Methods to Investigate the Secretome of Senescent Cells
Abstract
:1. Introduction
Senescent Cells Unmasked: Exploring Their Distinctive Traits and Properties
2. In Silico Analysis of Cell Secretome
3. Secretome Analysis Methods Based on Protein
3.1. Methods to Collect Secretome and EVs from Senescent Cells
3.2. Protein Microarray
3.3. Bead-Based Array
3.4. Mass Spectrometry
3.5. SELDI-TOF Mass Spectrometry
4. Secretome Analysis Methods Based on Nucleic Acid
4.1. RNA Sequencing
4.2. DNA Microarray
4.3. Serial Analysis of Gene Expression (SAGE)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tjalsma, H.; Bolhuis, A.; Jongbloed, J.D.H.; Bron, S.; van Dijl, J.M. Signal Peptide-Dependent Protein Transport in Bacillus subtilis: A Genome-Based Survey of the Secretome. Microbiol. Mol. Biol. Rev. 2000, 64, 515–547. [Google Scholar] [CrossRef] [PubMed]
- Tjalsma, H.; Antelmann, H.; Jongbloed, J.D.H.; Braun, P.G.; Darmon, E.; Dorenbos, R.; Dubois, J.-Y.F.; Westers, H.; Zanen, G.; Quax, W.J.; et al. Proteomics of Protein Secretion by Bacillus subtilis: Separating the “Secrets” of the Secretome. Microbiol. Mol. Biol. Rev. 2004, 68, 207–233. [Google Scholar] [CrossRef]
- Agrawal, G.K.; Jwa, N.; Lebrun, M.; Job, D.; Rakwal, R. Plant Secretome: Unlocking Secrets of the Secreted Proteins. Proteomics 2010, 10, 799–827. [Google Scholar] [CrossRef] [PubMed]
- Hathout, Y. Approaches to the Study of the Cell Secretome. Expert. Rev. Proteom. 2007, 4, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.V.; DeKorver, N.W.; Levasseur, V.A.; Osborne, A.; Tassoni, A.; Lorber, B.; Heller, J.P.; Villasmil, R.; Bull, N.D.; Martin, K.R.; et al. Identification of Retinal Ganglion Cell Neuroprotection Conferred by Platelet-Derived Growth Factor through Analysis of the Mesenchymal Stem Cell Secretome. Brain 2014, 137, 503–519. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.S.; Lee, H.J.; Lim, I.; Satoh, J.; Kim, S.U. Human Astrocytes: Secretome Profiles of Cytokines and Chemokines. PLoS ONE 2014, 9, e92325. [Google Scholar] [CrossRef]
- Alessio, N.; Aprile, D.; Peluso, G.; Mazzone, V.; Patrone, D.; Di Bernardo, G.; Galderisi, U. IGFBP5 Is Released by Senescent Cells and Is Internalized by Healthy Cells, Promoting Their Senescence through Interaction with Retinoic Receptors. Cell Commun. Signal. 2024, 22, 122. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.; Mndlovu, H.; Kumar, P.; Adeyemi, S.A.; Choonara, Y.E. Cell Secretome Strategies for Controlled Drug Delivery and Wound-Healing Applications. Polymers 2022, 14, 2929. [Google Scholar] [CrossRef] [PubMed]
- López de Andrés, J.; Griñán-Lisón, C.; Jiménez, G.; Marchal, J.A. Cancer Stem Cell Secretome in the Tumor Microenvironment: A Key Point for an Effective Personalized Cancer Treatment. J. Hematol. Oncol. 2020, 13, 136. [Google Scholar] [CrossRef] [PubMed]
- Giannasi, C.; Niada, S.; Della Morte, E.; Casati, S.; Orioli, M.; Gualerzi, A.; Brini, A.T. Towards Secretome Standardization: Identifying Key Ingredients of MSC-Derived Therapeutic Cocktail. Stem Cells Int. 2021, 2021, 3086122. [Google Scholar] [CrossRef]
