Mechanisms of Resistance to CAR T-Cells and How to Overcome Them
Abstract
1. Introduction
2. Mechanisms of CAR T-Cell Resistance
2.1. CAR T-Cell Dysfunction
2.1.1. Memory T-Cells
2.1.2. Dysfunctional T-Cells
2.1.3. Age-Related Changes in T-Cell Subsets
2.2. Intrinsic Tumor Resistance
2.2.1. Antigen Escape
2.2.2. Trogocytosis
2.2.3. Lineage Switch
2.2.4. Tumor Genetic Alterations
2.2.5. Tumor Microenvironment
2.2.6. Other Issues: CAR-Positive Relapses
2.3. Tumor-Independent Mechanisms of Resistance: Role of the Microbiota
3. Overcoming CAR T-Cell Resistance
3.1. CAR Engineering
3.1.1. CAR Modifications
3.1.2. Alternative Costimulatory Domains and Third-Generation CAR T-Cells
3.1.3. Dual Targeting
3.1.4. Fourth-Generation CAR T-Cells: Armored CARs and CAR TRUCKs
3.1.5. Boolean and Conditional Logic in CAR T-Cells
3.2. T-Cell Collection, Selection, and Manufacturing
3.3. Allogeneic CAR T-Cells
3.4. Other Effector Cells
3.4.1. CAR NKs
3.4.2. CAR Macrophages
3.5. CAR T-Cells Plus X: Complementary Molecular Agents
3.5.1. PD-1/PD-L1 Blockade
3.5.2. Bruton Tyrosine Kinase Inhibitors
3.5.3. Immunomodulatory Agents
3.5.4. BCR/ABL Inhibitors
3.5.5. Bcl-2 Inhibitors
3.5.6. γ-Secretase Inhibitors
3.5.7. Other Approaches
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy Bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef] [PubMed]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene Maraleucel for Patients with Relapsed or Refractory Large B-Cell Lymphomas (TRANSCEND NHL 001): A Multicentre Seamless Design Study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-Term Safety and Activity of Axicabtagene Ciloleucel in Refractory Large B-Cell Lymphoma (ZUMA-1): A Single-Arm, Multicentre, Phase 1-2 Trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.-A.; Kersten, M.-J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef]
- Kamdar, M.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene Maraleucel versus Standard of Care with Salvage Chemotherapy Followed by Autologous Stem Cell Transplantation as Second-Line Treatment in Patients with Relapsed or Refractory Large B-Cell Lymphoma (TRANSFORM): Results from an Interim Analysis of an Open-Label, Randomised, Phase 3 Trial. Lancet 2022, 399, 2294–2308. [Google Scholar] [CrossRef]
- Bishop, M.R.; Dickinson, M.; Purtill, D.; Barba, P.; Santoro, A.; Hamad, N.; Kato, K.; Sureda, A.; Greil, R.; Thieblemont, C.; et al. Second-Line Tisagenlecleucel or Standard Care in Aggressive B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 629–639. [Google Scholar] [CrossRef]
- Coscia, M.; Vitale, C.; Cerrano, M.; Maffini, E.; Giaccone, L.; Boccadoro, M.; Bruno, B. Adoptive Immunotherapy with CAR Modified T Cells in Cancer: Current Landscape and Future Perspectives. Front. Biosci. 2019, 24, 1284–1315. [Google Scholar] [CrossRef]
- Benevolo Savelli, C.; Clerico, M.; Botto, B.; Secreto, C.; Cavallo, F.; Dellacasa, C.; Busca, A.; Bruno, B.; Freilone, R.; Cerrano, M.; et al. Chimeric Antigen Receptor-T Cell Therapy for Lymphoma: New Settings and Future Directions. Cancers 2023, 16, 46. [Google Scholar] [CrossRef]
- Benevolo Savelli, C.; Bisio, M.; Legato, L.; Fasano, F.; Santambrogio, E.; Nicolosi, M.; Morra, D.; Boccomini, C.; Freilone, R.; Botto, B.; et al. Advances in Hodgkin Lymphoma Treatment: From Molecular Biology to Clinical Practice. Cancers 2024, 16, 1830. [Google Scholar] [CrossRef]
- Cerrano, M.; Ruella, M.; Perales, M.A.; Vitale, C.; Faraci, D.G.; Giaccone, L.; Coscia, M.; Maloy, M.; Sanchez-Escamilla, M.; Elsabah, H.; et al. The Advent of CAR T-Cell Therapy for Lymphoproliferative Neoplasms: Integrating Research Into Clinical Practice. Front. Immunol. 2020, 11, 888. [Google Scholar] [CrossRef]
- Ruella, M.; Korell, F.; Porazzi, P.; Maus, M.V. Mechanisms of Resistance to Chimeric Antigen Receptor-T Cells in Haematological Malignancies. Nat. Rev. Drug Discov. 2023, 22, 976–995. [Google Scholar] [CrossRef]
- Rejeski, K.; Jain, M.D.; Smith, E.L. Mechanisms of Resistance and Treatment of Relapse after CAR T-Cell Therapy for Large B-Cell Lymphoma and Multiple Myeloma. Transplant. Cell. Ther. 2023, 29, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Magni, M.; Jonnalagadda, S.; Bonifazi, F.; Bonafe, M.; Ljevar, S.; Zanirato, G.; De Matteis, S.; Stella, F.; Barone, A.; Bertolini, G.; et al. CAR T Expansion and Systemic Inflammation: Diverging Impacts on Large B-Cell Lymphoma Therapy in the Multicenter CART SIE Study. Haematologica 2025. Ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.D.; Lai, J.; Slaney, C.Y.; Kallies, A.; Beavis, P.A.; Darcy, P.K. Cellular Networks Controlling T Cell Persistence in Adoptive Cell Therapy. Nat. Rev. Immunol. 2021, 21, 769–784. [Google Scholar] [CrossRef]
- Xia, A.; Zhang, Y.; Xu, J.; Yin, T.; Lu, X.J. T Cell Dysfunction in Cancer Immunity and Immunotherapy. Front. Immunol. 2019, 10, 1719. [Google Scholar] [CrossRef]
- Klebanoff, C.A.; Scott, C.D.; Leonardi, A.J.; Yamamoto, T.N.; Cruz, A.C.; Ouyang, C.; Ramaswamy, M.; Roychoudhuri, R.; Ji, Y.; Eil, R.L.; et al. Memory T Cell-Driven Differentiation of Naive Cells Impairs Adoptive Immunotherapy. J. Clin. Investig. 2016, 126, 318–334. [Google Scholar] [CrossRef]
- Arcangeli, S.; Bove, C.; Mezzanotte, C.; Camisa, B.; Falcone, L.; Manfredi, F.; Bezzecchi, E.; Khoury, R.E.; Norata, R.; Sanvito, F.; et al. CAR T Cell Manufacturing from Naive/Stem Memory T Lymphocytes Enhances Antitumor Responses While Curtailing Cytokine Release Syndrome. J. Clin. Investig. 2022, 132, e150807. [Google Scholar] [CrossRef] [PubMed]
- Fraietta, J.A.; Lacey, S.F.; Orlando, E.J.; Pruteanu-Malinici, I.; Gohil, M.; Lundh, S.; Boesteanu, A.C.; Wang, Y.; O’connor, R.S.; Hwang, W.T.; et al. Determinants of Response and Resistance to CD19 Chimeric Antigen Receptor (CAR) T Cell Therapy of Chronic Lymphocytic Leukemia. Nat. Med. 2018, 24, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shao, Q.; Peng, G. Exhaustion and Senescence: Two Crucial Dysfunctional States of T Cells in the Tumor Microenvironment. Cell. Mol. Immunol. 2020, 17, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, J.M.; Pagliano, O.; Fourcade, J.; Sun, Z.; Wang, H.; Sander, C.; Kirkwood, J.M.; Chen, T.H.T.; Maurer, M.; Korman, A.J.; et al. TIGIT and PD-1 Impair Tumor Antigen-Specific CD8+ T Cells in Melanoma Patients. J. Clin. Investig. 2015, 125, 2046–2058. [Google Scholar] [CrossRef]
- Stewart, C.M.; Siegler, E.L.; Sakemura, R.L.; Cox, M.J.; Huynh, T.; Kimball, B.; Mai, L.; Can, I.; Manriquez Roman, C.; Yun, K.; et al. IL-4 Drives Exhaustion of CD8+ CART Cells. Nat. Commun. 2024, 15, 7921. [Google Scholar] [CrossRef]
- Li, M.; Yao, D.; Zeng, X.; Kasakovski, D.; Zhang, Y.; Chen, S.; Zha, X.; Li, Y.; Xu, L. Age Related Human T Cell Subset Evolution and Senescence. Immun. Ageing 2019, 16, 24. [Google Scholar] [CrossRef]
- Bailén, R.; Iacoboni, G.; Delgado, J.; López-Corral, L.; Hernani-Morales, R.; Ortiz-Maldonado, V.; Guerreiro, M.; Caballero, A.C.; Guerra-Domínguez, M.L.; Sánchez-Pina, J.M.; et al. Anti-CD19 CAR-T Cell Therapy in Elderly Patients: Multicentric Real-World Experience from GETH-TC/GELTAMO. Transplant. Cell. Ther. 2024, 30, 988.e1–988.e11. [Google Scholar] [CrossRef]
- Berning, P.; Shumilov, E.; Maulhardt, M.; Boyadzhiev, H.; Kerkhoff, A.; Call, S.; Reicherts, C.; Saidy, A.O.; Aydilek, E.; Hoffmann, M.; et al. Chimeric Antigen Receptor-T Cell Therapy Shows Similar Efficacy and Toxicity in Patients with Diffuse Large B-Cell Lymphoma Aged 70 and Older Compared to Younger Patients: A Multicenter Cohort Study. Hemasphere 2024, 8, e54. [Google Scholar] [CrossRef]
- Mejstríková, E.; Hrusak, O.; Borowitz, M.J.; Whitlock, J.A.; Brethon, B.; Trippett, T.M.; Zugmaier, G.; Gore, L.; Von Stackelberg, A.; Locatelli, F. CD19-Negative Relapse of Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia Following Blinatumomab Treatment. Blood Cancer J. 2017, 7, 659. [Google Scholar] [CrossRef] [PubMed]
- Bhojwani, D.; Sposto, R.; Shah, N.N.; Rodriguez, V.; Yuan, C.; Stetler-Stevenson, M.; O’Brien, M.M.; McNeer, J.L.; Quereshi, A.; Cabannes, A.; et al. Inotuzumab Ozogamicin in Pediatric Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia. Leukemia 2019, 33, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Orlando, E.J.; Han, X.; Tribouley, C.; Wood, P.A.; Leary, R.J.; Riester, M.; Levine, J.E.; Qayed, M.; Grupp, S.A.; Boyer, M.; et al. Genetic Mechanisms of Target Antigen Loss in CAR19 Therapy of Acute Lymphoblastic Leukemia. Nat. Med. 2018, 24, 1504–1506. [Google Scholar] [CrossRef] [PubMed]
- Samur, M.K.; Fulciniti, M.; Aktas Samur, A.; Bazarbachi, A.H.; Tai, Y.T.; Prabhala, R.; Alonso, A.; Sperling, A.S.; Campbell, T.; Petrocca, F.; et al. Biallelic Loss of BCMA as a Resistance Mechanism to CAR T Cell Therapy in a Patient with Multiple Myeloma. Nat. Commun. 2021, 12, 868. [Google Scholar] [CrossRef]
- Cortés-López, M.; Schulz, L.; Enculescu, M.; Paret, C.; Spiekermann, B.; Quesnel-Vallières, M.; Torres-Diz, M.; Unic, S.; Busch, A.; Orekhova, A.; et al. High-Throughput Mutagenesis Identifies Mutations and RNA-Binding Proteins Controlling CD19 Splicing and CART-19 Therapy Resistance. Nat. Commun. 2022, 13, 5570. [Google Scholar] [CrossRef]
- Sotillo, E.; Barrett, D.M.; Black, K.L.; Bagashev, A.; Oldridge, D.; Wu, G.; Sussman, R.; Lanauze, C.; Ruella, M.; Gazzara, M.R.; et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015, 5, 1282–1295. [Google Scholar] [CrossRef]
- Noble, J.; Locke, F.L.; Savid-Frontera, C.; Jain, M.D.; Turner, J.G.; Abraham Miranda, J.; Madanayake, T.W.; Naderinezhad, S.; Corallo, S.; Menges, M.; et al. CD19 Intron Retention Is Mechanism of CAR-T Treatment Resistance in Non-Hodgkin Lymphoma. Blood 2023, 142, 3506. [Google Scholar] [CrossRef]
- Fischer, J.; Paret, C.; El Malki, K.; Alt, F.; Wingerter, A.; Neu, M.A.; Kron, B.; Russo, A.; Lehmann, N.; Roth, L.; et al. CD19 Isoforms Enabling Resistance to CART-19 Immunotherapy Are Expressed in B-ALL Patients at Initial Diagnosis. J. Immunother. 2017, 40, 187–195. [Google Scholar] [CrossRef]
- Duell, J.; Leipold, A.M.; Appenzeller, S.; Fuhr, V.; Rauert-Wunderlich, H.; Da Via, M.; Dietrich, O.; Toussaint, C.; Imdahl, F.; Eisele, F.; et al. Sequential Antigen Loss and Branching Evolution in Lymphoma after CD19- and CD20-Targeted T-Cell–Redirecting Therapy. Blood 2024, 143, 685–696. [Google Scholar] [CrossRef]
- Bagashev, A.; Sotillo, E.; Tang, C.-H.A.; Black, K.L.; Perazzelli, J.; Seeholzer, S.H.; Argon, Y.; Barrett, D.M.; Grupp, S.A.; Hu, C.-C.A.; et al. CD19 Alterations Emerging after CD19-Directed Immunotherapy Cause Retention of the Misfolded Protein in the Endoplasmic Reticulum. Mol. Cell. Biol. 2018, 38, e00383-18. [Google Scholar] [CrossRef]
- Lee, H.; Ahn, S.; Maity, R.; Leblay, N.; Ziccheddu, B.; Truger, M.; Chojnacka, M.; Cirrincione, A.; Durante, M.; Tilmont, R.; et al. Mechanisms of Antigen Escape from BCMA- or GPRC5D-Targeted Immunotherapies in Multiple Myeloma. Nat. Med. 2023, 29, 2295–2306. [Google Scholar] [CrossRef]
- Fioretti, S.; Matson, C.A.; Rosenberg, K.M.; Singh, N.J. Host B Cells Escape CAR-T Immunotherapy by Reversible Downregulation of CD19. Cancer Immunol. Immunother. 2023, 72, 257–264. [Google Scholar] [CrossRef]
- Ledererova, A.; Dostalova, L.; Kozlova, V.; Peschelova, H.; Ladungova, A.; Culen, M.; Loja, T.; Verner, J.; Pospisilova, S.; Smida, M.; et al. Hypermethylation of CD19 Promoter Enables Antigen-Negative Escape to CART-19 in Vivo and in Vitro. J. Immunother. Cancer 2021, 9, e002352. [Google Scholar] [CrossRef] [PubMed]
