Advances in 3D Inner Ear Reconstruction Software for Cochlear Implants: A Comprehensive Review
Abstract
:1. Introduction
2. Historical Development of 3D Inner Ear Reconstruction Software: Pioneering Milestones, Breakthroughs, and Technological Progress
3. Technological Features of Leading 3D Inner Ear Reconstruction Software: Pros and Cons
4. Diverse Software Tools: Expanding Operational Capabilities in Inner Ear Reconstruction
5. Integration of 3D Inner Ear Reconstruction Software with Various Imaging Modalities
6. Clinical Applications and Surgical Planning Utilizing 3D Inner Ear Reconstruction Software, with a Focus on OTOPLAN
7. Challenges and Limitations in 3D Inner Ear Reconstruction Software: Solutions, Advancements, and Future Directions
8. Regulatory Considerations and Standardization
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naples, J.G.; Ruckenstein, M.J. Cochlear Implant. Otolaryngol. Clin. N. Am. 2020, 53, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Mady, L.J.; Sukato, D.C.; Fruit, J.; Palmer, C.; Raz, Y.; Hirsch, B.E.; McCall, A.A. Hearing Preservation: Does Electrode Choice Matter? Otolaryngol.-Head Neck Surg. 2017, 157, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Dhanasingh, A.; Jolly, C. An overview of cochlear implant electrode array designs. Hear Res. 2017, 356, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Balkany, T.J.; Connell, S.S.; Hodges, A.V.; Payne, S.L.; Telischi, F.F.; Eshraghi, A.A.; Angeli, S.I.; Germani, R.; Messiah, S.; Arheart, K.L. Conservation of residual acoustic hearing after cochlear implantation. Otol. Neurotol. 2006, 27, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Tamplen, M.; Schwalje, A.; Lustig, L.; Alemi, A.S.; Miller, M.E. Utility of preoperative computed tomography and magnetic resonance imaging in adult and pediatric cochlear implant candidates. Laryngoscope 2016, 126, 1440–1445. [Google Scholar] [CrossRef]
- Takahashi, M.; Arai, Y.; Sakuma, N.; Yabuki, K.; Sano, D.; Nishimura, G.; Oridate, N.; Usami, S.-I. Cochlear volume as a predictive factor for residual-hearing preservation after conventional cochlear implantation. Acta Oto-Laryngol. 2018, 138, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Alexiades, G.; Dhanasingh, A.; Jolly, C. Method to estimate the complete and two-turn cochlear duct length. Otol. Neurotol. 2015, 36, 904–907. [Google Scholar] [CrossRef]
- Sugarova, S.; Kuzovkov, V.; Altamimi, F.; Vetrichelvan, J.; Prasad, R.; Kedves, A.; Dhanasingh, A. Applications of visualizing cochlear basal turn in cochlear implantation. Laryngoscope Investig. Otolaryngol. 2023, 8, 1666–1672. [Google Scholar] [CrossRef]
- Kashikar, T.S.; Kerwin, T.F.; Moberly, A.C.; Wiet, G.J. A review of simulation applications in temporal bone surgery. Laryngoscope Investig. Otolaryngol. 2019, 4, 420–424. [Google Scholar] [CrossRef]
- Gheorghe, D.C.; Zamfir-Chiru-Anton, A. Complications in cochlear implant surgery. J. Med. Life 2015, 8, 329–332. [Google Scholar]
- Al-Dhamari, I.; Helal, R.; Abdelaziz, T.; Waldeck, S.; Paulus, D. Automatic cochlear multimodal 3D image segmentation and analysis using atlas-model-based method. Cochlear Implant. Int. 2023, 3, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bettman, R.; Beek, E.; Van Olphen, A.; Zonneveld, F.; Huizing, E. MRI versus CT in assessment of cochlear patency in cochlear implant candidates. Acta Otolaryngol. 2004, 124, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.H.; Dawant, B.M.; Warren, F.M.; Labadie, R.F. Automatic identification and 3D rendering of temporal bone anatomy. Otol. Neurotol. 2009, 30, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Digge, P.; Solanki, R.N.; Shah, D.C.; Vishwakarma, R.; Kumar, S. Imaging Modality of Choice for Pre-Operative Cochlear Imaging: HRCT vs. MRI Temporal Bone. J. Clin. Diagn. Res. 2016, 10, TC01–TC04. [Google Scholar] [CrossRef] [PubMed]