- Stastna, M.; Van Eyk, J.E. Secreted Proteins as a Fundamental Source for Biomarker Discovery. Proteomics 2012, 12, 722–735. [Google Scholar] [CrossRef] [PubMed]
- Acar, M.B.; Aprile, D.; Ayaz-Guner, S.; Guner, H.; Tez, C.; Di Bernardo, G.; Peluso, G.; Ozcan, S.; Galderisi, U. Why Do Muse Stem Cells Present an Enduring Stress Capacity? Hints from a Comparative Proteome Analysis. Int. J. Mol. Sci. 2021, 22, 2064. [Google Scholar] [CrossRef]
- Al Sammarraie, S.H.A.; Aprile, D.; Meloni, I.; Alessio, N.; Mari, F.; Manata, M.; Lo Rizzo, C.; Di Bernardo, G.; Peluso, G.; Renieri, A.; et al. An Example of Neuro-Glial Commitment and Differentiation of Muse Stem Cells Obtained from Patients with IQSEC2-Related Neural Disorder: A Possible New Cell-Based Disease Model. Cells 2023, 12, 977. [Google Scholar] [CrossRef]
- Roger, L.; Tomas, F.; Gire, V. Mechanisms and Regulation of Cellular Senescence. Int. J. Mol. Sci. 2021, 22, 13173. [Google Scholar] [CrossRef] [PubMed]
- Oguma, Y.; Alessio, N.; Aprile, D.; Dezawa, M.; Peluso, G.; Di Bernardo, G.; Galderisi, U. Meta-Analysis of Senescent Cell Secretomes to Identify Common and Specific Features of the Different Senescent Phenotypes: A Tool for Developing New Senotherapeutics. Cell Commun. Signal. 2023, 21, 262. [Google Scholar] [CrossRef]
- Cheng, H.; Qiu, L.; Ma, J.; Zhang, H.; Cheng, M.; Li, W.; Zhao, X.; Liu, K. Replicative Senescence of Human Bone Marrow and Umbilical Cord Derived Mesenchymal Stem Cells and Their Differentiation to Adipocytes and Osteoblasts. Mol. Biol. Rep. 2011, 38, 5161–5168. [Google Scholar] [CrossRef] [PubMed]
- De Cecco, M.; Ito, T.; Petrashen, A.P.; Elias, A.E.; Skvir, N.J.; Criscione, S.W.; Caligiana, A.; Brocculi, G.; Adney, E.M.; Boeke, J.D.; et al. L1 Drives IFN in Senescent Cells and Promotes Age-Associated Inflammation. Nature 2019, 566, 73–78. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.-S. Cellular Senescence: A Promising Strategy for Cancer Therapy. BMB Rep. 2019, 52, 35–41. [Google Scholar] [CrossRef]
- Özcan, S.; Alessio, N.; Acar, M.B.; Mert, E.; Omerli, F.; Peluso, G.; Galderisi, U. Unbiased Analysis of Senescence Associated Secretory Phenotype (SASP) to Identify Common Components Following Different Genotoxic Stresses. Aging 2016, 8, 1316–1329. [Google Scholar] [CrossRef] [PubMed]
- Prata, L.G.P.L.; Ovsyannikova, I.G.; Tchkonia, T.; Kirkland, J.L. Senescent Cell Clearance by the Immune System: Emerging Therapeutic Opportunities. Semin. Immunol. 2018, 40, 101275. [Google Scholar] [CrossRef]
- Antelo-Iglesias, L.; Picallos-Rabina, P.; Estévez-Souto, V.; Da Silva-Álvarez, S.; Collado, M. The Role of Cellular Senescence in Tissue Repair and Regeneration. Mech. Ageing Dev. 2021, 198, 111528. [Google Scholar] [CrossRef] [PubMed]
- Shay, J.W.; Roninson, I.B. Hallmarks of Senescence in Carcinogenesis and Cancer Therapy. Oncogene 2004, 23, 2919–2933. [Google Scholar] [CrossRef] [PubMed]