- Braig, F.; Brandt, A.; Goebeler, M.; Tony, H.P.; Kurze, A.K.; Nollau, P.; Bumm, T.; Böttcher, S.; Bargou, R.C.; Binder, M. Resistance to Anti-CD19/CD3 BiTE in Acute Lymphoblastic Leukemia May Be Mediated by Disrupted CD19 Membrane Trafficking. Blood 2017, 129, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Ziccheddu, B.; Jain, M.D.; Chojnacka, M.; Durante, M.; Venkatarame Gowda Saralamma, V.; Newsam, A.D.; Noble, J.; Figura, N.B.; Menges, M.; Landgren, O.; et al. Intrinsic Tumor Drivers and Immune Escape Mechanisms in CD19 CAR T-Cell Therapy Resistance for Aggressive Large B Cell Lymphoma. Blood 2024, 144, 232. [Google Scholar] [CrossRef]
- Rosenthal, J.; Naqvi, A.S.; Luo, M.; Wertheim, G.; Paessler, M.; Thomas-Tikhonenko, A.; Rheingold, S.R.; Pillai, V. Heterogeneity of Surface CD19 and CD22 Expression in B Lymphoblastic Leukemia. Am. J. Hematol. 2018, 93, E352–E355. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T Cells Expressing CD19 Chimeric Antigen Receptors for Acute Lymphoblastic Leukaemia in Children and Young Adults: A Phase 1 Dose-Escalation Trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef]
- Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 449–459. [Google Scholar] [CrossRef]
- Cohen, A.D.; Garfall, A.L.; Stadtmauer, E.A.; Melenhorst, J.J.; Lacey, S.F.; Lancaster, E.; Vogl, D.T.; Weiss, B.M.; Dengel, K.; Nelson, A.; et al. B Cell Maturation Antigen-Specific CAR T Cells Are Clinically Active in Multiple Myeloma. J. Clin. Investig. 2019, 129, 2210–2221. [Google Scholar] [CrossRef]
- Gazeau, N.; Beauvais, D.; Yakoub-Agha, I.; Mitra, S.; Campbell, T.B.; Facon, T.; Manier, S. Effective Anti-BCMA Retreatment in Multiple Myeloma. Blood Adv. 2021, 5, 3016–3020. [Google Scholar] [CrossRef]
- Li, W.; Zhang, B.; Cao, W.; Zhang, W.; Li, T.; Liu, L.; Xu, L.P.; Gao, F.; Wang, Y.; Wang, F.; et al. Identification of Potential Resistance Mechanisms and Therapeutic Targets for the Relapse of BCMA CAR-T Therapy in Relapsed/Refractory Multiple Myeloma through Single-Cell Sequencing. Exp. Hematol. Oncol. 2023, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Xia, J.; Zhang, M.; Li, W.; Xiao, M.; Sha, Y.; Wang, W.; Zhou, J.; Wang, Y.; Qi, K.; et al. Genetic and Epigenetic Mechanisms of GPRC5D Loss after Anti-GPRC5D CAR T-Cell Therapy in Multiple Myeloma. Blood 2025, 146, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Ruella, M.; Xu, J.; Barrett, D.M.; Fraietta, J.A.; Reich, T.J.; Ambrose, D.E.; Klichinsky, M.; Shestova, O.; Patel, P.R.; Kulikovskaya, I.; et al. Induction of Resistance to Chimeric Antigen Receptor T Cell Therapy by Transduction of a Single Leukemic B Cell. Nat. Med. 2018, 24, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.A.; Munegowda, M.A.; Xie, Y.; Xiang, J. Intercellular Trogocytosis Plays an Important Role in Modulation of Immune Responses. Cell. Mol. Immunol. 2008, 5, 261–269. [Google Scholar] [CrossRef]
- Miyake, K.; Karasuyama, H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells 2021, 10, 1255. [Google Scholar] [CrossRef]
- Hamieh, M.; Dobrin, A.; Cabriolu, A.; van der Stegen, S.J.C.; Giavridis, T.; Mansilla-Soto, J.; Eyquem, J.; Zhao, Z.; Whitlock, B.M.; Miele, M.M.; et al. CAR T Cell Trogocytosis and Cooperative Killing Regulate Tumour Antigen Escape. Nature 2019, 568, 112–116. [Google Scholar] [CrossRef]
- Camviel, N.; Wolf, B.; Croce, G.; Gfeller, D.; Zoete, V.; Arber, C. Both APRIL and Antibody-Fragment-Based CAR T Cells for Myeloma Induce BCMA Downmodulation by Trogocytosis and Internalization. J. Immunother. Cancer 2022, 10, e005091. [Google Scholar] [CrossRef]
- Schoutrop, E.; Renken, S.; Micallef Nilsson, I.; Hahn, P.; Poiret, T.; Kiessling, R.; Wickström, S.L.; Mattsson, J.; Magalhaes, I. Trogocytosis and Fratricide Killing Impede MSLN-Directed CAR T Cell Functionality. Oncoimmunology 2022, 11, 2093426. [Google Scholar] [CrossRef]
- Zhai, Y.; Du, Y.; Li, G.; Yu, M.; Hu, H.; Pan, C.; Wang, D.; Shi, Z.; Yan, X.; Li, X.; et al. Trogocytosis of CAR Molecule Regulates CAR-T Cell Dysfunction and Tumor Antigen Escape. Signal Transduct. Target. Ther. 2023, 8, 457. [Google Scholar] [CrossRef]
- Lu, Z.; McBrearty, N.; Chen, J.; Tomar, V.S.; Zhang, H.; De Rosa, G.; Tan, A.; Weljie, A.M.; Beiting, D.P.; Miao, Z.; et al. ATF3 and CH25H Regulate Effector Trogocytosis and Anti-Tumor Activities of Endogenous and Immunotherapeutic Cytotoxic T Lymphocytes. Cell Metab. 2022, 34, 1342–1358.e7. [Google Scholar] [CrossRef]
- Olson, M.L.; Mause, E.R.V.; Radhakrishnan, S.V.; Brody, J.D.; Rapoport, A.P.; Welm, A.L.; Atanackovic, D.; Luetkens, T. Low-Affinity CAR T Cells Exhibit Reduced Trogocytosis, Preventing Rapid Antigen Loss, and Increasing CAR T Cell Expansion. Leukemia 2022, 36, 1943–1946. [Google Scholar] [CrossRef]
- Jacoby, E.; Nguyen, S.M.; Fountaine, T.J.; Welp, K.; Gryder, B.; Qin, H.; Yang, Y.; Chien, C.D.; Seif, A.E.; Lei, H.; et al. CD19 CAR Immune Pressure Induces B-Precursor Acute Lymphoblastic Leukaemia Lineage Switch Exposing Inherent Leukaemic Plasticity. Nat. Commun. 2016, 7, 12320. [Google Scholar] [CrossRef]
- Zhou, T.; Curry, C.V.; Khanlari, M.; Shi, M.; Cui, W.; Peker, D.; Chen, W.; Wang, E.; Gao, J.; Shen, Q.; et al. Genetics and Pathologic Landscape of Lineage Switch of Acute Leukemia during Therapy. Blood Cancer J. 2024, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Coorens, T.H.H.; Collord, G.; Treger, T.D.; Adams, S.; Mitchell, E.; Newman, B.; Getz, G.; Godfrey, A.L.; Bartram, J.; Behjati, S. Clonal Origin of KMT2A Wild-Type Lineage-Switch Leukemia Following CAR-T Cell and Blinatumomab Therapy. Nat. Cancer 2023, 4, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Mei, Y.; Gu, R.; Liu, Y.; Chen, M.; Xing, H.; Tang, K.; Tian, Z.; Rao, Q.; Yang, D.; et al. The Dynamic Evolution of Lineage Switch under CD19 CAR-T Treatment in Non-KMT2A Rearranged B-ALL Patients. Leukemia 2025, 39, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Z.; Sun, Q.; Fang, Y.; Yang, L.J.; Xu, Z.Y.; Hu, J.H.; Cao, L.; Huang, J.Y.; Hong, M.; Li, J.Y.; et al. A Report on Lineage Switch at Relapse of CD19 CAR-T Therapy for Philadelphia Chromosome-Positive B-Precursor Acute Lymphoblastic Leukemia. Chin. Med. J. 2020, 133, 2001. [Google Scholar] [CrossRef]
- Silbert, S.K.; Scanlon, S.; Wang, H.W.; Yuan, C.M.; Doverte, A.; Wellek, J.; Patel, N.; Braylan, R.; Ahlman, M.; Turkbey, E.B.; et al. CRLF2-Rearranged B-Cell ALL with Extramedullary Lineage Switch to AML Following CD19-Targeted Therapy. J. Immunother. Cancer 2024, 12, e009499. [Google Scholar] [CrossRef]
- Evans, A.G.; Rothberg, P.G.; Burack, W.R.; Huntington, S.F.; Porter, D.L.; Friedberg, J.W.; Liesveld, J.L. Evolution to Plasmablastic Lymphoma Evades CD19-Directed Chimeric Antigen Receptor T Cells. Br. J. Haematol. 2015, 171, 205–209. [Google Scholar] [CrossRef]
- Zhang, Q.; Orlando, E.J.; Wang, H.Y.; Bogusz, A.M.; Liu, X.; Lacey, S.F.; Strauser, H.T.; Nunez-Cruz, S.; Nejati, R.; Zhang, P.; et al. Transdifferentiation of Lymphoma into Sarcoma Associated with Profound Reprogramming of the Epigenome. Blood 2020, 136, 1980–1983. [Google Scholar] [CrossRef]
- Upadhyay, R.; Boiarsky, J.A.; Pantsulaia, G.; Svensson-Arvelund, J.; Lin, M.J.; Wroblewska, A.; Bhalla, S.; Scholler, N.; Bot, A.; Rossi, J.M.; et al. A Critical Role for Fas-Mediated Off-Target Tumor Killing in T-Cell Immunotherapy. Cancer Discov. 2021, 11, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.G.; Guruprasad, P.; Ghilardi, G.; Pajarillo, R.; Sauter, C.T.; Patel, R.; Ballard, H.J.; Hong, S.J.; Chun, I.; Yang, N.; et al. Modulation of BCL-2 in Both T Cells and Tumor Cells to Enhance Chimeric Antigen Receptor T-Cell Immunotherapy against Cancer. Cancer Discov. 2022, 12, 2372–2391. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Lee, Y.G.; Shestova, O.; Ravikumar, P.; Hayer, K.E.; Hong, S.J.; Lu, X.M.; Pajarillo, R.; Agarwal, S.; Kuramitsu, S.; et al. Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-Cell Dysfunction. Cancer Discov. 2020, 10, 552–567. [Google Scholar] [CrossRef] [PubMed]
- Shouval, R.; Tomas, A.A.; Fein, J.A.; Flynn, J.R.; Markovits, E.; Mayer, S.; Afuye, A.O.; Alperovich, A.; Anagnostou, T.; Besser, M.J.; et al. Impact of TP53 Genomic Alterations in Large B-Cell Lymphoma Treated With CD19-Chimeric Antigen Receptor T-Cell Therapy. J. Clin. Oncol. 2022, 40, 369–381. [Google Scholar] [CrossRef]
- Cox, W.P.J.; Dautzenberg, N.M.M.; Dekker, L.; Klenovsek, T.; Cornel, A.M.; van Hoesel, M.; van Ingen Schenau, D.S.; Bladergroen, R.S.; Kuiper, R.P.; van der Meer, L.T.; et al. Loss of P53 Impairs Death Receptor Expression and Confers Resistance to CD19 CAR T-Cell Therapy in BCP-ALL. Blood Neoplasia 2025, 2, 100060. [Google Scholar] [CrossRef]
- Dufva, O.; Koski, J.; Maliniemi, P.; Ianevski, A.; Klievink, J.; Leitner, J.; Pölönen, P.; Hohtari, H.; Saeed, K.; Hannunen, T.; et al. Integrated Drug Profiling and CRISPR Screening Identify Essential Pathways for CAR T-Cell Cytotoxicity. Blood 2020, 135, 597–609. [Google Scholar] [CrossRef]
- Taylor, C.T.; Colgan, S.P. Regulation of Immunity and Inflammation by Hypoxia in Immunological Niches. Nat. Rev. Immunol. 2017, 17, 774–785. [Google Scholar] [CrossRef]
- Huang, Y.; Goel, S.; Duda, D.G.; Fukumura, D.; Jain, R.K. Vascular Normalization as an Emerging Strategy to Enhance Cancer Immunotherapy. Cancer Res. 2013, 73, 2943–2948. [Google Scholar] [CrossRef]
- Alabanza, L.M.; Xiong, Y.; Vu, B.; Webster, B.; Wu, D.; Hu, P.; Zhu, Z.; Dropulic, B.; Dash, P. Armored BCMA CAR T Cells Eliminate Multiple Myeloma and Are Resistant to the Suppressive Effects of TGF-β. Front. Immunol. 2022, 13, 832645. [Google Scholar] [CrossRef]
- Tang, N.; Cheng, C.; Zhang, X.; Qiao, M.; Li, N.; Mu, W.; Wei, X.F.; Han, W.; Wang, H. TGF-β Inhibition via CRISPR Promotes the Long-Term Efficacy of CAR T Cells against Solid Tumors. JCI Insight 2020, 5, e133977. [Google Scholar] [CrossRef]
- Togashi, Y.; Shitara, K.; Nishikawa, H. Regulatory T Cells in Cancer Immunosuppression—Implications for Anticancer Therapy. Nat. Rev. Clin. Oncol. 2019, 16, 356–371. [Google Scholar] [CrossRef]
- Corzo, C.A.; Condamine, T.; Lu, L.; Cotter, M.J.; Youn, J.I.; Cheng, P.; Cho, H.I.; Celis, E.; Quiceno, D.G.; Padhya, T.; et al. HIF-1α Regulates Function and Differentiation of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. J. Exp. Med. 2010, 207, 2439–2453. [Google Scholar] [CrossRef] [PubMed]
- Facciabene, A.; Peng, X.; Hagemann, I.S.; Balint, K.; Barchetti, A.; Wang, L.P.; Gimotty, P.A.; Gilks, C.B.; Lal, P.; Zhang, L.; et al. Tumour Hypoxia Promotes Tolerance and Angiogenesis via CCL28 and T(Reg) Cells. Nature 2011, 475, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-Associated Macrophages as Treatment Targets in Oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Reiss, D.J.; Do, T.; Kuo, D.; Gray, V.E.; Olson, N.E.; Lee, C.-W.; Young, M.H.; Srinivasan, S.; Gray, F.D.; Fox, B.; et al. Multiplexed Immunofluorescence (IF) Analysis and Gene Expression Profiling of Biopsies from Patients with Relapsed/Refractory (R/R) Diffuse Large B Cell Lymphoma (DLBCL) Treated with Lisocabtagene Maraleucel (Liso-Cel) in Transcend NHL 001 Reveal Patterns of Immune Infiltration Associated with Durable Response. Blood 2019, 134, 202. [Google Scholar] [CrossRef]
- Yan, Z.X.; Li, L.; Wang, W.; OuYang, B.S.; Cheng, S.; Wang, L.; Wu, W.; Xu, P.P.; Muftuoglu, M.; Hao, M.; et al. Clinical Efficacy and Tumor Microenvironment Influence in a Dose-Escalation Study of Anti-CD19 Chimeric Antigen Receptor T Cells in Refractory B-Cell Non-Hodgkin’s Lymphoma. Clin. Cancer Res. 2019, 25, 6995–7003. [Google Scholar] [CrossRef]