- Widmann, G.; Dejaco, D.; Luger, A.; Schmutzhard, J. Pre- and post-operative imaging of cochlear implants: A pictorial review. Insights Imaging 2020, 11, 93. [Google Scholar] [CrossRef] [PubMed]
- Javia, L.; Sardesai, M.G. Physical Models and Virtual Reality Simulators in Otolaryngology. Otolaryngol. Clin. N. Am. 2017, 50, 875–891. [Google Scholar] [CrossRef]
- van den Boogert, T.; van Hoof, M.; Handschuh, S.; Glueckert, R.; Guinand, N.; Guyot, J.P.; Kingma, H.; Perez-Fornos, A.; Seppen, B.; Johnson Chacko, L.; et al. Optimization of 3D-Visualization of Micro-Anatomical Structures of the Human Inner Ear in Osmium Tetroxide Contrast Enhanced Micro-CT Scans. Front. Neuroanat. 2018, 12, 41. [Google Scholar] [CrossRef]
- Garza-Lopez, E.; Vue, Z.; Katti, P.; Neikirk, K.; Biete, M.; Lam, J.; Beasley, H.K.; Marshall, A.G.; Rodman, T.A.; Christensen, T.A.; et al. Protocols for Generating Surfaces and Measuring 3D Organelle Morphology Using Amira. Cells 2021, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Dhanasingh, A.; Dietz, A.; Jolly, C.; Roland, P. Human Inner-ear Malformation Types Captured in 3D. J. Int. Adv. Otol. 2019, 15, 77–82. [Google Scholar] [CrossRef]
- Avci, E.; Nauwelaers, T.; Lenarz, T.; Hamacher, V.; Kral, A. Variations in microanatomy of the human cochlea. J. Comp. Neurol. 2014, 522, 3245–3261. [Google Scholar] [CrossRef]
- Bozkurt, S.; Borghi, A.; van de Lande, L.S.; Jeelani, N.U.O.; Dunaway, D.J.; Schievano, S. Computational modelling of patient specific spring assisted lambdoid craniosynostosis correction. Sci. Rep. 2020, 10, 18693. [Google Scholar] [CrossRef] [PubMed]
- Rosset, A.; Spadola, L.; Ratib, O. OsiriX: An open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging 2004, 17, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Yushkevich, P.A.; Gao, Y.; Gerig, G. ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2016, 2016, 3342–3345. [Google Scholar]
- Bruns, N. Blender: Universelle 3D-Bearbeitungs- und Animationssoftware [Blender: Universal 3D processing and animation software]. Unfallchirurg 2020, 123, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Taka, S.J.; Srinivasan, S. NIRViz: 3D visualization software for multimodality optical imaging using visualization toolkit (VTK) and insight segmentation toolkit (ITK). J. Digit. Imaging 2011, 24, 1103–1111. [Google Scholar] [CrossRef]
- Lee, D.; Yi, J.W.; Hong, J.; Chai, Y.J.; Kim, H.C.; Kong, H.J. Augmented Reality to Localize Individual Organ in Surgical Procedure. Healthc. Inform. Res. 2018, 24, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Amla, Z.; Khehra, P.S.; Mathialagan, A.; Lugez, E. Review of the Free Research Software for Computer-Assisted Interventions. J. Imaging Inform. Med. 2024, 13, 791–801. [Google Scholar] [CrossRef]
- Breitsprecher, T.; Dhanasingh, A.; Schulze, M.; Kipp, M.; Dakah, R.A.; Oberhoffner, T.; Dau, M.; Frerich, B.; Weber, M.-A.; Langner, S.; et al. CT Imaging-Based Approaches to Cochlear Duct Length Estimation-A Human Temporal Bone Study. Eur. Radiol. 2022, 32, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, G.E.; Falkenberg-Jensen, B.; Bunne, M.; Iftikhar, M.; Greisiger, R.; Opheim, L.R.; Korslund, H.; Myhrum, M.; Sørensen, T.M. Fusion of Technology in Cochlear Implantation Surgery: Investigation of Fluoroscopically Assisted Robotic Electrode Insertion. Front. Surg. 2021, 8, 741401. [Google Scholar] [CrossRef]
- Canfarotta, M.W.; Dillon, M.T.; Buss, E.; Pillsbury, H.C.; Brown, K.D.; O’Connell, B.P. Validating a New Tablet-based Tool in the Determination of Cochlear Implant Angular Insertion Depth. Otol. Neurotol. 2019, 40, 1006–1010. [Google Scholar] [CrossRef]
