Pole Dancing-Specific Muscle Strength: Development and Reliability of a Novel Assessment Protocol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedure
2.3. Statistical Analysis
3. Results
3.1. Participants
3.2. Intra-Session Reliability
3.3. Inter-Session Reliability
3.4. MVIC Values
4. Discussion
4.1. MVIC Values
4.2. Protocol Implementation Recommendations
4.3. Clinical Implications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mikula, B.; Wolny, S.; Nowakowska-Lipiec, K.; Guzik-Kopyto, A.; Chuchnowska, I.; Michnik, R. Hand Grip Strength and Suppleness as Progress Determinants in Female Pole Dancers’ Training. In Innovations in Biomedical Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 175–183. [Google Scholar]
- Nicholas, J.; Weir, G.; Alderson, J.A.; Stubbe, J.H.; van Rijn, R.M.; Dimmock, J.A.; Jackson, B.; Donnelly, C.J. Incidence, Mechanisms, and Characteristics of Injuries in Pole Dancers: A Prospective Cohort Study. Med. Probl. Perform. Art. 2022, 37, 151–164. [Google Scholar] [CrossRef]
- Nawrocka, A.; Mynarski, A.; Powerska, A.; Rozpara, M.; Garbaciak, W. Effects of exercise training experience on hand grip strength, body composition and postural stability in fitness pole dancers. J. Sports Med. Phys. Fit. 2017, 57, 1098–1103. [Google Scholar] [CrossRef]
- Naczk, M.; Kowalewska, A.; Naczk, A. The risk of injuries and physiological benefits of pole dancing. J. Sports Med. Phys. Fit. 2020, 60, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lin, L.; Tan, A. Prevelance of pole dance injuries from a global online survey. J. Sports Med. Phys. Fit. 2019, 60, 270–275. [Google Scholar] [CrossRef]
- Gołuchowska, A.M.; Humka, M.I. Types of the locomotor system injuries and frequency of occurrence in women pole dancers. J. Sports Med. Phys. Fit. 2021, 62, 661–666. [Google Scholar] [CrossRef]
- Małolepszy, M.; Kwas, K.; Defińska, K.; Smyczyńska, U. Epidemiology of Injuries in Polish Pole Dance Amateurs. Issue Rehabil. Orthop. Neurophysiol. Sport Promot. 2022, 41, 7–13. [Google Scholar] [CrossRef]
- Szopa, A.; Domagalska-Szopa, M.; Urbańska, A.; Grygorowicz, M. Factors associated with injury and re-injury occurrence in female pole dancers. Sci. Rep. 2022, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Scott, C. Prevalence and Characteristics of Musculoskeletal and Sports injuries in Pole Dancing: A Systematic review. J. Sci. Med. Sport 2023, 1, 26. [Google Scholar] [CrossRef]
- Mitrousias, V.; Halatsis, G.; Bampis, I.; Koutalos, A.; Psareas, G.; Sakkas, A. Epidemiology of injuries in pole sports: Emerging challenges in a new trend. Br. J. Sports Med. 2017, 51, 4. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Warneke, K.; Wagner, C.M.; Keiner, M.; Hillebrecht, M.; Schiemann, S.; Behm, D.G.; Wallot, S.; Wirth, K. Maximal strength measurement: A critical evaluation of common methods—A narrative review. Front. Sports Act. Living 2023, 5, 1105201. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.L.; Raper, D.P.; Boettcher, C.E.; Waddington, G.S.; Drew, M.K. Hand-held dynamometry strength measures for internal and external rotation demonstrate superior reliability, lower minimal detectable change and higher correlation to isokinetic dynamometry than externally-fixed dynamometry of the shoulder. Phys. Ther. Sport. 2016, 21, 75–81. [Google Scholar] [CrossRef]