- Fischer, K.; Hoffmann, P.; Voelkl, S.; Meidenbauer, N.; Ammer, J.; Edinger, M.; Gottfried, E.; Schwarz, S.; Rothe, G.; Hoves, S.; et al. Inhibitory Effect of Tumor Cell-Derived Lactic Acid on Human T Cells. Blood 2007, 109, 3812–3819. [Google Scholar] [CrossRef]
- Mendler, A.N.; Hu, B.; Prinz, P.U.; Kreutz, M.; Gottfried, E.; Noessner, E. Tumor Lactic Acidosis Suppresses CTL Function by Inhibition of P38 and JNK/c-Jun Activation. Int. J. Cancer 2012, 131, 633–640. [Google Scholar] [CrossRef]
- Colegio, O.R.; Chu, N.Q.; Szabo, A.L.; Chu, T.; Rhebergen, A.M.; Jairam, V.; Cyrus, N.; Brokowski, C.E.; Eisenbarth, S.C.; Phillips, G.M.; et al. Functional Polarization of Tumour-Associated Macrophages by Tumour-Derived Lactic Acid. Nature 2014, 513, 559–563. [Google Scholar] [CrossRef]
- Barsoum, I.B.; Smallwood, C.A.; Siemens, D.R.; Graham, C.H. A Mechanism of Hypoxia-Mediated Escape from Adaptive Immunity in Cancer Cells. Cancer Res. 2014, 74, 665–674. [Google Scholar] [CrossRef]
- Ninomiya, S.; Narala, N.; Huye, L.; Yagyu, S.; Savoldo, B.; Dotti, G.; Heslop, H.E.; Brenner, M.K.; Rooney, C.M.; Ramos, C.A. Tumor Indoleamine 2,3-Dioxygenase (IDO) Inhibits CD19-CAR T Cells and Is Downregulated by Lymphodepleting Drugs. Blood 2015, 125, 3905–3916. [Google Scholar] [CrossRef]
- Jain, M.D.; Zhao, H.; Wang, X.; Atkins, R.; Menges, M.; Reid, K.; Spitler, K.; Faramand, R.; Bachmeier, C.; Dean, E.A.; et al. Tumor Interferon Signaling and Suppressive Myeloid Cells Are Associated with CAR T-Cell Failure in Large B-Cell Lymphoma. Blood 2021, 137, 2621–2633. [Google Scholar] [CrossRef]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 Pathway: Current Researches in Cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar]
- Annibali, O.; Crescenzi, A.; Tomarchio, V.; Pagano, A.; Bianchi, A.; Grifoni, A.; Avvisati, G. PD-1/PD-L1 Checkpoint in Hematological Malignancies. Leuk. Res. 2018, 67, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Jeffrey Medeiros, L.; Li, S.; Tang, G.; Fan, G.; Xu, J. PD-1/PD-L1 Pathway: A Therapeutic Target in CD30+ Large Cell Lymphomas. Biomedicines 2022, 10, 1587. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.; Jenq, R.R.; Peled, J.U.; Taur, Y.; Hiergeist, A.; Koestler, J.; Dettmer, K.; Weber, M.; Wolff, D.; Hahn, J.; et al. Microbiota Disruption Induced by Early Use of Broad-Spectrum Antibiotics Is an Independent Risk Factor of Outcome after Allogeneic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2017, 23, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Pinato, D.J.; Howlett, S.; Ottaviani, D.; Urus, H.; Patel, A.; Mineo, T.; Brock, C.; Power, D.; Hatcher, O.; Falconer, A.; et al. Association of Prior Antibiotic Treatment With Survival and Response to Immune Checkpoint Inhibitor Therapy in Patients with Cancer. JAMA Oncol. 2019, 5, 1774–1778. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science (1979) 2018, 359, 97–103. [Google Scholar] [CrossRef]
- Smith, M.; Dai, A.; Ghilardi, G.; Amelsberg, K.V.; Devlin, S.M.; Pajarillo, R.; Slingerland, J.B.; Beghi, S.; Herrera, P.S.; Giardina, P.; et al. Gut Microbiome Correlates of Response and Toxicity Following Anti-CD19 CAR T Cell Therapy. Nat. Med. 2022, 28, 713–723. [Google Scholar] [CrossRef]
- Prasad, R.; Rehman, A.; Rehman, L.; Darbaniyan, F.; Blumenberg, V.; Schubert, M.L.; Mor, U.; Zamir, E.; Schmidt, S.; Hayase, T.; et al. Antibiotic-Induced Loss of Gut Microbiome Metabolic Output Correlates with Clinical Responses to CAR T-Cell Therapy. Blood 2025, 145, 823–839. [Google Scholar] [CrossRef]
- Stein-Thoeringer, C.K.; Saini, N.Y.; Zamir, E.; Blumenberg, V.; Schubert, M.L.; Mor, U.; Fante, M.A.; Schmidt, S.; Hayase, E.; Hayase, T.; et al. A Non-Antibiotic-Disrupted Gut Microbiome Is Associated with Clinical Responses to CD19-CAR-T Cell Cancer Immunotherapy. Nat. Med. 2023, 29, 906–916. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.C.; Maus, M.V. Recent Advances and Discoveries in the Mechanisms and Functions of CAR T Cells. Nat. Rev. Cancer 2021, 21, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Van Der Stegen, S.J.C.; Hamieh, M.; Sadelain, M. The Pharmacology of Second-Generation Chimeric Antigen Receptors. Nat. Rev. Drug Discov. 2015, 14, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Kawalekar, O.U.; O’Connor, R.S.; Fraietta, J.A.; Guo, L.; McGettigan, S.E.; Posey, A.D.; Patel, P.R.; Guedan, S.; Scholler, J.; Keith, B.; et al. Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells. Immunity 2016, 44, 380–390. [Google Scholar] [CrossRef]
- Philipson, B.I.; O’Connor, R.S.; May, M.J.; June, C.H.; Albelda, S.M.; Milone, M.C. 4-1BB Costimulation Promotes CAR T Cell Survival through Noncanonical NF-ΚB Signaling. Sci. Signal. 2020, 13, eaay8248. [Google Scholar] [CrossRef]
- Li, G.; Boucher, J.C.; Kotani, H.; Park, K.; Zhang, Y.; Shrestha, B.; Wang, X.; Guan, L.; Beatty, N.; Abate-Daga, D.; et al. 4-1BB Enhancement of CAR T Function Requires NF-ΚB and TRAFs. JCI Insight 2018, 3, e121322. [Google Scholar] [CrossRef]
- Boroughs, A.C.; Larson, R.C.; Marjanovic, N.D.; Gosik, K.; Castano, A.P.; Porter, C.B.M.; Lorrey, S.J.; Ashenberg, O.; Jerby, L.; Hofree, M.; et al. A Distinct Transcriptional Program in Human CAR T Cells Bearing the 4-1BB Signaling Domain Revealed by ScRNA-Seq. Mol. Ther. 2020, 28, 2577–2592. [Google Scholar] [CrossRef]
- Salter, A.I.; Ivey, R.G.; Kennedy, J.J.; Voillet, V.; Rajan, A.; Alderman, E.J.; Voytovich, U.J.; Lin, C.; Sommermeyer, D.; Liu, L.; et al. Phosphoproteomic Analysis of Chimeric Antigen Receptor Signaling Reveals Kinetic and Quantitative Differences That Affect Cell Function. Sci. Signal. 2018, 11, eaat6753. [Google Scholar] [CrossRef]
- Kofler, D.M.; Chmielewski, M.; Rappl, G.; Hombach, A.; Riet, T.; Schmidt, A.; Hombach, A.A.; Wendtner, C.M.; Abken, H. CD28 Costimulation Impairs the Efficacy of a Redirected T-Cell Antitumor Attack in the Presence of Regulatory t Cells Which Can Be Overcome by Preventing Lck Activation. Mol. Ther. 2011, 19, 760–767. [Google Scholar] [CrossRef]
- Feucht, J.; Sun, J.; Eyquem, J.; Ho, Y.J.; Zhao, Z.; Leibold, J.; Dobrin, A.; Cabriolu, A.; Hamieh, M.; Sadelain, M. Calibration of CAR Activation Potential Directs Alternative T Cell Fates and Therapeutic Potency. Nat. Med. 2019, 25, 82–88. [Google Scholar] [CrossRef]
- Ghorashian, S.; Kramer, A.M.; Onuoha, S.; Wright, G.; Bartram, J.; Richardson, R.; Albon, S.J.; Casanovas-Company, J.; Castro, F.; Popova, B.; et al. Enhanced CAR T Cell Expansion and Prolonged Persistence in Pediatric Patients with ALL Treated with a Low-Affinity CD19 CAR. Nat. Med. 2019, 25, 1408–1414. [Google Scholar] [CrossRef]
- Roddie, C.; Sandhu, K.S.; Tholouli, E.; Logan, A.C.; Shaughnessy, P.; Barba, P.; Ghobadi, A.; Guerreiro, M.; Yallop, D.; Abedi, M.; et al. Obecabtagene Autoleucel in Adults with B-Cell Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2024, 391, 2219–2230. [Google Scholar] [CrossRef] [PubMed]
- Majzner, R.G.; Rietberg, S.P.; Sotillo, E.; Dong, R.; Vachharajani, V.T.; Labanieh, L.; Myklebust, J.H.; Kadapakkam, M.; Weber, E.W.; Tousley, A.M.; et al. Tuning the Antigen Density Requirement for CAR T-Cell Activity. Cancer Discov. 2020, 10, 702–723. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Long, J.; Wang, R.; Xiang, R.; Xian, H.; Wang, Y.; Dou, W.; Zhang, W.; Li, D.; Kang, T.; et al. Improved CAR Internalization and Recycling through Transmembrane Domain Optimization Reduces CAR-T Cytokine Release and Exhaustion. Front. Immunol. 2025, 16, 1531344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Patel, R.P.; Kim, K.H.; Cho, H.; Jo, J.C.; Jeong, S.H.; Oh, S.Y.; Choi, Y.S.; Kim, S.H.; Lee, J.H.; et al. Safety and Efficacy of a Novel Anti-CD19 Chimeric Antigen Receptor T Cell Product Targeting a Membrane-Proximal Domain of CD19 with Fast on- and off-Rates against Non-Hodgkin Lymphoma: A First-in-Human Study. Mol. Cancer 2023, 22, 200. [Google Scholar] [CrossRef]
- Monjezi, R.; Miskey, C.; Gogishvili, T.; Schleef, M.; Schmeer, M.; Einsele, H.; Ivics, Z.; Hudecek, M. Enhanced CAR T-Cell Engineering Using Non-Viral Sleeping Beauty Transposition from Minicircle Vectors. Leukemia 2016, 31, 186–194. [Google Scholar] [CrossRef]
- Moretti, A.; Ponzo, M.; Nicolette, C.A.; Tcherepanova, I.Y.; Biondi, A.; Magnani, C.F. The Past, Present, and Future of Non-Viral CAR T Cells. Front. Immunol. 2022, 13, 867013. [Google Scholar] [CrossRef]
- Bishop, D.C.; Clancy, L.E.; Simms, R.; Burgess, J.; Mathew, G.; Moezzi, L.; Street, J.A.; Sutrave, G.; Atkins, E.; McGuire, H.M.; et al. Development of CAR T-Cell Lymphoma in 2 of 10 Patients Effectively Treated with PiggyBac-Modified CD19 CAR T Cells. Blood 2021, 138, 1504–1509. [Google Scholar] [CrossRef]
- Micklethwaite, K.P.; Gowrishankar, K.; Gloss, B.S.; Li, Z.; Street, J.A.; Moezzi, L.; Mach, M.A.; Sutrave, G.; Clancy, L.E.; Bishop, D.C.; et al. Investigation of Product-Derived Lymphoma Following Infusion of PiggyBac-Modified CD19 Chimeric Antigen Receptor T Cells. Blood 2021, 138, 1391–1405. [Google Scholar] [CrossRef]
- Eyquem, J.; Mansilla-Soto, J.; Giavridis, T.; Van Der Stegen, S.J.C.; Hamieh, M.; Cunanan, K.M.; Odak, A.; Gönen, M.; Sadelain, M. Targeting a CAR to the TRAC Locus with CRISPR/Cas9 Enhances Tumour Rejection. Nature 2017, 543, 113–117. [Google Scholar] [CrossRef]
- Song, D.G.; Ye, Q.; Poussin, M.; Harms, G.M.; Figini, M.; Powell, D.J. CD27 Costimulation Augments the Survival and Antitumor Activity of Redirected Human T Cells in Vivo. Blood 2012, 119, 696–706. [Google Scholar] [CrossRef]
- Tan, J.; Jia, Y.; Zhou, M.; Fu, C.; Tuhin, I.J.; Ye, J.; Monty, M.A.; Xu, N.; Kang, L.; Li, M.; et al. Chimeric Antigen Receptors Containing the OX40 Signalling Domain Enhance the Persistence of T Cells Even under Repeated Stimulation with Multiple Myeloma Target Cells. J. Hematol. Oncol. 2022, 15, 39. [Google Scholar] [CrossRef]
- Guedan, S.; Chen, X.; Madar, A.; Carpenito, C.; McGettigan, S.E.; Frigault, M.J.; Lee, J.; Posey, A.D.; Scholler, J.; Scholler, N.; et al. ICOS-Based Chimeric Antigen Receptors Program Bipolar TH17/TH1 Cells. Blood 2014, 124, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Wang, J.-B.; Tsao, S.-T.; Liu, Y.; Zhu, W.; Slayton, W.B.; Moreb, J.S.; Dong, L.; Chang, L.-J. Functional Improvement of Chimeric Antigen Receptor Through Intrinsic Interleukin-15Rα Signaling. Curr. Gene Ther. 2019, 19, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Pulè, M.A.; Straathof, K.C.; Dotti, G.; Heslop, H.E.; Rooney, C.M.; Brenner, M.K. A Chimeric T Cell Antigen Receptor That Augments Cytokine Release and Supports Clonal Expansion of Primary Human T Cells. Mol. Ther. 2005, 12, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Guedan, S.; Posey, A.D.; Shaw, C.; Wing, A.; Da, T.; Patel, P.R.; McGettigan, S.E.; Casado-Medrano, V.; Kawalekar, O.U.; Uribe-Herranz, M.; et al. Enhancing CAR T Cell Persistence through ICOS and 4-1BB Costimulation. JCI Insight 2018, 3, e96976. [Google Scholar] [CrossRef]
- Frey, N.V.; Gill, S.; Hwang, W.-T.; Luger, S.M.; Martin, M.E.; McCurdy, S.R.; Loren, A.W.; Pratz, K.W.; Perl, A.E.; Barber-Rotenberg, J.; et al. CART22-65s Co-Administered with HuCART19 in Adult Patients with Relapsed or Refractory ALL. Blood 2021, 138, 469. [Google Scholar] [CrossRef]
- Wang, T.; Tang, Y.; Cai, J.; Wan, X.; Hu, S.; Lu, X.; Xie, Z.; Qiao, X.; Jiang, H.; Shao, J.; et al. Coadministration of CD19- and CD22-Directed Chimeric Antigen Receptor T-Cell Therapy in Childhood B-Cell Acute Lymphoblastic Leukemia: A Single-Arm, Multicenter, Phase II Trial. J. Clin. Oncol. 2023, 41, 1670–1683. [Google Scholar] [CrossRef]