- Schafer, M.J.; Zhang, X.; Kumar, A.; Atkinson, E.J.; Zhu, Y.; Jachim, S.; Mazula, D.L.; Brown, A.K.; Berning, M.; Aversa, Z.; et al. The Senescence-Associated Secretome as an Indicator of Age and Medical Risk. JCI Insight 2020, 5, e133668. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Mani, S. Methodologies to Decipher the Cell Secretome. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2013, 1834, 2226–2232. [Google Scholar] [CrossRef] [PubMed]
- Nickel, W. The Mystery of Nonclassical Protein Secretion. Eur. J. Biochem. 2003, 270, 2109–2119. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, F.; Morosi, L.; Chinello, C.; Magni, F.; Pitto, M. Advances in Membranous Vesicle and Exosome Proteomics Improving Biological Understanding and Biomarker Discovery. Proteomics 2011, 11, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, J.D.; Jensen, L.J.; Blom, N.; von Heijne, G.; Brunak, S. Feature-Based Prediction of Non-Classical and Leaderless Protein Secretion. Protein Eng. Des. Sel. 2004, 17, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating Signal Peptides from Transmembrane Regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- von Heijne, G. Signal Sequences. J. Mol. Biol. 1985, 184, 99–105. [Google Scholar] [CrossRef]
- Maricchiolo, E.; Panfili, E.; Pompa, A.; De Marchis, F.; Bellucci, M.; Pallotta, M.T. Unconventional Pathways of Protein Secretion: Mammals vs. Plants. Front. Cell Dev. Biol. 2022, 10, 895853. [Google Scholar] [CrossRef]
- Antelmann, H.; Tjalsma, H.; Voigt, B.; Ohlmeier, S.; Bron, S.; van Dijl, J.M.; Hecker, M. A Proteomic View on Genome-Based Signal Peptide Predictions. Genome Res. 2001, 11, 1484–1502. [Google Scholar] [CrossRef] [PubMed]
- Clamp, M.; Fry, B.; Kamal, M.; Xie, X.; Cuff, J.; Lin, M.F.; Kellis, M.; Lindblad-Toh, K.; Lander, E.S. Distinguishing Protein-Coding and Noncoding Genes in the Human Genome. Proc. Natl. Acad. Sci. USA 2007, 104, 19428–19433. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, P.; Luo, J.; Jiang, Y. Secreted Protein Prediction System Combining CJ-SPHMM, TMHMM, and PSORT. Mamm. Genome 2003, 14, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Meinken, J.; Walker, G.; Cooper, C.R.; Min, X.J. MetazSecKB: The Human and Animal Secretome and Subcellular Proteome Knowledgebase. Database 2015, 2015, bav077. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Bilgin, M.; Bangham, R.; Hall, D.; Casamayor, A.; Bertone, P.; Lan, N.; Jansen, R.; Bidlingmaier, S.; Houfek, T.; et al. Global Analysis of Protein Activities Using Proteome Chips. Science 2001, 293, 2101–2105. [Google Scholar] [CrossRef] [PubMed]
- Gallotta, A.; Orzes, E.; Fassina, G. Biomarkers Quantification with Antibody Arrays in Cancer Early Detection. Clin. Lab. Med. 2012, 32, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Krawczyk, S.A.; Chaerkady, R.; Huang, H.; Goel, R.; Bader, J.S.; Wong, G.W.; Corkey, B.E.; Pandey, A. Temporal Profiling of the Secretome during Adipogenesis in Humans. J. Proteome Res. 2010, 9, 5228–5238. [Google Scholar] [CrossRef]