- Draper, N.; Giles, D.; Taylor, N.; Vigouroux, L.; España-Romero, V.; Baláš, J.; Solar Altamirano, I.; Mally, F.; Beeretz, I.; Couceiro Canalejo, J.; et al. Performance Assessment for Rock Climbers: The International Rock Climbing Research Association Sport-Specific Test Battery. Int. J. Sports Physiol. Perform. 2021, 16, 1242–1252. [Google Scholar] [CrossRef] [PubMed]
- Torr, O.; Randall, T.; Knowles, R.; Giles, D.; Atkins, S. Reliability and Validity of a Method for the Assessment of Sport Rock Climbers’ Isometric Finger Strength. J. Strength Cond. Res. 2022, 36, 2277–2282. [Google Scholar] [CrossRef]
- Strzelinski, M.; Brody, L.T.; Smith, J.A.; Bronner, S. Reliability of a Barre-Mounted Dynamometer-Stabilizing Device in Measuring Dance-Specific Muscle Performance. Med. Probl. Perform. Art. 2021, 36, 27–33. [Google Scholar] [CrossRef]
- Merry, K.; Napier, C.; Chung, V.; Hannigan, B.C.; MacPherson, M.; Menon, C.; Scott, A. The Validity and Reliability of Two Commercially Available Load Sensors for Clinical Strength Assessment. Sensors 2021, 21, 8399. [Google Scholar] [CrossRef] [PubMed]
- Kapreli, E.; Stavridis, I.; Billis, E.; Athanasopoulos, S.; Katsiana, A.; Strimpakos, N. Psychometric properties of the Greek version of Waterloo Footedness Questionnaire-Revised. J. Biol. Exerc. 2019, 15, 27–40. [Google Scholar] [CrossRef]
- Grouios, G.; Hatzitaki, V.; Kollias, N.; Koidou, I. Investigating the stabilising and mobilising features of footedness. Laterality 2009, 14, 362–380. [Google Scholar] [CrossRef]
- Porney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice, 3rd ed.; Pearson International Edition: New Jersey, NY, USA, 2009. [Google Scholar]
- Munro, A.; Herrington, L.; Carolan, M. Reliability of 2-dimensional video assessment of frontal-plane dynamic knee valgus during common athletic screening tasks. J. Sport. Rehabil. 2012, 21, 7–11. [Google Scholar] [CrossRef]
- Courel-Ibáñez, J.; Hernández-Belmonte, A.; Cava-Martínez, A.; Pallarés, J.G. Familiarization and Reliability of the Isometric Knee Extension Test for Rapid Force Production Assessment. Appl. Sci. 2020, 10, 4499. [Google Scholar] [CrossRef]
- Drake, D.; Kennedy, R.; Wallace, E. Familiarization, validity and smallest detectable difference of the isometric squat test in evaluating maximal strength. J. Sports Sci. 2018, 36, 2087–2095. [Google Scholar] [CrossRef] [PubMed]