- Wang, N.; Hu, X.; Cao, W.; Li, C.; Xiao, Y.; Cao, Y.; Gu, C.; Zhang, S.; Chen, L.; Cheng, J.; et al. Efficacy and Safety of CAR19/22 T-Cell Cocktail Therapy in Patients with Refractory/Relapsed B-Cell Malignancies. Blood 2020, 135, 17–27. [Google Scholar] [CrossRef]
- Fry, T.J.; Shah, N.N.; Orentas, R.J.; Stetler-Stevenson, M.; Yuan, C.M.; Ramakrishna, S.; Wolters, P.; Martin, S.; Delbrook, C.; Yates, B.; et al. CD22-Targeted CAR T Cells Induce Remission in B-ALL That Is Naive or Resistant to CD19-Targeted CAR Immunotherapy. Nat. Med. 2018, 24, 20–28. [Google Scholar] [CrossRef]
- Pan, J.; Niu, Q.; Deng, B.; Liu, S.; Wu, T.; Gao, Z.; Liu, Z.; Zhang, Y.; Qu, X.; Zhang, Y.; et al. CD22 CAR T-Cell Therapy in Refractory or Relapsed B Acute Lymphoblastic Leukemia. Leukemia 2019, 33, 2854–2866. [Google Scholar] [CrossRef]
- Shah, N.N.; Highfill, S.L.; Shalabi, H.; Yates, B.; Jin, J.; Wolters, P.L.; Ombrello, A.; Steinberg, S.M.; Martin, S.; Delbrook, C.; et al. CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and Toxicity: Updated Results From a Phase I Anti-CD22 CAR T-Cell Trial. J. Clin. Oncol. 2020, 38, 1938–1950. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Cao, J.; Cheng, H.; Qiao, J.; Zhang, H.; Wang, Y.; Shi, M.; Lan, J.; Fei, X.; Jin, L.; et al. A Combination of Humanised Anti-CD19 and Anti-BCMA CAR T Cells in Patients with Relapsed or Refractory Multiple Myeloma: A Single-Arm, Phase 2 Trial. Lancet Haematol. 2019, 6, e521–e529. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, J.; Gu, W.; Shi, M.; Lan, J.; Yan, Z.; Jin, L.; Xia, J.; Ma, S.; Liu, Y.; et al. Long-Term Follow-Up of Combination of B-Cell Maturation Antigen and CD19 Chimeric Antigen Receptor T Cells in Multiple Myeloma. J. Clin. Oncol. 2022, 40, 2246–2256. [Google Scholar] [CrossRef] [PubMed]
- Kokalaki, E.; Ma, B.; Ferrari, M.; Grothier, T.; Hazelton, W.; Manzoor, S.; Costu, E.; Taylor, J.; Bulek, A.; Srivastava, S.; et al. Dual Targeting of CD19 and CD22 against B-ALL Using a Novel High-Sensitivity ACD22 CAR. Mol. Ther. 2023, 31, 2089–2104. [Google Scholar] [CrossRef]
- Ghorashian, S.; Lucchini, G.; Richardson, R.; Nguyen, K.; Terris, C.; Guvenel, A.; Oporto-Espuelas, M.; Yeung, J.; Pinner, D.; Chu, J.; et al. CD19/CD22 Targeting with Cotransduced CAR T Cells to Prevent Antigen-Negative Relapse after CAR T-Cell Therapy for B-Cell ALL. Blood 2024, 143, 118–123. [Google Scholar] [CrossRef]
- Cordoba, S.; Onuoha, S.; Thomas, S.; Pignataro, D.S.; Hough, R.; Ghorashian, S.; Vora, A.; Bonney, D.; Veys, P.; Rao, K.; et al. CAR T Cells with Dual Targeting of CD19 and CD22 in Pediatric and Young Adult Patients with Relapsed or Refractory B Cell Acute Lymphoblastic Leukemia: A Phase 1 Trial. Nat. Med. 2021, 27, 1797–1805. [Google Scholar] [CrossRef]
- Fousek, K.; Watanabe, J.; Joseph, S.K.; George, A.; An, X.; Byrd, T.T.; Morris, J.S.; Luong, A.; Martínez-Paniagua, M.A.; Sanber, K.; et al. CAR T-Cells That Target Acute B-Lineage Leukemia Irrespective of CD19 Expression. Leukemia 2021, 35, 75–89. [Google Scholar] [CrossRef]
- Qin, H.; Ramakrishna, S.; Nguyen, S.; Fountaine, T.J.; Ponduri, A.; Stetler-Stevenson, M.; Yuan, C.M.; Haso, W.; Shern, J.F.; Shah, N.N.; et al. Preclinical Development of Bivalent Chimeric Antigen Receptors Targeting Both CD19 and CD22. Mol. Ther. Oncolytics 2018, 11, 127–137. [Google Scholar] [CrossRef]
- Shah, N.N.; Johnson, B.D.; Schneider, D.; Zhu, F.; Szabo, A.; Keever-Taylor, C.A.; Krueger, W.; Worden, A.A.; Kadan, M.J.; Yim, S.; et al. Bispecific Anti-CD20, Anti-CD19 CAR T Cells for Relapsed B Cell Malignancies: A Phase 1 Dose Escalation and Expansion Trial. Nat. Med. 2020, 26, 1569–1575. [Google Scholar] [CrossRef]
- Shah, N.N.; Maziarz, R.T.; Jacobson, C.A.; Johnston, P.B.; Abhyankar, S.; Isufi, I.; Perales, M.A.; Ghosh, M.; Ulrickson, M.; Rosenthal, A.C.; et al. Interim Results from a Phase 2 Pivotal Study (DALY II USA) of Tandem CD20-CD19-Directed Non-Cryopreserved CAR-T Cells—Zamtocabtagene Autoleucel (Zamto-Cel) in Patients with Relapsed/Refractory Diffuse Large B Cell Lymphoma. Blood 2024, 144, 68. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Liu, Y.; Tong, C.; Wang, C.; Guo, Y.; Ti, D.; Yang, Q.; Qiao, S.; Wu, Z.; et al. Long-Term Activity of Tandem CD19/CD20 CAR Therapy in Refractory/Relapsed B-Cell Lymphoma: A Single-Arm, Phase 1-2 Trial. Leukemia 2022, 36, 189–196. [Google Scholar] [CrossRef]
- Larson, R.C.; Kann, M.C.; Graham, C.; Mount, C.W.; Castano, A.P.; Lee, W.H.; Bouffard, A.A.; Takei, H.N.; Almazan, A.J.; Scarfó, I.; et al. Anti-TACI Single and Dual-Targeting CAR T Cells Overcome BCMA Antigen Loss in Multiple Myeloma. Nat. Commun. 2023, 14, 7509. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, J.Y.; Patel, S.; Muffly, L.; Hossain, N.M.; Oak, J.; Baird, J.H.; Frank, M.J.; Shiraz, P.; Sahaf, B.; Craig, J.; et al. CAR T Cells with Dual Targeting of CD19 and CD22 in Adult Patients with Recurrent or Refractory B Cell Malignancies: A Phase 1 Trial. Nat. Med. 2021, 27, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Shalabi, H.; Qin, H.; Su, A.; Yates, B.; Wolters, P.L.; Steinberg, S.M.; Ligon, J.A.; Silbert, S.; DéDé, K.; Benzaoui, M.; et al. CD19/22 CAR T Cells in Children and Young Adults with B-ALL: Phase 1 Results and Development of a Novel Bicistronic CAR. Blood 2022, 140, 451–463. [Google Scholar] [CrossRef]
- Ormhøj, M.; Scarfo, I.; Cabral, M.L.; Bailey, S.R.; Lorrey, S.J.; Bouffard, A.A.; Castano, A.P.; Larson, R.C.; Riley, L.S.; Schmidts, A.; et al. Chimeric Antigen Receptor T Cells Targeting CD79b Show Efficacy in Lymphoma with or without Cotargeting CD19. Clin. Cancer Res. 2019, 25, 7046–7057. [Google Scholar] [CrossRef]
- Mihara, K.; Yoshida, T.; Takei, Y.; Sasaki, N.; Takihara, Y.; Kuroda, J.; Ichinohe, T. T Cells Bearing Anti-CD19 and/or Anti-CD38 Chimeric Antigen Receptors Effectively Abrogate Primary Double-Hit Lymphoma Cells. J. Hematol. Oncol. 2017, 10, 116. [Google Scholar] [CrossRef]
- Ruella, M.; Barrett, D.M.; Kenderian, S.S.; Shestova, O.; Hofmann, T.J.; Perazzelli, J.; Klichinsky, M.; Aikawa, V.; Nazimuddin, F.; Kozlowski, M.; et al. Dual CD19 and CD123 Targeting Prevents Antigen-Loss Relapses after CD19-Directed Immunotherapies. J. Clin. Investig. 2016, 126, 3814–3826. [Google Scholar] [CrossRef]
- Yan, L.E.; Zhang, H.; Wada, M.; Fang, L.; Feng, J.; Zhang, W.; Chen, Q.; Cao, Y.; Pinz, K.G.; Chen, K.H.; et al. Targeting Two Antigens Associated with B-ALL with CD19-CD123 Compound Car T Cell Therapy. Stem Cell Rev. Rep. 2020, 16, 385–396. [Google Scholar] [CrossRef]
- Golubovskaya, V.; Zhou, H.; Li, F.; Valentine, M.; Sun, J.; Berahovich, R.; Xu, S.; Quintanilla, M.; Ma, M.C.; Sienkiewicz, J.; et al. Novel CD37, Humanized CD37 and Bi-Specific Humanized CD37-CD19 CAR-T Cells Specifically Target Lymphoma. Cancers 2021, 13, 981. [Google Scholar] [CrossRef]
- Imai, K.; Takeuchi, Y.; Terakura, S.; Okuno, S.; Adachi, Y.; Osaki, M.; Umemura, K.; Hanajiri, R.; Shimada, K.; Murata, M.; et al. Dual CAR-T Cells Targeting CD19 and CD37 Are Effective in Target Antigen Loss B-Cell Tumor Models. Mol. Cancer Ther. 2024, 23, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Ren, J.; Luo, Y.; Keith, B.; Young, R.M.; Scholler, J.; Zhao, Y.; June, C.H. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18. Cell Rep. 2017, 20, 3025–3033. [Google Scholar] [CrossRef] [PubMed]
- Kueberuwa, G.; Kalaitsidou, M.; Cheadle, E.; Hawkins, R.E.; Gilham, D.E. CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity. Mol. Ther. Oncolytics 2017, 8, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, C.; Landoni, E.; Metelitsa, L.; Dotti, G.; Savoldo, B. Eradication of Neuroblastoma by T Cells Redirected with an Optimized GD2-Specific Chimeric Antigen Receptor and Interleukin-15. Clin. Cancer Res. 2019, 25, 2915–2924. [Google Scholar] [CrossRef]
- Avanzi, M.P.; Yeku, O.; Li, X.; Wijewarnasuriya, D.P.; van Leeuwen, D.G.; Cheung, K.; Park, H.; Purdon, T.J.; Daniyan, A.F.; Spitzer, M.H.; et al. Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System. Cell Rep. 2018, 23, 2130–2141. [Google Scholar] [CrossRef]
- Li, S.; Siriwon, N.; Zhang, X.; Yang, S.; Jin, T.; He, F.; Kim, Y.J.; Mac, J.; Lu, Z.; Wang, S.; et al. Enhanced Cancer Immunotherapy by Chimeric Antigen Receptor-Modified T Cells Engineered to Secrete Checkpoint Inhibitors. Clin. Cancer Res. 2017, 23, 6982–6992. [Google Scholar] [CrossRef]
- Yin, Y.; Boesteanu, A.C.; Binder, Z.A.; Xu, C.; Reid, R.A.; Rodriguez, J.L.; Cook, D.R.; Thokala, R.; Blouch, K.; McGettigan-Croce, B.; et al. Checkpoint Blockade Reverses Anergy in IL-13Rα2 Humanized ScFv-Based CAR T Cells to Treat Murine and Canine Gliomas. Mol. Ther. Oncolytics 2018, 11, 20–38. [Google Scholar] [CrossRef]
- Liu, X.; Ranganathan, R.; Jiang, S.; Fang, C.; Sun, J.; Kim, S.; Newick, K.; Lo, A.; June, C.H.; Zhao, Y.; et al. A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors. Cancer Res. 2016, 76, 1578–1590. [Google Scholar] [CrossRef]
- Oda, S.K.; Anderson, K.G.; Ravikumar, P.; Bonson, P.; Garcia, N.M.; Jenkins, C.M.; Zhuang, S.; Daman, A.W.; Chiu, E.Y.; Bates, B.M.; et al. A Fas-4-1BB Fusion Protein Converts a Death to a pro-Survival Signal and Enhances T Cell Therapy. J. Exp. Med. 2020, 217, e20191166. [Google Scholar] [CrossRef]
- Liu, H.; Lei, W.; Zhang, C.; Yang, C.; Wei, J.; Guo, Q.; Guo, X.; Chen, Z.; Lu, Y.; Young, K.H.; et al. CD19-Specific CAR T Cells That Express a PD-1/CD28 Chimeric Switch-Receptor Are Effective in Patients with PD-L1⇓positive B-Cell Lymphoma. Clin. Cancer Res. 2021, 27, 473–484. [Google Scholar] [CrossRef]
- Cherkassky, L.; Morello, A.; Villena-Vargas, J.; Feng, Y.; Dimitrov, D.S.; Jones, D.R.; Sadelain, M.; Adusumilli, P.S. Human CAR T Cells with Cell-Intrinsic PD-1 Checkpoint Blockade Resist Tumor-Mediated Inhibition. J. Clin. Investig. 2016, 126, 3130–3144. [Google Scholar] [CrossRef]
- Yamamoto, T.N.; Lee, P.H.; Vodnala, S.K.; Gurusamy, D.; Kishton, R.J.; Yu, Z.; Eidizadeh, A.; Eil, R.; Fioravanti, J.; Gattinoni, L.; et al. T Cells Genetically Engineered to Overcome Death Signaling Enhance Adoptive Cancer Immunotherapy. J. Clin. Investig. 2019, 129, 1551–1565. [Google Scholar] [CrossRef] [PubMed]
- Lynn, R.C.; Weber, E.W.; Sotillo, E.; Gennert, D.; Xu, P.; Good, Z.; Anbunathan, H.; Lattin, J.; Jones, R.; Tieu, V.; et al. C-Jun Overexpression in CAR T Cells Induces Exhaustion Resistance. Nature 2019, 576, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Shifrut, E.; Carnevale, J.; Tobin, V.; Roth, T.L.; Woo, J.M.; Bui, C.T.; Li, P.J.; Diolaiti, M.E.; Ashworth, A.; Marson, A. Genome-Wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function. Cell 2018, 175, 1958–1971.e15. [Google Scholar] [CrossRef] [PubMed]
- Carnevale, J.; Shifrut, E.; Kale, N.; Nyberg, W.A.; Blaeschke, F.; Chen, Y.Y.; Li, Z.; Bapat, S.P.; Diolaiti, M.E.; O’Leary, P.; et al. RASA2 Ablation in T Cells Boosts Antigen Sensitivity and Long-Term Function. Nature 2022, 609, 174–182. [Google Scholar] [CrossRef]
- Jain, N.; Zhao, Z.; Koche, R.P.; Antelope, C.; Gozlan, Y.; Montalbano, A.; Brocks, D.; Lopez, M.; Dobrin, A.; Shi, Y.; et al. Disruption of SUV39H1-Mediated H3K9 Methylation Sustains CAR T-Cell Function. Cancer Discov. 2024, 14, 142–157. [Google Scholar] [CrossRef]
- López-Cobo, S.; Fuentealba, J.R.; Gueguen, P.; Bonté, P.E.; Tsalkitzi, K.; Chacón, I.; Glauzy, S.; Bohineust, A.; Biquand, A.; Silva, L.; et al. SUV39H1 Ablation Enhances Long-Term CAR T Function in Solid Tumors. Cancer Discov. 2024, 14, 120–141. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Lee, H.J.; Kim, H.C.; Lee, Y.; Nam, S.K.; Hupperetz, C.; Ma, J.S.Y.; Wang, X.; Singer, O.; Kim, W.S.; et al. PD-1 and TIGIT Downregulation Distinctly Affect the Effector and Early Memory Phenotypes of CD19-Targeting CAR T Cells. Mol. Ther. 2022, 30, 579–592. [Google Scholar] [CrossRef]
