“Cell-Free Synthetic Biology”: Synthetic Biology Meets Cell-Free Protein Synthesis
Funding
Conflicts of Interest
References
- Nirenberg, M.W.; Matthaei, J.H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. USA 1961, 47, 1588–1602. [Google Scholar] [CrossRef] [PubMed]
- Carlson, E.D.; Gan, R.; Hodgman, C.E.; Jewett, M.C. Cell-free protein synthesis: Applications come of age. Biotechnol. Adv. 2012, 30, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.G.; Stark, J.C.; Jewett, M.C. Cell-free synthetic biology: Engineering beyond the cell. Cold Spring Harb. Perspect. Biol. 2016, 8, a023853. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, N.E.; Levine, M.Z.; Oza, J.P. A user’s guide to cell-free protein synthesis. Methods Protoc. 2019, 2, 24. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Klocke, M.; Agarwal, S.; Kim, J.; Choi, S.; Franco, E.; Kim, J. Cell-free synthetic biology platform for engineering synthetic biological circuits and systems. Methods Protoc. 2019, 2, 39. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Kwon, Y.-C.; Jewett, M.C. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis. Front. Chem. 2014, 2, 34. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Bu, N.; Lu, Y. Efficient incorporation of unnatural amino acids into proteins with a robust cell-free system. Methods Protoc. 2019, 2, 16. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Copeland, C.E.; Padumane, S.R.; Kwon, Y.C. A crude extract preparation and optimization from a genomically engineered Escherichia coli for the cell-free protein synthesis system: Practical laboratory guideline. Methods Protoc. 2019, 2, 68. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.W.; Des Soye, B.J.; Kwon, Y.-C.; Kay, J.; Davis, R.G.; Thomas, P.M.; Majewska, N.I.; Chen, C.X.; Marcum, R.D.; Weiss, M.G.; et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat. Commun. 2018, 9, 1203. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Kightlinger, W.; Hong, S.H. Optimizing cell-free protein synthesis for increased yield and activity of colicins. Methods Protoc. 2019, 2, 28. [Google Scholar] [CrossRef]
- Yang, S.-O.; Nielsen, G.H.; Wilding, K.M.; Cooper, M.A.; Wood, D.W.; Bundy, B.C. Towards on-demand E. coli-based cell-free protein synthesis of tissue plasminogen activator. Methods Protoc. 2019, 2, 52. [Google Scholar] [CrossRef]
- Thoring, L.; Zemella, A.; Wüstenhagen, D.; Kubick, S. Accelerating the production of druggable targets: Eukaryotic cell-free systems come into focus. Methods Protoc. 2019, 2, 30. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.J.; Kim, D.-M. Cell-free metabolic engineering: Recent developments and future prospects. Methods Protoc. 2019, 2, 33. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.H. “Cell-Free Synthetic Biology”: Synthetic Biology Meets Cell-Free Protein Synthesis. Methods Protoc. 2019, 2, 80. https://doi.org/10.3390/mps2040080
Hong SH. “Cell-Free Synthetic Biology”: Synthetic Biology Meets Cell-Free Protein Synthesis. Methods and Protocols. 2019; 2(4):80. https://doi.org/10.3390/mps2040080
Chicago/Turabian StyleHong, Seok Hoon. 2019. "“Cell-Free Synthetic Biology”: Synthetic Biology Meets Cell-Free Protein Synthesis" Methods and Protocols 2, no. 4: 80. https://doi.org/10.3390/mps2040080
APA StyleHong, S. H. (2019). “Cell-Free Synthetic Biology”: Synthetic Biology Meets Cell-Free Protein Synthesis. Methods and Protocols, 2(4), 80. https://doi.org/10.3390/mps2040080