | 5 | 13 | 19 | 42 | |||
Japan (Osaka) [47,48] | NR (4–6) | 6 (4–15) | NR (6–13) | NR (7–18) | NR (10–28) | 21, 29 | |
Japan (Hyogo) [49] | NR (4–6) | 19, 23 | 22, 25 | ||||
Russia (Moscow) [56] | 4 | NR (4–6) | NR (6–8) |
Study, Location | Workflow |
Belgium (southern) [10,11,12] | Samples analysed per week: 300–350 (in first 9 months); 1200 (after expansion) |
Germany (Bavaria + NRW) [13,14,15,16,17] | Aimed to screen up to 2000 samples per day with one person operating the molecular genetic screening procedure |
Germany (Heidelberg) [18] | On peak days, >1000 samples could be processed for multiplex qPCR |
Latvia [21] | 83 samples analysed in first month; 1054 analysed in final month |
Australia (Queensland) [29] | Laboratory and bioinformatics software automation procedures developed, to screen over 200 samples per day. Weekly batch size of 1536 samples |
USA (Ohio) [44] (anonymised DBS) | Utilising two instruments and two technologists enabled assay on 400–500 samples daily |
Study, Location | Consent processes |
Global overview [58] | Some countries use opt-in (Germany, Italy, Japan, Taiwan, Russia) and some opt-out (USA, Canada, Belgium, Australia) |
Canada overview [59] | Most provinces screen for SMA alongside other newborn screening and do not require specific consent, while Alberta has an opt-out process |
UK (Thames Valley) [9] | Initial uptake of antenatal consent was slow with staff availability the main limiting factor. Consent rate increased with remote consenting and with postnatal consent during baby checks |
Italy (Lazio and Tuscany) [19] | Consent of families: 91% during pilot, 98–99% when routine screening started |
Italy (Liguria) [20] | Consent rate 99.9% |
Latvia [21] | Consent rate approximately 70% |
USA (New York City pilot) [40] | Consent rate 93% |
Japan (Osaka) [47,48] | Consent rate 98% |
Russia (Moscow) [56] | No parents declined participation |
Russia (Saint Petersburg) [57] | Consent rate 99.8% |
Study, Location | Implementation and Barriers |
---|---|
Global overview [58] | Implementation considerations:
Barriers and uncertainties:
|
Germany (nationwide) [17] | Implementation considerations: Process of converting from pilot to nationwide screening required consideration of the following:
Barriers:
|
Australia (NSW + ACT) [26,27,28] | Implementation considerations:
|
Canada overview [59] | Barriers:
|
Canada overview [59] | Implementation considerations: Modifications that could potentially reduce time to treatment initiation:
|
USA (California) [33] | Barriers: Half (9/18) infants had treatment in a timely manner. Most common barriers or reasons for delay to treatment:
|
USA (Kentucky) [35] | Barriers: Factors causing delayed treatment:
|
USA (New York State) [38,39] | Barriers:
|
Japan (Osaka) [47,48] | Barriers:
|
Russia (Moscow) [56] | Barriers: Logistical issues:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooper, K.; Nalbant, G.; Sutton, A.; Harnan, S.; Thokala, P.; Chilcott, J.; McNeill, A.; Bessey, A. Systematic Review of Newborn Screening Programmes for Spinal Muscular Atrophy. Int. J. Neonatal Screen. 2024, 10, 49. https://doi.org/10.3390/ijns10030049
Cooper K, Nalbant G, Sutton A, Harnan S, Thokala P, Chilcott J, McNeill A, Bessey A. Systematic Review of Newborn Screening Programmes for Spinal Muscular Atrophy. International Journal of Neonatal Screening. 2024; 10(3):49. https://doi.org/10.3390/ijns10030049
Chicago/Turabian StyleCooper, Katy, Gamze Nalbant, Anthea Sutton, Sue Harnan, Praveen Thokala, Jim Chilcott, Alisdair McNeill, and Alice Bessey. 2024. "Systematic Review of Newborn Screening Programmes for Spinal Muscular Atrophy" International Journal of Neonatal Screening 10, no. 3: 49. https://doi.org/10.3390/ijns10030049