- Khurayzi, T.; Almuhawas, F.; Sanosi, A. Direct measurement of cochlear parameters for automatic calculation of the cochlear duct length. Ann. Saudi Med. 2020, 40, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Di Maro, F.; Carner, M.; Sacchetto, A.; Soloperto, D.; Marchioni, D. Frequency reallocation based on cochlear place frequencies in cochlear implants: A pilot study. Eur. Arch. Otorhinolaryngol. 2022, 279, 4719–4725. [Google Scholar] [CrossRef]
- Kurz, A.; Müller-Graff, F.T.; Hagen, R.; Rak, K. One Click Is Not Enough: Anatomy-Based Fitting in Experienced Cochlear Implant Users. Otol. Neurotol. 2022, 43, 1176–1180. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Yang, T.; Fan, Y.; Song, W.; Gu, W.; Lu, X.; Chen, Y.; Chen, X. Hearing outcomes following cochlear implantation with anatomic or default frequency mapping in postlingual deafness adults. Eur. Arch. Otorhinolaryngol. 2024, 281, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Margeta, J.; Hussain, R.; López Diez, P.; Morgenstern, A.; Demarcy, T.; Wang, Z.; Gnansia, D.; Martinez Manzanera, O.; Vandersteen, C.; Delingette, H.; et al. A Web-Based Automated Image Processing Research Platform for Cochlear Implantation-Related Studies. J. Clin. Med. 2022, 11, 6640. [Google Scholar] [CrossRef] [PubMed]
- Geiger, S.; Iso-Mustajärvi, M.; Nauwelaers, T.; Avci, E.; Julkunen, P.; Linder, P.; Silvast, T.; Dietz, A. Automatic electrode scalar location assessment after cochlear implantation using a novel imaging software. Sci. Rep. 2023, 13, 12416. [Google Scholar] [CrossRef] [PubMed]
- Arends, S.R.S.; Briaire, J.J.; Geiger, S.; Nauwelaers, T.; Frijns, J.H.M. Evaluation of a Radiological Tool for Semiautomatic Scalar Translocation Detection After Cochlear Implantation. Otol. Neurotol. 2024, 45, e322–e327. [Google Scholar] [CrossRef] [PubMed]
- Iso-Mustajärvi, M.; Silvast, T.; Heikka, T.; Tervaniemi, J.; Calixto, R.; Linder, P.H.; Dietz, A. Trauma After Cochlear Implantation: The Accuracy of Micro-Computed Tomography and Cone-Beam Fusion Computed Tomography Compared With Histology in Human Temporal Bones. Otol. Neurotol. 2023, 44, 339–345. [Google Scholar] [CrossRef]
- Yigit, O.; Kalaycik Ertugay, C.; Yasak, A.G.; Araz Server, E. Which imaging modality in cochlear implant candidates? Eur. Arch. Otorhinolaryngol. 2019, 276, 1307–1311. [Google Scholar] [CrossRef]
- Parry, D.A.; Booth, T.; Roland, P.S. Advantages of magnetic resonance imaging over computed tomography in preoperative evaluation of pediatric cochlear implant candidates. Otol. Neurotol. 2005, 26, 976–982. [Google Scholar] [CrossRef]
- Ciodaro, F.; Freni, F.; Mannella, V.K.; Gazia, F.; Maceri, A.; Bruno, R.; Galletti, B.; Galletti, F. Use of 3D Volume Rendering Based on High-Resolution Computed Tomography Temporal Bone in Patients with Cochlear Implants. Am. J. Case Rep. 2019, 20, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Gatto, A.; Tofanelli, M.; Costariol, L.; Rizzo, S.; Borsetto, D.; Gardenal, N.; Uderzo, F.; Boscolo-Rizzo, P.; Tirelli, G. Otological Planning Software-OTOPLAN: A Narrative Literature Review. Audiol. Res. 2023, 13, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Lovato, A.; de Filippis, C. Utility of OTOPLAN Reconstructed Images for Surgical Planning of Cochlear Implantation in a Case of Post-meningitis Ossification. Otol. Neurotol. 2019, 40, e60–e61. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, H.; Watanabe, K.; Nishio, S.Y.; Takumi, Y.; Usami, S.I. Determining optimal cochlear implant electrode array with OTOPLAN. Acta Otolaryngol. 2023, 143, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Garrada, M.; Baflah, A.; Zawawi, F. Predicting the Magnet Strength Using a Tablet-Based Tool for Patients Undergoing Cochlear Implantation. Cureus 2023, 15, e46417. [Google Scholar] [CrossRef] [PubMed]