- Guo, Z.; He, M.; Liu, N.; Yang, Y.; Sun, R.; Wang, J.; Wang, Q. In Vitro Functional Validation of Anti-CD19 Chimeric Antigen Receptor T Cells Expressing Lysine-Specific Demethylase 1 Short Hairpin RNA for the Treatment of Diffuse Large B Cell Lymphoma. Front. Immunol. 2025, 15, 1521778. [Google Scholar] [CrossRef]
- Jo, Y.; Shim, J.A.; Jeong, J.W.; Kim, H.; Lee, S.M.; Jeong, J.; Kim, S.; Im, S.K.; Choi, D.; Lee, B.H.; et al. Targeting ROS-Sensing Nrf2 Potentiates Anti-Tumor Immunity of Intratumoral CD8+ T and CAR-T Cells. Mol. Ther. 2024, 32, 3879–3894. [Google Scholar] [CrossRef]
- Korell, F.; Olson, M.; Salas-Benito, D.; Leick, M.B.; Larson, R.C.; Silva, H.; Gasparetto, A.; Berger, T.R.; Bouffard, A.; Kann, M.C.; et al. Abstract 4098: Chimeric Antigen Receptor (CAR) T Cells Overexpressing Bcl-XL Increase Proliferation and Antitumor Activity Alone and in Combination with BH3 Mimetics. Cancer Res. 2023, 83, 4098. [Google Scholar] [CrossRef]
- Shum, T.; Omer, B.; Tashiro, H.; Kruse, R.L.; Wagner, D.L.; Parikh, K.; Yi, Z.; Sauer, T.; Liu, D.; Parihar, R.; et al. Constitutive Signaling from an Engineered IL7 Receptor Promotes Durable Tumor Elimination by Tumor-Redirected T Cells. Cancer Discov. 2017, 7, 1238–1247. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Carvalho, E.J.; Read, K.A.; Nardo, D.P.; Riley, J.L. Rab5 Overcomes CAR T Cell Dysfunction Induced by Tumor-Mediated CAR Capture. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Qiu, S.; Chen, J.; Jiang, S.; Chen, W.; Jiang, J.; Wang, F.; Si, W.; Shu, Y.; Wei, P.; et al. Chimeric Antigen Receptor Designed to Prevent Ubiquitination and Downregulation Showed Durable Antitumor Efficacy. Immunity 2020, 53, 456–470.e6. [Google Scholar] [CrossRef]
- Gardner, T.J.; Lee, J.P.; Bourne, C.M.; Wijewarnasuriya, D.; Kinarivala, N.; Kurtz, K.G.; Corless, B.C.; Dacek, M.M.; Chang, A.Y.; Mo, G.; et al. Engineering CAR-T Cells to Activate Small-Molecule Drugs in Situ. Nat. Chem. Biol. 2021, 18, 216–225. [Google Scholar] [CrossRef]
- Choi, B.D.; Yu, X.; Castano, A.P.; Bouffard, A.A.; Schmidts, A.; Larson, R.C.; Bailey, S.R.; Boroughs, A.C.; Frigault, M.J.; Leick, M.B.; et al. CAR-T Cells Secreting BiTEs Circumvent Antigen Escape without Detectable Toxicity. Nat. Biotechnol. 2019, 37, 1049–1058. [Google Scholar] [CrossRef]
- Hamieh, M.; Mansilla-Soto, J.; Rivière, I.; Sadelain, M. Programming CAR T Cell Tumor Recognition: Tuned Antigen Sensing and Logic Gating. Cancer Discov. 2023, 13, 829–843. [Google Scholar] [CrossRef]
- Cieri, N.; Camisa, B.; Cocchiarella, F.; Forcato, M.; Oliveira, G.; Provasi, E.; Bondanza, A.; Bordignon, C.; Peccatori, J.; Ciceri, F.; et al. IL-7 and IL-15 Instruct the Generation of Human Memory Stem T Cells from Naive Precursors. Blood 2013, 121, 573–584. [Google Scholar] [CrossRef]
- Bulliard, Y.; Andersson, B.S.; Baysal, M.A.; Damiano, J.; Tsimberidou, A.M. Reprogramming T Cell Differentiation and Exhaustion in CAR-T Cell Therapy. J. Hematol. Oncol. 2023, 16, 108. [Google Scholar] [CrossRef]
- Joedicke, J.J.; Großkinsky, U.; Gerlach, K.; Künkele, A.; Höpken, U.E.; Rehm, A. Accelerating Clinical-Scale Production of BCMA CAR T Cells with Defined Maturation Stages. Mol. Ther. Methods Clin. Dev. 2021, 24, 181–198. [Google Scholar] [CrossRef]
- Dubnikov Sharon, T.; Assayag, M.; Avni, B.; Kfir-Erenfeld, S.; Lebel, E.; Gatt, M.E.; Goldschmidt, N.; Stepensky, P.; Asherie, N.; Grisariu, S. Early Lymphocyte Collection for Anti-CD19 CART Production Improves T-Cell Fitness in Patients with Relapsed/Refractory Diffuse Large B-Cell Lymphoma. Br. J. Haematol. 2023, 202, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Dreyzin, A.; Cai, Y.; Han, K.L.; Prochazkova, M.; Webb, J.; Toner, K.; Bushnell, K.; Yates, B.; Jin, P.; Stroncek, D.F.; et al. Early Leukapheresis in Patients with B-ALL Yields an Activated, Early Memory T-Cell Phenotype Associated with Response to CAR T-Cell Therapy. Blood 2024, 144, 4853. [Google Scholar] [CrossRef]
- Iacoboni, G.; Navarro, V.; Martín-López, A.Á.; Rejeski, K.; Kwon, M.; Jalowiec, K.A.; Amat, P.; Reguera-Ortega, J.L.; Gallur, L.; Blumenberg, V.; et al. Recent Bendamustine Treatment Before Apheresis Has a Negative Impact on Outcomes in Patients With Large B-Cell Lymphoma Receiving Chimeric Antigen Receptor T-Cell Therapy. J. Clin. Oncol. 2024, 42, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Jain, T.; Bar, M.; Kansagra, A.J.; Chong, E.A.; Hashmi, S.K.; Neelapu, S.S.; Byrne, M.; Jacoby, E.; Lazaryan, A.; Jacobson, C.A.; et al. Use of Chimeric Antigen Receptor T Cell Therapy in Clinical Practice for Relapsed/Refractory Aggressive B Cell Non-Hodgkin Lymphoma: An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Biol. Blood Marrow Transplant. 2019, 25, 2305–2321. [Google Scholar] [CrossRef]
- Hayden, P.J.; Roddie, C.; Bader, P.; Basak, G.W.; Bonig, H.; Bonini, C.; Chabannon, C.; Ciceri, F.; Corbacioglu, S.; Ellard, R.; et al. Management of Adults and Children Receiving CAR T-Cell Therapy: 2021 Best Practice Recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. 2022, 33, 259–275. [Google Scholar] [CrossRef]
- Lutz, E.R.; Jana, S.; Rudraraju, L.; DeOliveira, E.; Zhou, J.; Mackay, S.; Borrello, I.M.; Noonan, K. Superior Efficacy of CAR-T Cells Using Marrow-Infiltrating Lymphocytes (MILsTM) As Compared to Peripheral Blood Lymphocytes (PBLs). Blood 2019, 134, 4437. [Google Scholar] [CrossRef]
- Vo, M.-C.; Jung, S.-H.; Nguyen, V.-T.; Tran, V.-D.-H.; Kim, S.-K.; Bae, W.K.; Kim, H.-J.; Wang, L.; Lee, J.-J. Anti-BCMA Dual Epitope-Binding CAR-Marrow Infiltrating Lymphocytes (MILs) Could Offer a Potent Innovative Immunotherapeutic Tool Against Multiple Myeloma. Blood 2023, 142, 6811. [Google Scholar] [CrossRef]
- Murakami, J.L.; Guevara, C.I.; Cai, Q.; Tsai, H.-C.; Banerjee, S.; Ou, D.M.; Yoder, S.C.; Viaud, S.; Walker, Q.; Kumar, S.; et al. KITE-753: An Autologous Rapid Manufactured Anti-CD19/CD20 CAR-T Product for the Treatment of B-Cell Malignancies. Blood 2024, 144, 3481. [Google Scholar] [CrossRef]
- Tsao, S.T.; Gu, M.; Xiong, Q.; Deng, Y.; Deng, T.; Fu, C.; Zhao, Z.; Zhang, H.; Liu, C.; Zhong, X.; et al. Rapidly Manufactured CAR-T with Conserved Cell Stemness and Distinctive Cytokine-Secreting Profile Shows Improved Anti-Tumor Efficacy. Vaccines 2024, 12, 1348. [Google Scholar] [CrossRef]
- Li, P.; Ge, J.; Ye, S.; Zhou, L.; Gong, Y.; Ruan, H.; Kouros-Mehr, H.; Liang, A. Clinical Evaluation of Fast-in-Time (FIT) Anti-CD19 CAR T-a Non-Viral, 2-Day Rapid Manufacture CAR T-Cell Therapy for B-Cell Malignancies. Blood 2024, 144, 3475. [Google Scholar] [CrossRef]
- Ruchi, M.; Patel, P.; Vu, T.; Qian, D.; Zhang, Y.; Ghilardi, G.; Yang, S.; Barta, S.K.; Siciliano, N.A.; Snook, A.E.; et al. Evaluating Efficacy and Safety of Rapid-Manufactured CD5KO CART5 Cells in Preclinical Models of T Cell Malignancies. Blood 2024, 144, 4848. [Google Scholar] [CrossRef]
- Ortiz-Maldonado, V. Euplagia-1: A Phase 1/2 Trial of GLPG5201, a Fresh Stem-like Early Memory CD19 CAR T-Cell Therapy with a 7-Day Vein-to-Vein Time, in Patients with Relapsed/Refractory CLL and RT 2024. Blood 2024, 144, 3452. [Google Scholar] [CrossRef]
- Kersten, M.J.; Saevels, K.; Willems, E.; Liefaard, M.C.; Milatos, S.; Pont, M.J.; Vennin, C.; Santermans, E.; van Muyden, A.D.D.; Shetty, J.; et al. Atalanta-1: A Phase 1/2 Trial of GLPG5101, a Fresh, Stem-like, Early Memory CD19 CAR T-Cell Therapy with a 7-Day Vein-to-Vein Time, for the Treatment of Relapsed/Refractory Non-Hodgkin Lymphoma. Blood 2024, 144, 93. [Google Scholar] [CrossRef]
- Yang, J.; He, J.; Zhang, X.; Li, J.; Wang, Z.; Zhang, Y.; Qiu, L.; Wu, Q.; Sun, Z.; Ye, X.; et al. Next-Day Manufacture of a Novel Anti-CD19 CAR-T Therapy for B-Cell Acute Lymphoblastic Leukemia: First-in-Human Clinical Study. Blood Cancer J. 2022, 12, 104. [Google Scholar] [CrossRef]
- Stadel, R.; Idippily, N.; Giraudo, M.F.; Caimi, P.; Van Besien, K.; Martin, J.; Wu, J.; Deng, C.; Wald, D. Development and Clinical Validation of an Ultra-Fast CAR-T Manufacturing Platform Enabling Production of CAR-T Cells in Less Than 1 Day. Blood 2023, 142, 4848. [Google Scholar] [CrossRef]
- Sa, S.; Yu, L. Automated Rapid CAR-T Cell Manufacturing Process, Starting from Whole Blood, on a Novel Closed Platform. Blood 2024, 144, 3479. [Google Scholar] [CrossRef]
- Chen, X.; Gao, Y.; Zhang, Y. Allogeneic CAR-T Cells for Cancer Immunotherapy. Immunotherapy 2024, 16, 1079–1090. [Google Scholar] [CrossRef]
- Torikai, H.; Reik, A.; Liu, P.Q.; Zhou, Y.; Zhang, L.; Maiti, S.; Huls, H.; Miller, J.C.; Kebriaei, P.; Rabinovitch, B.; et al. A Foundation for Universal T-Cell Based Immunotherapy: T Cells Engineered to Express a CD19-Specific Chimeric-Antigen-Receptor and Eliminate Expression of Endogenous TCR. Blood 2012, 119, 5697–5705. [Google Scholar] [CrossRef]
- Kagoya, Y.; Guo, T.; Yeung, B.; Saso, K.; Anczurowski, M.; Wang, C.H.; Murata, K.; Sugata, K.; Saijo, H.; Matsunaga, Y.; et al. Genetic Ablation of HLA Class I, Class II, and the T-Cell Receptor Enables Allogeneic T Cells to Be Used for Adoptive T-Cell Therapy. Cancer Immunol. Res. 2020, 8, 926–936. [Google Scholar] [CrossRef]
- Rozenbaum, M.; Meir, A.; Aharony, Y.; Itzhaki, O.; Schachter, J.; Bank, I.; Jacoby, E.; Besser, M.J. Gamma-Delta CAR-T Cells Show CAR-Directed and Independent Activity Against Leukemia. Front. Immunol. 2020, 11, 1347. [Google Scholar] [CrossRef]
- Tourret, M.; Talvard-Balland, N.; Lambert, M.; Ben Youssef, G.; Chevalier, M.F.; Bohineust, A.; Yvorra, T.; Morin, F.; Azarnoush, S.; Lantz, O.; et al. Human MAIT Cells Are Devoid of Alloreactive Potential: Prompting Their Use as Universal Cells for Adoptive Immune Therapy. J. Immunother. Cancer 2021, 9, e003123. [Google Scholar] [CrossRef]
- Magnani, C.F.; Gaipa, G.; Lussana, F.; Belotti, D.; Gritti, G.; Napolitano, S.; Matera, G.; Cabiati, B.; Buracchi, C.; Borleri, G.; et al. Sleeping Beauty-Engineered CAR T Cells Achieve Antileukemic Activity without Severe Toxicities. J. Clin. Investig. 2020, 130, 6021–6033. [Google Scholar] [CrossRef]
- Rotolo, A.; Caputo, V.S.; Holubova, M.; Baxan, N.; Dubois, O.; Chaudhry, M.S.; Xiao, X.; Goudevenou, K.; Pitcher, D.S.; Petevi, K.; et al. Enhanced Anti-Lymphoma Activity of CAR19-INKT Cells Underpinned by Dual CD19 and CD1d Targeting. Cancer Cell 2018, 34, 596–610.e11. [Google Scholar] [CrossRef]
- Vasic, D.; Lee, J.B.; Leung, Y.; Khatri, I.; Na, Y.; Abate-Daga, D.; Zhang, L. Allogeneic Double-Negative CAR-T Cells Inhibit Tumor Growth without off-Tumor Toxicities. Sci. Immunol. 2022, 7, eabl3642. [Google Scholar] [CrossRef]
- Lussana, F.; Magnani, C.F.; Galimberti, S.; Gritti, G.; Gaipa, G.; Belotti, D.; Cabiati, B.; Napolitano, S.; Ferrari, S.; Moretti, A.; et al. Donor-Derived CARCIK-CD19 Cells Engineered with Sleeping Beauty Transposon in Acute Lymphoblastic Leukemia Relapsed after Allogeneic Transplantation. Blood Cancer J. 2025, 15, 54. [Google Scholar] [CrossRef]