- Strimpakos, N.; Sakellari, V.; Gioftsos, G.; Oldham, J. Intratester and intertester reliability of neck isometric dynamometry. Arch. Phys. Med. Rehabil. 2004, 85, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, L.; Oestergaard, L.G.; van Tulder, M.; Petersen, A.K. Measurement properties of handheld dynamometry for assessment of shoulder muscle strength: A systematic review. Scand. J. Med. Sci. Sports 2020, 30, 2305–2328. [Google Scholar] [CrossRef] [PubMed]
- Trajković, N.; Kozinc, Ž.; Smajla, D.; Šarabon, N. Interrater and Intrarater Reliability of the EasyForce Dynamometer for Assessment of Maximal Shoulder, Knee and Hip Strength. Diagnostics 2022, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, C.; Armijo-Olivo, S.; De la Fuente, C.; Fuentes, J.; Javier Chirosa, L. Absolute Reliability and Concurrent Validity of Hand Held Dynamometry and Isokinetic Dynamometry in the Hip, Knee and Ankle Joint: Systematic Review and Meta-analysis. Open Med. 2017, 12, 359–375. [Google Scholar] [CrossRef] [PubMed]
- Romero-Franco, N.; Jiménez-Reyes, P.; Montaño-Munuera, J.A. Validity and reliability of a low-cost digital dynamometer for measuring isometric strength of lower limb. J. Sports Sci. 2017, 35, 2179–2184. [Google Scholar] [CrossRef] [PubMed]
- Beshay, N.; Lam, P.; Murrell, G. Assessing the Reliability of Shoulder Strength Measurement: Hand-Held versus Fixed Dynamometry. Shoulder Elb. 2011, 3, 244–251. [Google Scholar] [CrossRef]
- Wadsworth, C.; Nielsen, D.H.; Corcoran, D.S.; Phillips, C.E.; Sannes, T.L. Interrater reliability of hand-held dynamometry: Effects of rater gender, body weight, and grip strength. J. Orthop. Sports Phys. Ther. 1992, 16, 74–81. [Google Scholar] [CrossRef]
- Wikholm, J.B.; Bohannon, R.W. Hand-held Dynamometer Measurements: Tester Strength Makes a Difference. J. Orthop. Sports Phys. Ther. 1991, 13, 191–198. [Google Scholar] [CrossRef]
- Morin, M.; Duchesne, E.; Bernier, J.; Blanchette, P.; Langlois, D.; Hébert, L.J. What is Known About Muscle Strength Reference Values for Adults Measured by Hand-Held Dynamometry: A Scoping Review. Arch. Rehabil. Res. Clin. Transl. 2022, 4, 100172. [Google Scholar] [CrossRef]
- Silva, R.T.; Gracitelli, G.C.; Saccol, M.F.; Laurino, C.F.; Silva, A.C.; Braga-Silva, J.L. Shoulder strength profile in elite junior tennis players: Horizontal adduction and abduction isokinetic evaluation. Br. J. Sports Med. 2006, 40, 513–517; discussion 517. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.R.L.; de Melo, B.L.; dos Santos, A.A.; Silva, J.M.A.; Leite, G.; Bocalini, D.S.; Marcolongo, A.A.; Serra, A.J. Women pole dance athletes present morphofunctional left ventricular adaptations and greater physical fitness. Sci. Sports 2022, 37, 595–602. [Google Scholar] [CrossRef]
- Rosin, R.; Bortoluzzi, R.; Roncada, C.; Dias, C. Comparação da força, flexibilidade e resistência abdominal de mulheres praticantes de musculação e praticantes de pole dance. Rev. Bras. Ciência Mov. 2017, 25, 24. [Google Scholar] [CrossRef]
Parameter | Values (Mean ± SD) |