- LaFramboise, W.A.; Scalise, D.; Stoodley, P.; Graner, S.R.; Guthrie, R.D.; Magovern, J.A.; Becich, M.J. Cardiac Fibroblasts Influence Cardiomyocyte Phenotype in Vitro. Am. J. Physiol. Cell Physiol. 2007, 292, C1799–C1808. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.T.; Kheur, S.; Khurshid, Z.; Sayed, M.E.; Mugri, M.H.; Almasri, M.A.; Al-Ahmari, M.M.; Patil, V.R.; Bhandi, S.; Testarelli, L.; et al. The Growth Factors and Cytokines of Dental Pulp Mesenchymal Stem Cell Secretome May Potentially Aid in Oral Cancer Proliferation. Molecules 2021, 26, 5683. [Google Scholar] [CrossRef]
- Dagher, M.; Ongo, G.; Robichaud, N.; Kong, J.; Rho, W.; Teahulos, I.; Tavakoli, A.; Bovaird, S.; Merjaneh, S.; Tan, A.; et al. NELISA: A High-Throughput, High-Plex Platform Enables Quantitative Profiling of the Secretome. bioRxiv 2023. [Google Scholar] [CrossRef]
- Klose, J. Protein Mapping by Combined Isoelectric Focusing and Electrophoresis of Mouse Tissues. Humangenetik 1975, 26, 231–243. [Google Scholar] [CrossRef]
- Rabilloud, T.; Chevallet, M.; Luche, S.; Lelong, C. Two-Dimensional Gel Electrophoresis in Proteomics: Past, Present and Future. J. Proteom. 2010, 73, 2064–2077. [Google Scholar] [CrossRef]
- Thompson, A.H.; Bjourson, A.J.; Orr, D.F.; Shaw, C.; McClean, S. Amphibian Skin Secretomics: Application of Parallel Quadrupole Time-of-Flight Mass Spectrometry and Peptide Precursor CDNA Cloning to Rapidly Characterize the Skin Secretory Peptidome of Phyllomedusa hypochondrialis Azurea: Discovery of a Novel Peptide Family, the Hyposins. J. Proteome Res. 2007, 6, 3604–3613. [Google Scholar] [CrossRef]
- Vitorino, R.; Alves, R.; Barros, A.; Caseiro, A.; Ferreira, R.; Lobo, M.C.; Bastos, A.; Duarte, J.; Carvalho, D.; Santos, L.L.; et al. Finding New Posttranslational Modifications in Salivary Proline-rich Proteins. Proteomics 2010, 10, 3732–3742. [Google Scholar] [CrossRef]
- Shintani, S.; Hamakawa, H.; Ueyama, Y.; Hatori, M.; Toyoshima, T. Identification of a Truncated Cystatin SA-I as a Saliva Biomarker for Oral Squamous Cell Carcinoma Using the SELDI ProteinChip Platform. Int. J. Oral. Maxillofac. Surg. 2010, 39, 68–74. [Google Scholar] [CrossRef]
- Champion, M.M.; Williams, E.A.; Kennedy, G.M.; DiGiuseppe Champion, P.A. Direct Detection of Bacterial Protein Secretion Using Whole Colony Proteomics. Mol. Cell. Proteom. 2012, 11, 596–604. [Google Scholar] [CrossRef]
- Chenau, J.; Michelland, S.; Seve, M. Le Sécrétome: Définitions et Intérêt Biomédical. Rev. Med. Interne 2008, 29, 606–608. [Google Scholar] [CrossRef]
- Mona, M.; Kobeissy, F.; Park, Y.-J.; Miller, R.; Saleh, W.; Koh, J.; Yoo, M.-J.; Chen, S.; Cha, S. Secretome Analysis of Inductive Signals for BM-MSC Transdifferentiation into Salivary Gland Progenitors. Int. J. Mol. Sci. 2020, 21, 9055. [Google Scholar] [CrossRef]
- Terracciano, R.; Preianò, M.; Palladino, G.P.; Carpagnano, G.E.; Barbaro, M.P.F.; Pelaia, G.; Savino, R.; Maselli, R. Peptidome Profiling of Induced Sputum by Mesoporous Silica Beads and MALDI-TOF MS for Non-invasive Biomarker Discovery of Chronic Inflammatory Lung Diseases. Proteomics 2011, 11, 3402–3414. [Google Scholar] [CrossRef]