- Benjamin, R.; Graham, C.; Yallop, D.; Jozwik, A.; Mirci-Danicar, O.C.; Lucchini, G.; Pinner, D.; Jain, N.; Kantarjian, H.; Boissel, N.; et al. Genome-Edited, Donor-Derived Allogeneic Anti-CD19 Chimeric Antigen Receptor T Cells in Paediatric and Adult B-Cell Acute Lymphoblastic Leukaemia: Results of Two Phase 1 Studies. Lancet 2020, 396, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- Locke, F.L.; Munoz, J.L.; Tees, M.T.; Lekakis, L.J.; de Vos, S.; Nath, R.; Stevens, D.A.; Malik, S.A.; Shouse, G.P.; Hamadani, M.; et al. Allogeneic Chimeric Antigen Receptor T-Cell Products Cemacabtagene Ansegedleucel/ALLO-501 in Relapsed/Refractory Large B-Cell Lymphoma: Phase I Experience From the ALPHA2/ALPHA Clinical Studies. J. Clin. Oncol. 2025, 43, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Phely, L.; Hensen, L.; Faul, C.; Ruff, C.A.; Schneider, D.; Bethge, W.A.; Lengerke, C. Allogeneic CD19/CD22 CAR T-Cell Therapy for B-Cell Acute Lymphoblastic Leukemia. JAMA Oncol. 2024, 10, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; DeAngelo, D.J.; Pemmaraju, N.; Dinner, S.; Gill, S.; Olin, R.L.; Wang, E.S.; Konopleva, M.; Stark, E.; Korngold, A.; et al. Ameli-01: A Phase I Trial of UCART123v1.2, an Anti-CD123 Allogeneic CAR-T Cell Product, in Adult Patients with Relapsed or Refractory (R/R) CD123+ Acute Myeloid Leukemia (AML). Blood 2022, 140, 2371–2373. [Google Scholar] [CrossRef]
- Mailankody, S.; Matous, J.V.; Chhabra, S.; Liedtke, M.; Sidana, S.; Oluwole, O.O.; Malik, S.; Nath, R.; Anwer, F.; Cruz, J.C.; et al. Allogeneic BCMA-Targeting CAR T Cells in Relapsed/Refractory Multiple Myeloma: Phase 1 UNIVERSAL Trial Interim Results. Nat. Med. 2023, 29, 422–429. [Google Scholar] [CrossRef]
- Shah, B.D.; Jacobson, C.; Solomon, S.R.; Jain, N.; Johnson, M.C.; Vainorius, M.; Yu, L.; Heery, C.R.; List, A.F.; He, F.; et al. Allogeneic CAR-T PBCAR0191 with Intensified Lymphodepletion Is Highly Active in Patients with Relapsed/Refractory B-Cell Malignancies. Blood 2021, 138, 302. [Google Scholar] [CrossRef]
- Gergis, U.; Martin, A.; Vogel, A.; Smith, J.; Klein, A.; Reshef, R.; Nath, R.; Olszewski, A.J.; List, A.; Herrera, A.F.; et al. PBCAR19B, an Immune Evading Allogeneic CAR T Stealth Cell, Demonstrates Potent Anti-Tumor Responses and Prolonged B Cell Depletion Supporting Sustained Immune Evasion in Patients with Relapsed/Refractory (R/R) B-Cell Lymphoma (NHL). Blood 2024, 144, 7175. [Google Scholar] [CrossRef]
- McGuirk, J.P.; Tam, C.S.; Kröger, N.; Riedell, P.A.; Murthy, H.S.; Ho, P.J.; Maakaron, J.E.; Waller, E.K.; Awan, F.T.; Shaughnessy, P.J.; et al. CTX110 Allogeneic CRISPR-Cas9-Engineered CAR T Cells in Patients (Pts) with Relapsed or Refractory (R/R) Large B-Cell Lymphoma (LBCL): Results from the Phase 1 Dose Escalation Carbon Study. Blood 2022, 140, 10303–10306. [Google Scholar] [CrossRef]
- O’Brien, S.; Nastoupil, L.J.; Essell, J.; Dsouza, L.; Hart, D.; Matsuda, E.; Satterfield, T.; Nesheiwat, T.; Hammad, A.; Davi, F.; et al. A First-in-Human Phase 1, Multicenter, Open-Label Study of CB-010, a Next-Generation CRISPR-Edited Allogeneic Anti-CD19 CAR-T Cell Therapy with a PD-1 Knockout, in Patients with Relapsed/Refractory B Cell Non-Hodgkin Lymphoma (ANTLER Study). Blood 2022, 140, 9457–9458. [Google Scholar] [CrossRef]
- Al-Homsi, A.-S.; Anguille, S.; Deeren, D.; Nishihori, T.; Meuleman, N.; Abdul-Hay, M.; Morgan, G.J.; Brayer, J.; Braun, N.; Lonez, C.; et al. Immunicy-1: Targeting BCMA with Cyad-211 to Establish Proof of Concept of an ShRNA-Based Allogeneic CAR T Cell Therapy Platform. Blood 2021, 138, 2817. [Google Scholar] [CrossRef]
- Wang, X.; Xue, L.; Li, S.; Fan, Q.; Liu, K.; Jin, R.; Yang, X.; Wang, T.; He, L.; Li, J. S264: Preliminary Analyses Of A Non-Gene-Editing Allogentic Car-T In Cd19+ Relapsed Or Refractory Non-Hodgin’s Lymphoma. Hemasphere 2022, 6, 165–166. [Google Scholar] [CrossRef]
- Mehta, A.; Farooq, U.; Chen, A.; McGuirk, J.P.; Ly, T.; Wong, L.; Cooley, S.; Valamehr, B.; Elstrom, R.; Chu, Y.-W.; et al. Interim Phase I Clinical Data of FT819-101, a Study of the First-Ever, Off-the-Shelf, IPSC-Derived TCR-Less CD19 CAR T-Cell Therapy for Patients with Relapsed/Refractory B-Cell Malignancies. Blood 2022, 140, 4577–4578. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, Y.; Zhang, M.; Zhao, H.; Wei, G.; Ge, W.; Cui, Q.; Mu, Q.; Chen, G.; Han, L.; et al. Genetically Modified CD7-Targeting Allogeneic CAR-T Cell Therapy with Enhanced Efficacy for Relapsed/Refractory CD7-Positive Hematological Malignancies: A Phase I Clinical Study. Cell Res. 2022, 32, 995–1007. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Liu, L.; Liu, J.; Rao, J.; Yuan, Z.; Gao, L.; Li, Y.; Luo, L.; Li, G.; et al. CD7 Targeted “off-the-Shelf” CAR-T Demonstrates Robust in Vivo Expansion and High Efficacy in the Treatment of Patients with Relapsed and Refractory T Cell Malignancies. Leukemia 2023, 37, 2176–2186. [Google Scholar] [CrossRef]
- Yang, R.; Yang, Y.; Liu, R.; Wang, Y.; Yang, R.; He, A. Advances in CAR-NK Cell Therapy for Hematological Malignancies. Front. Immunol. 2024, 15, 1414264. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, X.; Li, Z.; Hu, Y.; Wang, H. From CAR-T Cells to CAR-NK Cells: A Developing Immunotherapy Method for Hematological Malignancies. Front. Oncol. 2021, 11, 720501. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.C.; Sa’ad, M.A.; Vijayan, H.M.; Ravichandran, M.; Balakrishnan, V.; Tham, S.K.; Tye, G.J. Chimeric Antigen Receptor-Natural Killer Cell Therapy: Current Advancements and Strategies to Overcome Challenges. Front. Immunol. 2024, 15, 1384039. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, Y.; Liu, T.; Wang, C.; Wang, H.; Wang, Q.; Wang, Q.; Ye, G.; Tang, R.; Cao, Z. Abstract 4077: Dual-Targeted CAR-NK Cell Therapy: Optimized CAR Design to Prevent Antigen Escape and Elicit a Deep and Durable Response in Multiple Myeloma. Cancer Res. 2023, 83, 4077. [Google Scholar] [CrossRef]
- Goodridge, J.P.; Mahmood, S.; Zhu, H.; Gaidarova, S.; Blum, R.; Bjordahl, R.; Cichocki, F.; Chu, H.; Bonello, G.; Lee, T.; et al. FT596: Translation of First-of-Kind Multi-Antigen Targeted Off-the-Shelf CAR-NK Cell with Engineered Persistence for the Treatment of B Cell Malignancies. Blood 2019, 134, 301. [Google Scholar] [CrossRef]
- Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.A.; Thompson, P.; Basar, R.; Nassif Kerbauy, L.; Overman, B.; Thall, P.; Kaplan, M.; et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef]
- Bachanova, V.; Ghobadi, A.; Patel, K.; Park, J.H.; Flinn, I.W.; Shah, P.; Wong, C.; Bickers, C.; Szabo, P.; Wong, L.; et al. Safety and Efficacy of FT596, a First-in-Class, Multi-Antigen Targeted, Off-the-Shelf, IPSC-Derived CD19 CAR NK Cell Therapy in Relapsed/Refractory B-Cell Lymphoma. Blood 2021, 138, 823. [Google Scholar] [CrossRef]
- Chu, Y.; Tian, M.; Marcondes, M.; Overwijk, W.; Lee, D.; Klein, C.; Cairo, M. Optimizing Chimeric Antigen Receptor (CAR) Engineered NK Cell-Mediated Cytotoxicity Combined with Anti-CD 20 or Anti-CD79 Therapeutic Antibodies and NKTR-255 in Burkitt Lymphoma (BL). Leuk Res. 2022, 121, S27. [Google Scholar] [CrossRef]
- Bjordahl, R.; Gaidarova, S.; Goodridge, J.P.; Mahmood, S.; Bonello, G.; Robinson, M.; Ruller, C.; Pribadi, M.; Lee, T.; Abujarour, R.; et al. FT576: A Novel Multiplexed Engineered Off-the-Shelf Natural Killer Cell Immunotherapy for the Dual-Targeting of CD38 and Bcma for the Treatment of Multiple Myeloma. Blood 2019, 134, 3214. [Google Scholar] [CrossRef]
- Goodridge, J.P.; Bjordahl, R.; Mahmood, S.; Reiser, J.; Gaidarova, S.; Blum, R.; Cichocki, F.; Chu, H.; Bonello, G.; Lee, T.; et al. FT576: Multi-Specific Off-the-Shelf CAR-NK Cell Therapy Engineered for Enhanced Persistence, Avoidance of Self-Fratricide and Optimized Mab Combination Therapy to Prevent Antigenic Escape and Elicit a Deep and Durable Response in Multiple Myeloma. Blood 2020, 136, 4–5. [Google Scholar] [CrossRef]
- Dhakal, B.; Berdeja, J.G.; Gregory, T.; Ly, T.; Bickers, C.; Zong, X.; Wong, L.; Goodridge, J.P.; Cooley, S.; Valamehr, B.; et al. Interim Phase I Clinical Data of FT576 As Monotherapy and in Combination with Daratumumab in Subjects with Relapsed/Refractory Multiple Myeloma. Blood 2022, 140, 4586–4587. [Google Scholar] [CrossRef]
- Chu, J.; Deng, Y.; Benson, D.M.; He, S.; Hughes, T.; Zhang, J.; Peng, Y.; Mao, H.; Yi, L.; Ghoshal, K.; et al. CS1-Specific Chimeric Antigen Receptor (CAR)-Engineered Natural Killer Cells Enhance in Vitro and in Vivo Antitumor Activity against Human Multiple Myeloma. Leukemia 2014, 28, 917–927. [Google Scholar] [CrossRef]
- Fu, J.; Jiang, L.; Zhu, Z.; Yan, Y.; Wu, G.; Wei, M.; Ning, J.; Yang, J. Efficacy of Human IPSC-Derived CAR-NK Cells Targeting Multiple Myeloma Cells. Blood 2023, 142, 4802. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Zhu, Z.; Yan, Y.; Fu, J.; Wei, M. CIB315: An Allogeneic, Off-the-Shelf Anti-GPRC5D IPSC-Derived CAR-NK Product Targeting Multiple Myeloma. Blood 2024, 144, 2055. [Google Scholar] [CrossRef]
- Cao, Z.; Yang, C.; Wang, Y.; Wang, C.; Wang, Q.; Ye, G.; Liu, T.; Wang, Q.; Wang, H.; Gong, Y.; et al. Allogeneic CAR-NK Cell Therapy Targeting Both BCMA and GPRC5D for the Treatment of Multiple Myeloma. Blood 2022, 140, 7378. [Google Scholar] [CrossRef]
- Lin, P.; Reyes Silva, F.C.; Lin, P.; Gilbert, A.L.; Acharya, S.; Nunez Cortes, A.K.; Banerjee, P.; Fang, D.; Melo Garcia, L.; Daher, M.M.; et al. CD70 CAR NK Cells in the Treatment of Multiple Myeloma. Blood 2023, 142, 3463. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, A.; Tian, L.; Zhang, L.; Lu, S.; Lu, H.; Zhu, M. The Second Generation of Human IPSC-Derived CAR-Macrophages for Immune Cell Therapies in Liquid and Solid Tumors. Blood 2022, 140, 9238–9239. [Google Scholar] [CrossRef]
- Pan, K.; Farrukh, H.; Chittepu, V.C.S.R.; Xu, H.; Pan, C.X.; Zhu, Z. CAR Race to Cancer Immunotherapy: From CAR T, CAR NK to CAR Macrophage Therapy. J. Exp. Clin. Cancer Res. 2022, 41, 119. [Google Scholar] [CrossRef] [PubMed]
- Klichinsky, M.; Ruella, M.; Shestova, O.; Lu, X.M.; Best, A.; Zeeman, M.; Schmierer, M.; Gabrusiewicz, K.; Anderson, N.R.; Petty, N.E.; et al. Human Chimeric Antigen Receptor Macrophages for Cancer Immunotherapy. Nat. Biotechnol. 2020, 38, 947–953. [Google Scholar] [CrossRef]
- Lei, A.; Yu, H.; Lu, S.; Lu, H.; Ding, X.; Tan, T.; Zhang, H.; Zhu, M.; Tian, L.; Wang, X.; et al. A Second-Generation M1-Polarized CAR Macrophage with Antitumor Efficacy. Nat. Immunol. 2024, 25, 102–116. [Google Scholar] [CrossRef]
- Anderson, N.R.; Minutolo, N.G.; Gill, S.; Klichinsky, M. Macrophage-Based Approaches for Cancer Immunotherapy. Cancer Res. 2021, 81, 1201–1208. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Westin, J.R.; Miklos, D.B.; Herrera, A.F.; Lee, J.; Seng, J.; Rossi, J.M.; Sun, J.; Dong, J.; Roberts, Z.J.; et al. Abstract CT055: Phase 1/2 Primary Analysis of ZUMA-6: Axicabtagene Ciloleucel (Axi-Cel) in Combination With Atezolizumab (Atezo) for the Treatment of Patients (Pts) with Refractory Diffuse Large B Cell Lymphoma (DLBCL). Cancer Res. 2020, 80, CT055. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, W.; Sun, R.; Jin, X.; Cheng, L.; He, X.; Wang, L.; Yuan, T.; Lyu, C.; Zhao, M. Anti-CD19 Chimeric Antigen Receptor T Cells in Combination With Nivolumab Are Safe and Effective Against Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma. Front. Oncol. 2019, 9, 767. [Google Scholar] [CrossRef]
- Moraes Ribeiro, E.; Secker, K.A.; Nitulescu, A.M.; Schairer, R.; Keppeler, H.; Wesle, A.; Schmid, H.; Schmitt, A.; Neuber, B.; Chmiest, D.; et al. PD-1 Checkpoint Inhibition Enhances the Antilymphoma Activity of CD19-CAR-INKT Cells That Retain Their Ability to Prevent Alloreactivity. J. Immunother. Cancer 2024, 12, e007829. [Google Scholar] [CrossRef]
- Jaeger, U.; Worel, N.; McGuirk, J.P.; Riedell, P.A.; Fleury, I.; Du, Y.; Han, X.; Pearson, D.; Redondo, S.; Waller, E.K. Safety and Efficacy of Tisagenlecleucel plus Pembrolizumab in Patients with r/r DLBCL: Phase 1b PORTIA Study Results. Blood Adv. 2023, 7, 2283–2286. [Google Scholar] [CrossRef]