---|---|
Age | 29.37 ± 5.88 yrs |
Weight | 57.92 ± 5.45 kg |
Height | 164.09 ± 5.13 cm |
BMI | 21.41 ± 1.34 kg/m2 |
Level of expertise | N = 21 (65.6%) amateur, N = 11 (34.4%) professional |
Total years of practice | 5.02 ± 2.92 |
Hours per week of PD practice | 7.44 ± 6.38 |
Hours per week of other sports practice | 2.37 ± 4.02 |
WFQ-Rm | 4.69 ± 3.19 |
WFQ-Rs | 2.34 ± 4.00 |
WFQ-Rt | 7.09 ± 5.77 |
Values (Frequency and percent) | |
Type of training | N = 18 (56.3%) sport+ exotic N = 14 (43.8%) sport |
Other sports | N = 18 (56.3%) NO N = 14 (43.8%) YES |
Dominant upper limb | N = 29 (91%) Right N = 3 (9%) Left |
Dominant lower limb | N = 17 (53.2%) Right, Ν = 0 (0.0%) Left, N = 15 (46.8%) mixed |
Intra-Session (n = 32) | MVIC (Kg) Mean (SD) | Reliability (3 Efforts) | Reliability (2 Last Efforts) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 Effort | 2 Effort | 3 Effort | ICC (95% CI) | SEM | SDD | Cronbach’s Alpha | ICC (95% CI) | SEM | SDD | Cronbach’s Alpha | |
Day 1 (test) | |||||||||||
Shoulder adduction Left Right | 34.73 (7.12) 33.73 (8.69) | 35.85 (8.29) 34.33 (9.49) | 36.39 (7.44) 34.16 (8.53) | 0.865 (0.775–0.926) 0.923 (0.867–0.959) | 2.72 2.50 | 21.14 20.34 | 0.954 0.972 | 0.903 (0.813–0.952) 0.922 (0.848–0.961) | 2.45 2.55 | 18.80 20.64 | 0.949 0.958 |
Shoulder abduction Left Right | 35.76 (7.96) 36.21 (8.23) | 36.43 (7.51) 37.37 (8.23) | 36.56 (7.76) 38.21 (7.75) | 0.865 (0.774–0.926) 0.862 (0.769–0.924) | 2.86 2.89 | 21.87 21.50 | 0.950 0.953 | 0.898 (0.804–0.949) 0.842 (0.702–0.919) | 2.47 3.17 | 18.76 23.25 | 0.945 0.915 |
Hip adduction Left Right | 54.88 (13.37) 56.01 (14.73) | 58.19 (16.81) 56.21 (13.87) | 59.71 (16.26) 56.76(12.72) | 0.833 (0.724–0.908) 0.890 (0.814–0.940) | 6.01 4.63 | 28.92 22.78 | 0.945 0.959 | 0.875 (0.762–0.935) 0.890 (0.789–0.945) | 5.84 4.46 | 27.46 21.88 | 0.934 0.940 |
Day 2 (re-test) | |||||||||||
Shoulder adduction Left Right | 34.88 (6.16) 34.31 (7.72) | 35.66 (7.02) 35.59 (7.21) | 36.27 (6.53) 35.78 (8.14) | 0.865 (0.774–0.926) 0.870 (0.782–0.929) | 2.36 2.71 | 18.37 21.32 | 0.953 0.955 | 0.885 (0.780–0.942) 0.918 (0.848–0.960) | 2.29 3.04 | 17.65 23.61 | 0.940 0.915 |
Shoulder abduction Left Right | 36.74 (8.02) 37.95 (8.40) | 37.39 (7.95) 38.71 (9.03) | 37.85 (9.29) 39.10 (9.23) | 0.927 (0.874–0.961) 0.925 (0.871–0.960) | 2.24 2.41 | 16.63 17.31 | 0.975 0.974 | 0.924 (0.851–0.962) 0.929 (0.861–0.965) | 2.38 2.45 | 17.53 17.45 | 0.960 0.962 |
Hip adduction Left Right | 57.42 (14.78) 57.80 (15.04) | 59.22 (15.11) 58.80 (16.37) | 58.72 (13.63) 58.24 (15.05) | 0.880 (0.798–0.935) 0.958 (0.927–0.978) | 5.02 3.17 | 23.80 15.08 | 0.957 0.986 | 0.922 (0.848–0.961) 0.960 (0.921–0.980) | 4.06 3.15 | 19.08 14.92 | 0.958 0.980 |
Inter-Session (n = 32) | MVIC (kg) Mean (SD) | Reliability | ||||
---|---|---|---|---|---|---|
Average | Day 1 | Day 2 | ICC (95% CI) | SEM | SDD | Cronbach’s Alpha |