- Jou, Y.-J.; Lin, C.-D.; Lai, C.-H.; Chen, C.-H.; Kao, J.-Y.; Chen, S.-Y.; Tsai, M.-H.; Huang, S.-H.; Lin, C.-W. Proteomic Identification of Salivary Transferrin as a Biomarker for Early Detection of Oral Cancer. Anal. Chim. Acta 2010, 681, 41–48. [Google Scholar] [CrossRef]
- Darie, C.C.; Shetty, V.; Spellman, D.S.; Zhang, G.; Xu, C.; Cardasis, H.L.; Blais, S.; Fenyo, D.; Neubert, T.A. Blue Native PAGE and Mass Spectrometry Analysis of Ephrin Stimulation-Dependent Protein-Protein Interactions in NG108-EphB2 Cells; Springer: Dordrecht, The Netherlands, 2008; pp. 3–22. [Google Scholar] [CrossRef]
- Darie, C.C.; Deinhardt, K.; Zhang, G.; Cardasis, H.S.; Chao, M.V.; Neubert, T.A. Identifying Transient Protein–Protein Interactions in EphB2 Signaling by Blue Native PAGE and Mass Spectrometry. Proteomics 2011, 11, 4514–4528. [Google Scholar] [CrossRef]
- Sokolowska, I.; Woods, A.G.; Wagner, J.; Dorler, J.; Wormwood, K.; Thome, J.; Darie, C.C. Mass Spectrometry for Proteomics-Based Investigation of Oxidative Stress and Heat Shock Proteins; American Chemical Society: Washington, DC, USA, 2011; pp. 369–411. [Google Scholar] [CrossRef]
- Stastna, M.; Van Eyk, J.E. Investigating the Secretome. Circ. Cardiovasc. Genet. 2012, 5, 1. [Google Scholar] [CrossRef]
- Skalnikova, H.; Motlik, J.; Gadher, S.J.; Kovarova, H. Mapping of the Secretome of Primary Isolates of Mammalian Cells, Stem Cells and Derived Cell Lines. Proteomics 2011, 11, 691–708. [Google Scholar] [CrossRef]
- Ünlü, M.; Morgan, M.E.; Minden, J.S. Difference Gel Electrophoresis. A Single Gel Method for Detecting Changes in Protein Extracts. Electrophoresis 1997, 18, 2071–2077. [Google Scholar] [CrossRef]
- Gygi, S.P.; Rist, B.; Gerber, S.A.; Turecek, F.; Gelb, M.H.; Aebersold, R. Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags. Nat. Biotechnol. 1999, 17, 994–999. [Google Scholar] [CrossRef]
- Khwaja, F.W.; Svoboda, P.; Reed, M.; Pohl, J.; Pyrzynska, B.; Van Meir, E.G. Proteomic Identification of the Wt-P53-Regulated Tumor Cell Secretome. Oncogene 2006, 25, 7650–7661. [Google Scholar] [CrossRef]
- Hansen, K.C.; Schmitt-Ulms, G.; Chalkley, R.J.; Hirsch, J.; Baldwin, M.A.; Burlingame, A.L. Mass Spectrometric Analysis of Protein Mixtures at Low Levels Using Cleavable 13C-Isotope-Coded Affinity Tag and Multidimensional Chromatography. Mol. Cell. Proteom. 2003, 2, 299–314. [Google Scholar] [CrossRef]
- Pocsfalvi, G.; Votta, G.; De Vincenzo, A.; Fiume, I.; Raj, D.A.A.; Marra, G.; Stoppelli, M.P.; Iaccarino, I. Analysis of Secretome Changes Uncovers an Autocrine/Paracrine Component in the Modulation of Cell Proliferation and Motility by c-Myc. J. Proteome Res. 2011, 10, 5326–5337. [Google Scholar] [CrossRef]
- Zhou, H.; Xiao, Y.; Li, R.; Hong, S.; Li, S.; Wang, L.; Zeng, R.; Liao, K. Quantitative Analysis of Secretome from Adipocytes Regulated by Insulin. Acta Biochim. Biophys. Sin. 2009, 41, 910–921. [Google Scholar] [CrossRef]
