Optimization of Methodologies to Study Freeze/Thaw Processes in Drug Substance Bottles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Freezing/Thawing
2.3. Temperature Mapping Equipment
2.4. Liquid Sampling Equipment
2.5. Analytics
3. Results and Discussion
3.1. Time-Resolved Temperature Mapping
3.2. Liquid Sampling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lashmar, U.; Vanderburgh, M.; Little, S. Bulk freeze-thawing of macromolecules: Effects of cryoconcentration on their formulation and stability. BioProcess Int. 2007, 5, 44–54. [Google Scholar]
- Bhatnagar, B.S.; Pikal, M.J.; Bogner, R.H. Study of the Individual Contributions of Ice Formation and Freeze-Concentration on Isothermal Stability of Lactate Dehydrogenase during Freezing. J. Pharm. Sci. 2008, 97, 798–814. [Google Scholar] [CrossRef] [PubMed]
- Dao, H.M.; Sahakijpijarn, S.; Chrostowski, R.; Peng, H.-H.; Moon, C.; Xu, H.; Mangolini, F.; Do, H.H.; Cui, Z.; Williams, R.O. Entrapment of air microbubbles by ice crystals during freezing exacerbates freeze-induced denaturation of proteins. Int. J. Pharm. 2022, 628, 122306. [Google Scholar] [CrossRef] [PubMed]
- Maity, H.; Karkaria, C.; Davagnino, J. Mapping of solution components, pH changes, protein stability and the elimination of protein precipitation during freeze–thawing of fibroblast growth factor 20. Int. J. Pharm. 2009, 378, 122–135. [Google Scholar] [CrossRef]
- Mehta, S.B.; Subramanian, S.; D’Mello, R.; Brisbane, C.; Roy, S. Effect of protein cryoconcentration and processing conditions on kinetics of dimer formation for a monoclonal antibody: A case study on bioprocessing. Biotechnol. Prog. 2019, 35, e2836. [Google Scholar] [CrossRef]
- Kolhe, P.; Mehta, A.; Lary, A.; Chico, S.; Singh, S.K. Large-Scale Freezing of Biologics (Part lll). BioPharm Int. 2012, 25, 40–48. [Google Scholar]
- Padala, C.; Jameel, F.; Rathore, N.; Gupta, K.; Sethuraman, A. Impact of Uncontrolled vs Controlled Rate Freeze-Thaw Technologies on Process Performance and Product Quality. PDA J. Pharm. Sci. Technol. 2010, 64, 290–298. [Google Scholar]
- Desai, K.; Martin, P.; Colandene, J.; Pruett, W.A.; Nesta, D. Impact of manufacturing-scale freeze-thaw conditions on a mAb solution. BioPharm Int. 2017, 30, 30–36. [Google Scholar]
- Authelin, J.-R.; Rodrigues, M.A.; Tchessalov, S.; Singh, S.K.; McCoy, T.; Wang, S.; Shalaev, E. Freezing of Biologicals Revisited: Scale, Stability, Excipients, and Degradation Stresses. J. Pharm. Sci. 2020, 109, 44–61. [Google Scholar] [CrossRef]
- Miller, M.A.; Rodrigues, M.A.; Glass, M.A.; Singh, S.K.; Johnston, K.P.; Maynard, J.A. Frozen-State Storage Stability of a Monoclonal Antibody: Aggregation is Impacted by Freezing Rate and Solute Distribution. J. Pharm. Sci. 2013, 102, 1194–1208. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Balzan, G.; Rosa, M.; Gomes, D.; de Azevedo, E.G.; Singh, S.K.; Matos, H.A.; Geraldes, V. The importance of heat flow direction for reproducible and homogeneous freezing of bulk protein solutions. Biotechnol. Prog. 2013, 29, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Bluemel, O.; Buecheler, J.W.; Rodrigues, M.A.; Geraldes, V.; Hoelzl, G.; Bechtold-Peters, K.; Friess, W. Cryoconcentration and 3D Temperature Profiles during Freezing of mAb Solutions in Large-Scale PET Bottles and a Novel Scale-Down Device. Pharm. Res. 2020, 37, 179. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Bogner, R.H.; Nail, S.L.; Pikal, M.J. Stability of Freeze-Dried Protein Formulations: Contributions of Ice Nucleation Temperature and Residence Time in the Freeze-Concentrate. J. Pharm. Sci. 2020, 109, 1896–1904. [Google Scholar] [CrossRef]
- Jain, K.; Salamat-Miller, N.; Taylor, K. Freeze–thaw characterization process to minimize aggregation and enable drug product manufacturing of protein based therapeutics. Sci. Rep. 2021, 11, 11332. [Google Scholar] [CrossRef] [PubMed]