- Siddiqi, T.; Abramson, J.S.; Lee, H.J.; Schuster, S.; Hasskarl, J.; Montheard, S.; Dell Aringa, J.; Thompson, E.; Ananthakrishnan, R.; Lunning, M. Safety Of Lisocabtagene Maraleucel Given with Durvalumab in Patients With Relapsed/Refractory Aggressive B-Cell Non Hodgkin Lymphoma: First Results From The Platform Study. Hematol. Oncol. 2019, 37, 171–172. [Google Scholar] [CrossRef]
- Hirayama, A.V.; Kimble, E.L.; Wright, J.H.; Fiorenza, S.; Gauthier, J.; Voutsinas, J.M.; Wu, Q.; Yeung, C.C.S.; Gazeau, N.; Pender, B.S.; et al. Timing of Anti–PD-L1 Antibody Initiation Affects Efficacy/Toxicity of CD19 CAR T-Cell Therapy for Large B-Cell Lymphoma. Blood Adv. 2024, 8, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Chong, E.A.; Alanio, C.; Svoboda, J.; Nasta, S.D.; Landsburg, D.J.; Lacey, S.F.; Ruella, M.; Bhattacharyya, S.; Wherry, E.J.; Schuster, S.J. Pembrolizumab for B-Cell Lymphomas Relapsing after or Refractory to CD19-Directed CAR T-Cell Therapy. Blood 2022, 139, 1026–1038. [Google Scholar] [CrossRef] [PubMed]
- Roddie, C.; Lekakis, L.J.; Marzolini, M.A.V.; Ramakrishnan, A.; Zhang, Y.; Hu, Y.; Peddareddigari, V.G.R.; Khokhar, N.; Chen, R.; Basilico, S.; et al. Dual Targeting of CD19 and CD22 with Bicistronic CAR-T Cells in Patients with Relapsed/Refractory Large B-Cell Lymphoma. Blood 2023, 141, 2470–2482. [Google Scholar] [CrossRef]
- Qin, J.S.; Johnstone, T.G.; Baturevych, A.; Hause, R.J.; Ragan, S.P.; Clouser, C.R.; Jones, J.C.; Ponce, R.; Krejsa, C.M.; Salmon, R.A.; et al. Antitumor Potency of an Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy, Lisocabtagene Maraleucel in Combination With Ibrutinib or Acalabrutinib. J. Immunother. 2020, 43, 107–120. [Google Scholar] [CrossRef]
- Dubovsky, J.A.; Beckwith, K.A.; Natarajan, G.; Woyach, J.A.; Jaglowski, S.; Zhong, Y.; Hessler, J.D.; Liu, T.M.; Chang, B.Y.; Larkin, K.M.; et al. Ibrutinib Is an Irreversible Molecular Inhibitor of ITK Driving a Th1-Selective Pressure in T Lymphocytes. Blood 2013, 122, 2539–2549. [Google Scholar] [CrossRef]
- Fan, F.; Yoo, H.J.; Stock, S.; Wang, L.; Liu, Y.; Schubert, M.L.; Wang, S.; Neuber, B.; Hückelhoven-Krauss, A.; Gern, U.; et al. Ibrutinib for Improved Chimeric Antigen Receptor T-Cell Production for Chronic Lymphocytic Leukemia Patients. Int. J. Cancer 2021, 148, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Fraietta, J.A.; Beckwith, K.A.; Patel, P.R.; Ruella, M.; Zheng, Z.; Barrett, D.M.; Lacey, S.F.; Melenhorst, J.J.; McGettigan, S.E.; Cook, D.R.; et al. Ibrutinib Enhances Chimeric Antigen Receptor T-Cell Engraftment and Efficacy in Leukemia. Blood 2016, 127, 1117–1127. [Google Scholar] [CrossRef]
- Gauthier, J.; Hirayama, A.V.; Purushe, J.; Hay, K.A.; Lymp, J.; Li, D.H.; Yeung, C.C.S.; Sheih, A.; Pender, B.S.; Hawkins, R.M.; et al. Feasibility and Efficacy of CD19-Targeted CAR T Cells with Concurrent Ibrutinib for CLL after Ibrutinib Failure. Blood 2020, 135, 1650–1660. [Google Scholar] [CrossRef]
- Gill, S.; Vides, V.; Frey, N.V.; Hexner, E.O.; Metzger, S.; O’Brien, M.; Hwang, W.T.; Brogdon, J.L.; Davis, M.M.; Fraietta, J.A.; et al. Anti-CD19 CAR T Cells in Combination with Ibrutinib for the Treatment of Chronic Lymphocytic Leukemia. Blood Adv. 2022, 6, 5774–5785. [Google Scholar] [CrossRef]
- Minson, A.; Hamad, N.; Cheah, C.Y.; Tam, C.; Blombery, P.; Westerman, D.; Ritchie, D.; Morgan, H.; Holzwart, N.; Lade, S.; et al. CAR T Cells and Time-Limited Ibrutinib as Treatment for Relapsed/Refractory Mantle Cell Lymphoma: The Phase 2 TARMAC Study. Blood 2024, 143, 673–684. [Google Scholar] [CrossRef]
- Liu, M.; Deng, H.; Mu, J.; Li, Q.; Pu, Y.; Jiang, Y.; Deng, Q.; Qian, Z. Ibrutinib Improves the Efficacy of Anti-CD19-CAR T-Cell Therapy in Patients with Refractory Non-Hodgkin Lymphoma. Cancer Sci. 2021, 112, 2642–2651. [Google Scholar] [CrossRef]
- Lymphoma, N.-H.; Liu, R.; Yang, F.; Ma, L.; Guo, Y.; Fu, Z.; Deng, B.; Zheng, Q.; Ke, X.; Hu, K. Utilizing BTK Inhibitors for Maintenance and Long-Term Control Following CAR-T Cell Therapy in B-Cell Non-Hodgkin Lymphoma. Blood 2024, 144, 6183. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, Y.; Li, C.; Xu, J.; Zhuolin, W.; Wang, X.; Kang, Y.; Liao, D.; Kou, H.; Xie, W.; et al. BTK Inhibitor Synergizes with CD19-Targeted Chimeric Antigen Receptor-T Cells in Patients with Relapsed or Refractory B-Cell Lymphoma: An Open-Label Pragmatic Clinical Trial. Blood 2024, 144, 6546. [Google Scholar] [CrossRef]
- Wang, L.; Yue, C.; Zhou, X.; Yang, J.; Jin, B.; Wang, B.; Huang, M.; Chen, H.; Zhou, L.; Tu, S.; et al. Efficacy and Safety of Chimeric Antigen Receptor T Cell Therapy Combined with Zanubrutinib in the Treatment of Relapsed/Refractory Diffuse Large B-Cell Lymphoma. Chin. Med. J. 2025, 138, 748–750. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Cao, W.; Wang, L.; Sheng, L.; Zhang, Y.; Wu, W.; Xu, P.; Cheng, S.; Liu, M.; Dong, Y.; et al. Response-Adapted Zanubrutinib and Tislelizumab as a Potential Strategy to Enhance CD19 CAR T-Cell Therapy in Relapsed/Refractory Large B-Cell Lymphoma: A Retrospective Observational Study. Clin. Transl. Med. 2025, 15, e70310. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Walter, M.; Urak, R.; Weng, L.; Huynh, C.; Lim, L.; Wong, C.L.W.; Chang, W.C.; Thomas, S.H.; Sanchez, J.F.; et al. Lenalidomide Enhances the Function of CS1 Chimeric Antigen Receptor-Redirected T Cells Against Multiple Myeloma. Clin. Cancer Res. 2018, 24, 106–119. [Google Scholar] [CrossRef]
- Works, M.; Soni, N.; Hauskins, C.; Sierra, C.; Baturevych, A.; Jones, J.C.; Curtis, W.; Carlson, P.; Johnstone, T.G.; Kugler, D.; et al. Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cell Function against Multiple Myeloma Is Enhanced in the Presence of Lenalidomide. Mol. Cancer Ther. 2019, 18, 2246–2257. [Google Scholar] [CrossRef]
- Jin, Z.; Xiang, R.; Qing, K.; Li, D.; Liu, Z.; Li, X.; Zhu, H.; Zhang, Y.; Wang, L.; Xue, K.; et al. Lenalidomide Overcomes the Resistance to Third-Generation CD19-CAR-T Cell Therapy in Preclinical Models of Diffuse Large B-Cell Lymphoma. Cell. Oncol. 2023, 46, 1143–1157. [Google Scholar] [CrossRef]
- Tettamanti, S.; Rotiroti, M.C.; Giordano Attianese, G.M.P.; Arcangeli, S.; Zhang, R.; Banerjee, P.; Galletti, G.; McManus, S.; Mazza, M.; Nicolini, F.; et al. Lenalidomide Enhances CD23.CAR T Cell Therapy in Chronic Lymphocytic Leukemia. Leuk. Lymphoma 2022, 63, 1566–1579. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, G.; Chen, Z.; Yu, C.; Li, Y.; Li, Y.; Chen, J.; Yu, L. Lenalidomide Improves the Antitumor Activity of CAR-T Cells Directed toward the Intracellular Wilms Tumor 1 Antigen. Hematology 2021, 26, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Otáhal, P.; Průková, D.; Král, V.; Fabry, M.; Vočková, P.; Latečková, L.; Trněný, M.; Klener, P. Lenalidomide Enhances Antitumor Functions of Chimeric Antigen Receptor Modified T Cells. Oncoimmunology 2015, 5, e1115940. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yan, L.; Shang, J.; Kang, L.; Yan, Z.; Jin, S.; Zhu, M.; Chang, H.; Gong, F.; Zhou, J.; et al. Anti-CD19 and Anti-BCMA CAR T Cell Therapy Followed by Lenalidomide Maintenance after Autologous Stem-Cell Transplantation for High-Risk Newly Diagnosed Multiple Myeloma. Am. J. Hematol. 2022, 97, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Garfall, A.L.; Cohen, A.D.; Susanibar-Adaniya, S.P.; Hwang, W.T.; Vogl, D.T.; Waxman, A.J.; Lacey, S.F.; Gonzalez, V.E.; Fraietta, J.A.; Gupta, M.; et al. Anti-BCMA/CD19 CAR T Cells with Early Immunomodulatory Maintenance for Multiple Myeloma Responding to Initial or Later-Line Therapy. Blood Cancer Discov. 2023, 4, 118–133. [Google Scholar] [CrossRef]
- Mestermann, K.; Giavridis, T.; Weber, J.; Rydzek, J.; Frenz, S.; Nerreter, T.; Mades, A.; Sadelain, M.; Einsele, H.; Hudecek, M. The Tyrosine Kinase Inhibitor Dasatinib Acts as a Pharmacologic on/off Switch for CAR T Cells. Sci. Transl. Med. 2019, 11, eaau5907. [Google Scholar] [CrossRef]
- Weber, E.W.; Lynn, R.C.; Sotillo, E.; Lattin, J.; Xu, P.; Mackall, C.L. Pharmacologic Control of CAR-T Cell Function Using Dasatinib. Blood Adv. 2019, 3, 711–717. [Google Scholar] [CrossRef]
- Weber, E.W.; Parker, K.R.; Sotillo, E.; Lynn, R.C.; Anbunathan, H.; Lattin, J.; Good, Z.; Belk, J.A.; Daniel, B.; Klysz, D.; et al. Transient Rest Restores Functionality in Exhausted CAR-T Cells through Epigenetic Remodeling. Science 2021, 372, eaba1786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Fu, S.; Feng, J.; Hong, R.; Wei, G.; Zhao, H.; Zhao, M.; Xu, H.; Cui, J.; Huang, S.; et al. Dasatinib and CAR T-Cell Therapy in Newly Diagnosed Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia: A Nonrandomized Clinical Trial. JAMA Oncol. 2025, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wang, L.; Ni, M.; Neuber, B.; Wang, S.; Gong, W.; Sauer, T.; Sellner, L.; Schubert, M.L.; Hückelhoven-Krauss, A.; et al. Pre-Sensitization of Malignant B Cells Through Venetoclax Significantly Improves the Cytotoxic Efficacy of CD19.CAR-T Cells. Front. Immunol. 2020, 11, 608167. [Google Scholar] [CrossRef] [PubMed]
- Pont, M.J.; Hill, T.; Cole, G.O.; Abbott, J.J.; Kelliher, J.; Salter, A.I.; Hudecek, M.; Comstock, M.L.; Rajan, A.; Patel, B.K.R.; et al. γ-Secretase Inhibition Increases Efficacy of BCMA-Specific Chimeric Antigen Receptor T Cells in Multiple Myeloma. Blood 2019, 134, 1585–1597. [Google Scholar] [CrossRef]
- Cowan, A.J.; Pont, M.J.; Sather, B.D.; Turtle, C.J.; Till, B.G.; Libby, E.N.; Coffey, D.G.; Tuazon, S.A.; Wood, B.; Gooley, T.; et al. γ-Secretase Inhibitor in Combination with BCMA Chimeric Antigen Receptor T-Cell Immunotherapy for Individuals with Relapsed or Refractory Multiple Myeloma: A Phase 1, First-in-Human Trial. Lancet Oncol. 2023, 24, 811–822. [Google Scholar] [CrossRef]
- Coffey, D.G.; Ataca Atilla, P.; Atilla, E.; Landgren, O.; Cowan, A.J.; Simon, S.; Pont, M.J.; Comstock, M.L.; Hill, G.R.; Riddell, S.R.; et al. Single-Cell Analysis of the Multiple Myeloma Microenvironment after γ-Secretase Inhibition and CAR T-Cell Therapy. Blood 2025, 145, 220–233. [Google Scholar] [CrossRef]
- Sedloev, D.; Chen, Q.; Unglaub, J.M.; Schanda, N.; Hao, Y.; Besiridou, E.; Neuber, B.; Schmitt, A.; Raffel, S.; Liu, Y.; et al. Proteasome Inhibition Enhances the Anti-Leukemic Efficacy of Chimeric Antigen Receptor (CAR) Expressing NK Cells against Acute Myeloid Leukemia. J. Hematol. Oncol. 2024, 17, 85. [Google Scholar] [CrossRef]
- Li, J.; Guo, R.; Li, D.; Yang, J.; Zhang, Y.; Gao, H.; Yang, Y.; Wang, F.; Niu, T.; Wang, W. Bortezomib Enhances the Efficacy of BCMA CAR-T Therapy through up-Regulating BCMA Expression in Myeloma Cells. Int. Immunopharmacol. 2025, 148, 114113. [Google Scholar] [CrossRef]
- El Khawanky, N.; Hughes, A.; Yu, W.; Myburgh, R.; Matschulla, T.; Taromi, S.; Aumann, K.; Clarson, J.; Vinnakota, J.M.; Shoumariyeh, K.; et al. Demethylating Therapy Increases Anti-CD123 CAR T Cell Cytotoxicity against Acute Myeloid Leukemia. Nat. Commun. 2021, 12, 6436. [Google Scholar] [CrossRef]
- You, L.; Han, Q.; Zhu, L.; Zhu, Y.; Bao, C.; Yang, C.; Lei, W.; Qian, W. Decitabine-Mediated Epigenetic Reprograming Enhances Anti-Leukemia Efficacy of CD123-Targeted Chimeric Antigen Receptor T-Cells. Front. Immunol. 2020, 11, 533221. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, C.; Dai, H.; Wu, Z.; Han, X.; Guo, Y.; Chen, D.; Wei, J.; Ti, D.; Liu, Z.; et al. Low-Dose Decitabine Priming Endows CAR T Cells with Enhanced and Persistent Antitumour Potential via Epigenetic Reprogramming. Nat. Commun. 2021, 12, 409. [Google Scholar] [CrossRef]