- Távora-Vieira, D.; Voola, M.; Kuthubutheen, J.; Friedland, P.; Gibson, D.; Acharya, A. Evaluation of the Performance of OTOPLAN-Based Cochlear Implant Electrode Array Selection: A Retrospective Study. J. Pers. Med. 2023, 13, 1276. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kang, S.; Du, H.; Wang, S.; Wang, D.; Liu, M.; Yang, S. Analysis of Cochlear Parameters in Paediatric Inner Ears with Enlarged Vestibular Aqueduct and Patent Cochlea. J. Pers. Med. 2022, 12, 1666. [Google Scholar] [CrossRef] [PubMed]
- Alahmadi, A.; Abdelsamad, Y.; Almuhawas, F.; Hamed, N.; Salamah, M.; Alsanosi, A. Cochlear Implantation: The Volumetric Measurement of Vestibular Aqueduct and Gusher Prediction. J. Pers. Med. 2023, 13, 171. [Google Scholar] [CrossRef]
- Hajr, E.; Abdelsamad, Y.; Almuhawas, F.; Alashour, A.; Hagr, A. Cochlear Implantation: The use of OTOPLAN Reconstructed Images in Trajectory Identification. Ear Nose Throat J. 2023, 1455613221134742. [Google Scholar] [CrossRef]
- Lovato, A.; Marioni, G.; Gamberini, L.; Bonora, C.; Genovese, E.; de Filippis, C. OTOPLAN in Cochlear Implantation for Far-advanced Otosclerosis. Otol. Neurotol. 2020, 41, e1024–e1028. [Google Scholar] [CrossRef]
- Ricci, G.; Lapenna, R.; Gambacorta, V.; Della Volpe, A.; Faralli, M.; Di Stadio, A. OTOPLAN, Cochlear Implant, and Far-Advanced Otosclerosis: Could the Use of Software Improve the Surgical Final Indication? J. Int. Adv. Otol. 2022, 18, 74–78. [Google Scholar] [CrossRef]
- Stebani, J.; Blaimer, M.; Zabler, S.; Neun, T.; Pelt, D.M.; Rak, K. Towards fully automated inner ear analysis with deep-learning-based joint segmentation and landmark detection framework. Sci. Rep. 2023, 13, 19057. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Lalande, A.; Girum, K.B.; Guigou, C.; Bozorg Grayeli, A. Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network. Sci. Rep. 2021, 11, 4406. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Curthoys, I.; MacDougall, H.; Clark, J.R.; Mukherjee, P. Human Middle Ear Anatomy Based on Micro-Computed Tomography and Reconstruction: An Immersive Virtual Reality Development. Osteology 2023, 3, 61–70. [Google Scholar] [CrossRef]
- Kayyali, M.N.; Wright, A.C.; Ramsey, A.J.; Brant, J.A.; Stein, J.M.; O’Malley, B.W.; Li, D. Challenges and opportunities in developing targeted molecular imaging to determine inner ear defects of sensorineural hearing loss. Nanomedicine 2018, 14, 397–404. [Google Scholar] [CrossRef]
- Bretthauer, M.; Gerke, S.; Hassan, C.; Ahmad, O.F.; Mori, Y. The New European Medical Device Regulation: Balancing Innovation and Patient Safety. Ann. Intern. Med. 2023, 176, 844–848. [Google Scholar] [CrossRef]
- Darrow, J.J.; Avorn, J.; Kesselheim, A.S. FDA Regulation and Approval of Medical Devices: 1976–2020. JAMA 2021, 326, 420–432. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasopoulos, M.; Samara, P.; Athanasopoulos, I. Advances in 3D Inner Ear Reconstruction Software for Cochlear Implants: A Comprehensive Review. Methods Protoc. 2024, 7, 46. https://doi.org/10.3390/mps7030046
Athanasopoulos M, Samara P, Athanasopoulos I. Advances in 3D Inner Ear Reconstruction Software for Cochlear Implants: A Comprehensive Review. Methods and Protocols. 2024; 7(3):46. https://doi.org/10.3390/mps7030046
Chicago/Turabian StyleAthanasopoulos, Michail, Pinelopi Samara, and Ioannis Athanasopoulos. 2024. "Advances in 3D Inner Ear Reconstruction Software for Cochlear Implants: A Comprehensive Review" Methods and Protocols 7, no. 3: 46. https://doi.org/10.3390/mps7030046
APA StyleAthanasopoulos, M., Samara, P., & Athanasopoulos, I. (2024). Advances in 3D Inner Ear Reconstruction Software for Cochlear Implants: A Comprehensive Review. Methods and Protocols, 7(3), 46. https://doi.org/10.3390/mps7030046