- Jameel, F.; Zhu, T.; Mills, B.J. Chapter 19: Design of a Bulk Freeze-Thaw Process for Biologics. In Development of Biopharmaceutical Drug-Device Products; Jameel, F., Skoug, J.W., Nesbitt, R.R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 461–486. [Google Scholar]
- Singh, S.K.; Nema, S. Chapter 26: Freezing and thawing of protein solutions. In Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 625–675. [Google Scholar]
- Hauptmann, A.; Hoelzl, G.; Loerting, T. Distribution of Protein Content and Number of Aggregates in Monoclonal Antibody Formulation After Large-Scale Freezing. AAPS PharmSciTech 2019, 20, 72. [Google Scholar] [CrossRef]
- Weber, D.; Sittig, C.; Hubbuch, J. Impact of freeze–thaw processes on monoclonal antibody platform process development. Biotechnol. Bioeng. 2021, 118, 3914–3925. [Google Scholar] [CrossRef]
- Minatovicz, B.; Bogner, R.; Chaudhuri, B. Use of a Design of Experiments (DoE) Approach to Optimize Large-Scale Freeze-Thaw Process of Biologics. AAPS PharmSciTech 2021, 22, 153. [Google Scholar] [CrossRef]
- Rayfield, W.J.; Kandula, S.; Khan, H.; Tugcu, N. Impact of Freeze/Thaw Process on Drug Substance Storage of Therapeutics. J. Pharm. Sci. 2017, 106, 1944–1951. [Google Scholar] [CrossRef]
- Jameel, F.; Padala, C.; Randolph, T.W. Chapter 27: Strategies for bulk storage and shipment of proteins. In Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 677–704. [Google Scholar]
- Bluemel, O.; Pavlisic, A.; Likozar, B.; Rodrigues, M.A.; Geraldes, V.; Bechtold-Peters, K.; Friess, W. Computational fluid dynamic simulations of temperature, cryoconcentration, and stress time during large-scale freezing and thawing of monoclonal antibody solutions. Eur. J. Pharm. Biopharm. 2022, 177, 107–112. [Google Scholar] [CrossRef]
- Nakach, M.; Firas, B.; StÉphanie, G.; Jean-RenÉ, A.; Otmar, K.; Cathrin, B. Freezing Time Prediction of Biologic Formulated Drug Substance Using the Plank Model. PDA J. Pharm. Sci. Technol. 2021, 75, 24–32. [Google Scholar] [CrossRef]
- Bluemel, O.; Buecheler, J.W.; Hauptmann, A.; Hoelzl, G.; Bechtold-Peters, K.; Friess, W. Scaling Down Large-Scale Thawing of Monoclonal Antibody Solutions: 3D Temperature Profiles, Changes in Concentration, and Density Gradients. Pharm. Res. 2021, 38, 1977–1989. [Google Scholar] [CrossRef] [PubMed]
- Parkins, D.A.; Lashmar, U.T. The formulation of biopharmaceutical products. Pharm. Sci. Technol. Today 2000, 3, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Le Basle, Y.; Chennell, P.; Tokhadze, N.; Astier, A.; Sautou, V. Physicochemical Stability of Monoclonal Antibodies: A Review. J. Pharm. Sci. 2020, 109, 169–190. [Google Scholar] [CrossRef] [PubMed]
- Peláez, S.S.; Mahler, H.-C.; Vila, P.R.; Huwyler, J.; Allmendinger, A. Characterization of Freezing Processes in Drug Substance Bottles by Ice Core Sampling. AAPS PharmSciTech 2024, 25, 102. [Google Scholar] [CrossRef]
- Kolhe, P.; Badkar, A. Protein and solute distribution in drug substance containers during frozen storage and post-thawing: A tool to understand and define freezing–thawing parameters in biotechnology process development. Biotechnol. Prog. 2011, 27, 494–504. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peláez, S.S.; Mahler, H.-C.; Huwyler, J.; Allmendinger, A. Optimization of Methodologies to Study Freeze/Thaw Processes in Drug Substance Bottles. Methods Protoc. 2024, 7, 68. https://doi.org/10.3390/mps7050068
Peláez SS, Mahler H-C, Huwyler J, Allmendinger A. Optimization of Methodologies to Study Freeze/Thaw Processes in Drug Substance Bottles. Methods and Protocols. 2024; 7(5):68. https://doi.org/10.3390/mps7050068
Chicago/Turabian StylePeláez, Sarah S., Hanns-Christian Mahler, Jörg Huwyler, and Andrea Allmendinger. 2024. "Optimization of Methodologies to Study Freeze/Thaw Processes in Drug Substance Bottles" Methods and Protocols 7, no. 5: 68. https://doi.org/10.3390/mps7050068
APA StylePeláez, S. S., Mahler, H.-C., Huwyler, J., & Allmendinger, A. (2024). Optimization of Methodologies to Study Freeze/Thaw Processes in Drug Substance Bottles. Methods and Protocols, 7(5), 68. https://doi.org/10.3390/mps7050068