- Wiese, S.; Reidegeld, K.A.; Meyer, H.E.; Warscheid, B. Protein Labeling by ITRAQ: A New Tool for Quantitative Mass Spectrometry in Proteome Research. Proteomics 2007, 7, 340–350. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, J.; Hao, W.; Xiang, T.; Zhou, H.; Wang, W.; Meng, Q.; Ding, Z. ITRAQ-Based Quantitative Proteomic Analysis of Procambarus Clakii Hemocytes during Spiroplasma Eriocheiris Infection. Fish. Shellfish Immunol. 2018, 77, 438–444. [Google Scholar] [CrossRef]
- Li, X.; Yao, J.; Hu, J.; Deng, C.; Xie, Y.; Wang, Z. ITRAQ-Based Proteomics of Testicular Interstitial Fluid during Aging in Mice. Theriogenology 2021, 175, 44–53. [Google Scholar] [CrossRef]
- Kupcova Skalnikova, H. Proteomic Techniques for Characterisation of Mesenchymal Stem Cell Secretome. Biochimie 2013, 95, 2196–2211. [Google Scholar] [CrossRef]
- Mann, M. Functional and Quantitative Proteomics Using SILAC. Nat. Rev. Mol. Cell Biol. 2006, 7, 952–958. [Google Scholar] [CrossRef]
- Marimuthu, A.; Subbannayya, Y.; Sahasrabuddhe, N.A.; Balakrishnan, L.; Syed, N.; Sekhar, N.R.; Katte, T.V.; Pinto, S.M.; Srikanth, S.M.; Kumar, P.; et al. SILAC-based Quantitative Proteomic Analysis of Gastric Cancer Secretome. Proteom. Clin. Appl. 2013, 7, 355–366. [Google Scholar] [CrossRef]
- Boersema, P.J.; Geiger, T.; Wiśniewski, J.R.; Mann, M. Quantification of the N-Glycosylated Secretome by Super-SILAC During Breast Cancer Progression and in Human Blood Samples. Mol. Cell. Proteom. 2013, 12, 158–171. [Google Scholar] [CrossRef]
- Bosse, K.; Haneder, S.; Arlt, C.; Ihling, C.H.; Seufferlein, T.; Sinz, A. Mass Spectrometry-based Secretome Analysis of Non-small Cell Lung Cancer Cell Lines. Proteomics 2016, 16, 2801–2814. [Google Scholar] [CrossRef]
- Lange, V.; Picotti, P.; Domon, B.; Aebersold, R. Selected Reaction Monitoring for Quantitative Proteomics: A Tutorial. Mol. Syst. Biol. 2008, 4, 222. [Google Scholar] [CrossRef]
- Hutchens, T.W.; Yip, T. New Desorption Strategies for the Mass Spectrometric Analysis of Macromolecules. Rapid Commun. Mass. Spectrom. 1993, 7, 576–580. [Google Scholar] [CrossRef]
- Muthu, M.; Vimala, A.; Mendoza, O.H.; Gopal, J. Tracing the Voyage of SELDI-TOF MS in Cancer Biomarker Discovery and Its Current Depreciation Trend—Need for Resurrection? TrAC Trends Anal. Chem. 2016, 76, 95–101. [Google Scholar] [CrossRef]
- Ashfaq, M.Y.; Da’na, D.A.; Al-Ghouti, M.A. Application of MALDI-TOF MS for Identification of Environmental Bacteria: A Review. J. Environ. Manag. 2022, 305, 114359. [Google Scholar] [CrossRef] [PubMed]
- Katz-Jaffe, M.G.; Gardner, D.K.; Schoolcraft, W.B. Proteomic Analysis of Individual Human Embryos to Identify Novel Biomarkers of Development and Viability. Fertil. Steril. 2006, 85, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Schlichtemeier, S.M.; Nahm, C.B.; Xue, A.; Gill, A.J.; Smith, R.C.; Hugh, T.J. SELDI-TOF MS Analysis of Hepatocellular Carcinoma in an Australian Cohort. J. Surg. Res. 2019, 238, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Hoggard, N.; Cruickshank, M.; Moar, K.; Bashir, S.; Mayer, C. Using Gene Expression to Predict Differences in the Secretome of Human Omental vs. Subcutaneous Adipose Tissue. Obesity 2012, 20, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Dahlman, I.; Elsen, M.; Tennagels, N.; Korn, M.; Brockmann, B.; Sell, H.; Eckel, J.; Arner, P. Functional Annotation of the Human Fat Cell Secretome. Arch. Physiol. Biochem. 