Shoulder adduction Left Right | 36.19 (7.68) 34.25 (8.83) | 35.96 (6.58) 35.38 (7.38) | 0.962 (0.922–0.981) 0.927 (0.851–0.964) | 1.97 2.88 | 15.19 22.86 | 0.960 0.933 |
Shoulder abduction Left Right | 36.49 (7.43) 37.79 (7.67) | 37.62 (8.48) 38.90 (8.96) | 0.936 (0.869–0.968) 0.944 (0.885–0.972) | 2.71 2.66 | 20.24 19.19 | 0.939 0.947 |
Hip adduction Left Right | 58.95 (16.01) 56.49 (12.93) | 58.97 (14.10) 58.52 (15.56) | 0.970 (0.938–0.985) 0.963 (0.925–0.982) | 3.72 3.59 | 17.49 17.32 | 0.969 0.967 |
kg Aveg | kg Max | N Aveg | p Value | Νm Aveg | p Value | Νm/kg Aveg | p Value | |
---|---|---|---|---|---|---|---|---|
Shoulder adduction Left Right | 36.19 (7.68) 34.25 (8.83) | 38.17 (7.69) 36.21 (8.89) | 354.20 (75.32) 355.85 (86.67) | 0.034 | 20.93 (3.99) 13.89 (3.92) | 0.000 | 0.36 (0.07) 0.24 (0.07) | <0.001 |
Shoulder abduction Left Right | 36.49 (7.43) 37.79 (7.67) | 38.35 (7.67) 39.69 (8.39) | 357.89 (72.90) 370.58 (75.25) | 0.131 | 33.52 (5.88) 34.80 (6.60) | 0.105 | 0.58 (0.10) 0.60 (0.12) | 0.086 |
Hip adduction Left Right | 58.95 (16.01) 56.49 (12.93) | 62.71 (16.46) 59.78 (14.23) | 578.10 (157.04) 553.98 (126.77) | 0.243 | 23.89 (6.98) 22.95 (5.99) | 0.282 | 0.42 (0.13) 0.40 (0.12) | 0.340 |
Nm/kg (Total) N = 32 | Nm/kg (Professionals) N = 11 | Nm/kg (Amateurs) N = 21 | p Value | |
---|---|---|---|---|
Shoulder adduction Left Right | 0.36 (0.07) 0.24 (0.07) | 0.41 (0.05) 0.32 (0.05) | 0.34 (0.07) 0.20 (0.04) | 0.003 * 0.000 * |
Shoulder abduction Left Right | 0.58 (0.10) 0.60 (0.12) | 0.62 (0.12) 0.68 (0.15) | 0.56 (0.09) 0.60 (0.09) | 0.012 * 0.036 * |
Hip adduction Left Right | 0.42 (0.13) 0.40 (0.12) | 0.54 (0.11) 0.52 (0.11) | 0.35 (0.08) 0.34 (0.06) | 0.000 * 0.000 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignatoglou, D.; Paliouras, A.; Paraskevopoulos, E.; Strimpakos, N.; Bilika, P.; Papandreou, M.; Kapreli, E. Pole Dancing-Specific Muscle Strength: Development and Reliability of a Novel Assessment Protocol. Methods Protoc. 2024, 7, 44. https://doi.org/10.3390/mps7030044
Ignatoglou D, Paliouras A, Paraskevopoulos E, Strimpakos N, Bilika P, Papandreou M, Kapreli E. Pole Dancing-Specific Muscle Strength: Development and Reliability of a Novel Assessment Protocol. Methods and Protocols. 2024; 7(3):44. https://doi.org/10.3390/mps7030044
Chicago/Turabian StyleIgnatoglou, Despoina, Achilleas Paliouras, Eleftherios Paraskevopoulos, Nikolaos Strimpakos, Paraskevi Bilika, Maria Papandreou, and Eleni Kapreli. 2024. "Pole Dancing-Specific Muscle Strength: Development and Reliability of a Novel Assessment Protocol" Methods and Protocols 7, no. 3: 44. https://doi.org/10.3390/mps7030044
APA StyleIgnatoglou, D., Paliouras, A., Paraskevopoulos, E., Strimpakos, N., Bilika, P., Papandreou, M., & Kapreli, E. (2024). Pole Dancing-Specific Muscle Strength: Development and Reliability of a Novel Assessment Protocol. Methods and Protocols, 7(3), 44. https://doi.org/10.3390/mps7030044