2012, 118, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Dombkowski, A.A.; Cukovic, D.; Novak, R.F. Secretome Analysis of Microarray Data Reveals Extracellular Events Associated with Proliferative Potential in a Cell Line Model of Breast Disease. Cancer Lett. 2006, 241, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Velculescu, V.E.; Zhang, L.; Vogelstein, B.; Kinzler, K.W. Serial Analysis of Gene Expression. Science 1995, 270, 484–487. [Google Scholar] [CrossRef]
- Anisimov, S.V. Serial Analysis of Gene Expression (SAGE): 13 Years of Application in Research. Curr. Pharm. Biotechnol. 2008, 9, 338–350. [Google Scholar] [CrossRef]
Tool | Description | Advantages | Limitations |
---|---|---|---|
SecretomeP | Predicts non-classical secretory proteins | Identifies non-signal peptide proteins | Risk of false predictions |
SignalP | Predicts proteins with signal peptides | Well established, reliable for classical pathways | Missing non-classical secretory proteins |
Methods | Features | Advantages | Disadvantages |
---|---|---|---|
Protein microarrays |
|
|
|
Bead-based array |
|
|
|
Mass spectrometry |
|
|
|
ICAT |
|
|
|
iTRAQ |
|
|
|
SILAC |
|
|
|
SRM/MRM |
|
|
|
SELDI_TOF MS |
|
|
|
Method | Description | Advantages | Disadvantages | Applications |
---|---|---|---|---|
RNA Sequencing | Analyzes transcriptome by sequencing cDNA produced from mRNA | No need for prior genome info; less background noise | Large data volume; only sequence info; less efficient for rare transcripts | mRNA quantification, gene expression analysis, splicing patterns |
DNA Microarray | Measures mRNA concentration using complementary DNA probes | Cost effective; can profile total gene expression | mRNA may not correlate with protein expression | Tissue and cell secretome investigation, gene expression profiling |
SAGE | Uses short tags to measure gene expression patterns | Quantitative and qualitative analysis; applicable to various organisms | Requires specific enzymatic reactions | Diagnosing gene expression, measuring expression levels over time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samiminemati, A.; Aprile, D.; Siniscalco, D.; Di Bernardo, G. Methods to Investigate the Secretome of Senescent Cells. Methods Protoc. 2024, 7, 52. https://doi.org/10.3390/mps7040052
Samiminemati A, Aprile D, Siniscalco D, Di Bernardo G. Methods to Investigate the Secretome of Senescent Cells. Methods and Protocols. 2024; 7(4):52. https://doi.org/10.3390/mps7040052
Chicago/Turabian StyleSamiminemati, Afshin, Domenico Aprile, Dario Siniscalco, and Giovanni Di Bernardo. 2024. "Methods to Investigate the Secretome of Senescent Cells" Methods and Protocols 7, no. 4: 52. https://doi.org/10.3390/mps7040052
APA StyleSamiminemati, A., Aprile, D., Siniscalco, D., & Di Bernardo, G. (2024). Methods to Investigate the Secretome of Senescent Cells. Methods and Protocols, 7(4), 52. https://doi.org/10.3390/mps7040052