- Tang, L.; Kong, Y.; Wang, H.; Zou, P.; Sun, T.; Liu, Y.; Zhang, J.; Jin, N.; Mao, H.; Zhu, X.; et al. Demethylating Therapy Increases Cytotoxicity of CD44v6 CAR-T Cells against Acute Myeloid Leukemia. Front. Immunol. 2023, 14, 1145441. [Google Scholar] [CrossRef]
- Isshiki, Y.; Chen, X.; Teater, M.; Karagiannidis, I.; Nam, H.; Cai, W.; Meydan, C.; Xia, M.; Shen, H.; Gutierrez, J.; et al. EZH2 Inhibition Enhances T Cell Immunotherapies by Inducing Lymphoma Immunogenicity and Improving T Cell Function. Cancer Cell 2025, 43, 49–68.e9. [Google Scholar] [CrossRef] [PubMed]
- Li, K.X.; Wu, H.Y.; Pan, W.Y.; Guo, M.Q.; Qiu, D.Z.; He, Y.J.; Li, Y.H.; Yang, D.H.; Huang, Y.X. Correction: A Novel Approach for Relapsed/Refractory FLT3mut+acute Myeloid Leukaemia: Synergistic Effect of the Combination of Bispecific FLT3scFv/NKG2D-CAR T Cells and Gilteritinib. Mol. Cancer 2022, 21, 134. [Google Scholar] [CrossRef] [PubMed]
- Jetani, H.; Garcia-Cadenas, I.; Nerreter, T.; Thomas, S.; Rydzek, J.; Meijide, J.B.; Bonig, H.; Herr, W.; Sierra, J.; Einsele, H.; et al. CAR T-Cells Targeting FLT3 Have Potent Activity against FLT3-ITD+ AML and Act Synergistically with the FLT3-Inhibitor Crenolanib. Leukemia 2018, 32, 1168–1179. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Mihara, K.; Takei, Y.; Yanagihara, K.; Kubo, T.; Bhattacharyya, J.; Imai, C.; Mino, T.; Takihara, Y.; Ichinohe, T. All-Trans Retinoic Acid Enhances Cytotoxic Effect of T Cells with an Anti-CD38 Chimeric Antigen Receptor in Acute Myeloid Leukemia. Clin. Transl. Immunol. 2016, 5, e116. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, J.; Guo, J.; Li, X.; Wang, S.; Xie, Y.; Jiang, H.; Wang, Y.; Wang, M.; Hu, M.; et al. All-Trans Retinoic Acid Improves NSD2-Mediated RARα Phase Separation and Efficacy of Anti-CD38 CAR T-Cell Therapy in Multiple Myeloma. J. Immunother. Cancer 2023, 11, e006325. [Google Scholar] [CrossRef]
- García-Guerrero, E.; Rodríguez-Lobato, L.G.; Sierro-Martínez, B.; Danhof, S.; Bates, S.; Frenz, S.; Haertle, L.; Götz, R.; Sauer, M.; Rasche, L.; et al. All-Trans Retinoic Acid Works Synergistically with the γ-Secretase Inhibitor Crenigacestat to Augment BCMA on Multiple Myeloma and the Efficacy of BCMA-CAR T Cells. Haematologica 2023, 108, 568–580. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Anderson, E.; Lamble, A.; Orentas, R.J. Bryostatin Activates CAR T-Cell Antigen-Non-Specific Killing (CTAK), and CAR-T NK-Like Killing for Pre-B ALL, While Blocking Cytolysis of a Burkitt Lymphoma Cell Line. Front. Immunol. 2022, 13, 825364. [Google Scholar] [CrossRef]
- Awuah, D.; Minnix, M.; Caserta, E.; Tandoh, T.; Adhikarla, V.; Poku, E.; Rockne, R.; Pichiorri, F.; Shively, J.E.; Wang, X. Sequential CAR T Cell and Targeted Alpha Immunotherapy in Disseminated Multiple Myeloma. Cancer Immunol. Immunother. 2023, 72, 2841–2849. [Google Scholar] [CrossRef]
- Chiba, M.; Shimono, J.; Suto, K.; Ishio, T.; Endo, T.; Goto, H.; Hasegawa, H.; Maeda, M.; Teshima, T.; Yang, Y.; et al. Whole-Genome CRISPR Screening Identifies Molecular Mechanisms of PD-L1 Expression in Adult T-Cell Leukemia/Lymphoma. Blood 2024, 143, 1379–1390. [Google Scholar] [CrossRef] [PubMed]
- Wenthe, J.; Naseri, S.; Labani-Motlagh, A.; Enblad, G.; Wikström, K.I.; Eriksson, E.; Loskog, A.; Lövgren, T. Boosting CAR T-Cell Responses in Lymphoma by Simultaneous Targeting of CD40/4-1BB Using Oncolytic Viral Gene Therapy. Cancer Immunol. Immunother. 2021, 70, 2851–2865. [Google Scholar] [CrossRef] [PubMed]
- Desbois, M.; Giffon, T.; Yakkundi, P.; Denson, C.R.; Sekar, K.; Hart, K.C.; Santos, D.; Calhoun, S.E.; Logronio, K.; Pandey, S.; et al. IGM-7354, an Immunocytokine with IL-15 Fused to an Anti-PD-L1 IgM, Induces NK and CD8+ T Cell-Mediated Cytotoxicity of PD-L1 Positive Tumor Cells. Cancer Immunol. Res. 2025, 13, 1172–1189. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, M.J.; Carlo-Stella, C.; Morschhauser, F.; Bachy, E.; Corradini, P.; Iacoboni, G.; Khan, C.; Wróbel, T.; Offner, F.; Trněný, M.; et al. Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 387, 2220–2231. [Google Scholar] [CrossRef]
- Thieblemont, C.; Karimi, Y.H.; Ghesquieres, H.; Cheah, C.Y.; Clausen, M.R.; Cunningham, D.; Jurczak, W.; Do, Y.R.; Gasiorowski, R.; Lewis, D.J.; et al. Epcoritamab in Relapsed/Refractory Large B-Cell Lymphoma: 2-Year Follow-up from the Pivotal EPCORE NHL-1 Trial. Leukemia 2024, 38, 2653–2662. [Google Scholar] [CrossRef]
- Kim, W.S.; Kim, T.M.; Cho, S.G.; Jarque, I.; Iskierka-Jażdżewska, E.; Poon, L.M.; Prince, H.M.; Zhang, H.; Cao, J.; Zhang, M.; et al. Odronextamab Monotherapy in Patients with Relapsed/Refractory Diffuse Large B Cell Lymphoma: Primary Efficacy and Safety Analysis in Phase 2 ELM-2 Trial. Nat. Cancer 2025, 6, 528–539. [Google Scholar] [CrossRef]
- Budde, L.E.; Sehn, L.H.; Matasar, M.; Schuster, S.J.; Assouline, S.; Giri, P.; Kuruvilla, J.; Canales, M.; Dietrich, S.; Fay, K.; et al. Safety and Efficacy of Mosunetuzumab, a Bispecific Antibody, in Patients with Relapsed or Refractory Follicular Lymphoma: A Single-Arm, Multicentre, Phase 2 Study. Lancet Oncol. 2022, 23, 1055–1065. [Google Scholar] [CrossRef]
NCT Number Ref. (See Below) | Intervention | Disease |
---|---|---|
1. | CT1190B CAR-T | R/R B-NHL |
2. | IL-6-silenced CD19 CAR-T | R/R B-cell lymphoma |
3. | Rapid production CD19 CAR-T | R/R B-ALL and B-NHL |
4. | CD19 CAR-NK | R/R B-ALL |
5. | CD19 CAR-T secreting IL18 | R/R B-ALL |
6. | CD19 CAR-T with TLR2 | R/R B-cell lymphoma |
7. | CD19 CAR-NK | R/R CNS lymphoma |
8. | CD19 CAR-T/CAR-NK | R/R B-cell malignancies |
9. | CD19/22 CAR-T | R/R B-ALL |
10. | CD19/22 CAR-T | R/R pediatric B-ALL |
11. | Sequential CD19 and CD22 allogeneic CAR-T | R/R B-ALL |
12. | Metabolically armored CD19 CAR-T | R/R B-cell malignancies |
13. | Persistence-enhanced CD19 CAR-T | R/R B-NHL |
14. | BCOR and ZC3H12 KO CD19 CAR-T | R/R B-cell lymphoma and B-ALL |
15. | CD20 CAR-T | R/R B-NHL |
16. | Sequential CD19 CAR-NK and CD7/19 CAR-T | B-NHL |
17. | CD19/22 CAR-T | R/R B-cell leukemia and lymphoma |
18. | CD19/CD22 TLR2 CAR-T | R/R B-ALL and B-NHL |
19. | DuoCAR20.19.22-D95 | R/R B-Cell malignancies |
20. | C402-CD19-CAR | R/R B-NHL |
21. | CIK cell therapy | R/R B-ALL |
22. | CD19/CD20 CAR-T | R/R B-cell malignancies |
23. | CD19/TGF-beta CAR-T | R/R LBCL |
24. | CD19/79b CAR-T | R/R B-NHL |
25. | CD19/IL10 CB CAR-NK | R/R B-NHL |
26. | CD19/BAFF CAR-T | R/R B-cell malignancies |
27. | CD22 CAR-T | R/R B-cell leukemia and lymphoma |
28. | CD20/CD30 CAR-T | R/R lymphomas |
29. | CD5 CAR-T | R/R T-cell leukemia and lymphoma |
30. | CD5 KO CD5 CAR-T | R/R T-NHL |
31. | CD5 CAR-NK | R/R T-ALL or T-cell lymphoma |
32. | CD5 CAR-NK secreting IL15 | R/R NK/T-cell malignancies |
33. | Sequential CD5/7 CAR-T | R/R T-cell leukemia and lymphoma |
34. | CD7 CAR-T | R/R T-ALL or T-cell lymphoma |
35. | CD7 CAR-T | R/R NK/T-cell malignancies |
36. | CD7 CAR NK | R/R T-ALL |
37. | Autologous and allogeneic CD7 CAR-T | R/R T-cell leukemia and lymphoma |
38. | Dual-epitope BCMA CAR-T | R/R MM |
39. | BCMA CAR-NK | R/R MM and PCL |
40. | BCMA/CD19 CAR-T | R/R aggressive B-NHL |
41. | BCMA/CD19 CAR-T | R/R MM |
42. | BCMA/CD19 CAR-T | R/R MM, B-ALL, and B-NHL |
43. | BCMA/GPCR5D CAR-T (RD140) | R/R MM and PCL |
44. | BCMA/GPCR5D CAR-T | R/R MM |
45. | BCMA/TGF-beta CAR-T | R/R MM |
46. | BCMA/FcRL5 CAR-T | R/R MM |
47. | CD19/22/BCMA CAR-T | R/R B-NHL |
48. | LCAR-M61S and LCAR-M61D | R/R MM |
49. | CD27 armored BCMA CAR-T | R/R MM |
50. | UF-KURE-BCMA CAR-T | R/R MM |
51. | GPRC5D CAR-T | R/R MM |
52. | GPRC5D/CD19 CAR-T | R/R MM |
53. | CD30 CAR-T | R/R CD30+ lymphoma |
54. | CD70 CAR-T | R/R hematological malignancies |
55. | CD70 CAR-NK | T-cell leukemia and lymphoma |
56. | CD38/CS1 CAR-T | R/R MM |
57. | iC9/CAR19/IL15 CB CAR-NK | High-risk lymphoma patients with primary Sjogren’s syndrome |
58. | CD19/CD22/BCMA CAR-T | R/R MM |
59. | FcR L5 CAR-T | R/R MM |
60. | BAFFR-based CAR-T | R/R B-NHL |
61. | CS1 CAR-T | R/R MM |
62. | IL7R-modified CD30 CAR-T | R/R CD30+ lymphoma |
63. | APRIL-BAFF-Bicephali CAR-T | R/R MM |
64. | EGFRt/19-28z/IL-12 CAR T | R/R CD19+ malignancies |
65. | NKG2 CAR-NK | R/R MM |
66. | BAFF CAR-T | R/R NHL |
67. | CAR-T co-expressing IL15 | R/R hematological malignancies |
68. | BAFF CAR-T | R/R MM |
69. | Allogeneic CD19 CAR-T | R/R B-ALL and B-NHL |
70. | Allogeneic CD20 CAR-T | R/R B-NHL |
71. | Allogeneic CD19/20 CAR-T | R/R B-cell malignancies |
72. | Allogeneic CD19/22 CAR-T | R/R B-ALL and B-NHL |
73. | Allogeneic BCMA CAR-T | R/R MM |
74. | Allogeneic CD19/BCMA CAR-T | R/R B-cell malignancies |
75. | Allogeneic BCMA/GPCR5D CAR-T | R/R MM |
76. | Allogeneic CAR-T (CT0596) | PCL |
77. | TRAC and SPPL3 KO allogeneic CD19 CAR-T | R/R B-NHL |
78. | Allogeneic BCMA or CD138 or CD38 or CD19 CAR-T | R/R MM |
79. | TmCD19-IL18 CAR T | R/R CD19+ malignancies |
NCT Number | Intervention | Disease |
---|---|---|
NCT05310591 | CD19 CAR-T + Nivolumab | B-ALL |
NCT05385263 | CD19 CAR-T + Nivolumab | DLBCL |
NCT04205409 | (Post CAR-T) Nivolumab | R/R B-NHL, R/R MM |
NCT05352828 | CD30 CAR-T + Nivolumab | R/R cHL |
NCT04134325 | CD30 CAR-T + Nivolumab OR Pembrolizumab | R/R cHL |
NCT06767956 | (Post CD19 CAR-T) Nivolumab + Golcadomide, | R/R B-NHL |
NCT06523621 | (Post idecabtagene Vicleucel) Nivolumab | R/R MM |
NCT05934448 | CAR-T + Pembrolizumab | R/R PMBCL |
NCT06242834 | (Post CAR-T/ASCT) Pembrolizumab + Tazemetostat | R/R B-NHL |
NCT05659628 | CD19 CAR-T + Tislelizumab | R/R DLBCL |
NCT06876688 | Relmacabtagene autoleucel + Tislelizumab ± BTKi | R/R PCNSL |
NCT04539444 (Uknown status) | CD19/22 CAR-T + Tislelizumab | R/R B-NHL |
NCT00586391 | CD19 CAR-T + Ipilimumab | R/R B-NHL R/R ALL, R/R CLL |
NCT03331198 | Lisocabtagene maraleucel + Ibrutinib or Venetoclax | R/R CLL/SLL |
NCT03960840 | Rapcabtagene autoleucel + Ibrutinib | R/R CLL/SLL |
NCT06482684 | Brexucabtagene autoleucel + Ibrutinib | MCL |
NCT04234061 | Tisagenlecleucel + Ibrutinib | R/R MCL |
NCT05672173 | Lisocabtagene maraleucel + Ibrutinib + Nivolumab | Richter’s Syndrome |
NCT05744037 (Uknown status) | CD19 CAR-T + Ibrutinib | R/R B-NHL |
NCT05202782 | CAR-T + Zanubrutinib | R/R B-NHL |
NCT05873712 | Lisocabtagene maraleucel + Zanubrutinib | Richter’s Syndrome |
NCT06646666 | CAR-T + ATRA + Zanubrutinib ± radiotherapy ± PD-1 inhibitor | R/R B-NHL |
NCT06695013 | Zanubrutinib ± radiotherapy + CAR-T ± Zanubrutinib and Tislelizumab | R/R B-NHL |
NCT05871684 | CAR-T + Zanubrutinib + Tislelizumab | R/R B-NHL |
NCT06167785 | (Post CD19 CAR-T) Zanubrutinib + Tislelizumab | R/R B-NHL |
NCT05020392 | CD19 CAR-T + Zanubrutinib/Ibrutinib/Orelabrutinib | R/R B-NHL |
NCT05495464 | Acalabrutinib + Rituximab + Brexucabtagene autoleucel | MCL |
NCT05256641 | CD19 CAR-T + Acalabrutinib | R/R B-NHL |
NCT04257578 | Axicabtagene ciloleucel + Acalabrutinib | R/R B-NHL |
NCT04484012 | CD19 CAR-T + Acalabrutinib | R/R MCL |
NCT05990465 | CD19 CAR-T + Pirtobrutinib | R/R B-NHL |
NCT06553872 | Brexucabtagene autoleucel + Pirtobrutinib | R/R MCL |
NCT06553872 | CD19 CAR-T Brexucabtagene autoleucel + Pirtobrutinib | MZL |
NCT06336395 | CAR-T If high risk: + Imatinib/Dasatinib | B-ALL Ph+ |
NCT05523661 | CD19/CD22 CAR-T + Dasatinib | ALL Ph+ |
NCT05993949 | Brexucabtagene autoleucel + Dasatinib | R/R B-ALL |
NCT04603872 | CD19/BCMA CAR-T + Dasatinib | R/R ALL, R/R B-NHL, R/R MM |
NCT06940297 | Ciltacabtagene Autoleucel + Dasatinib + Quercetin | R/R MM |
NCT05934838 | CAR-T + Tazemetostat | R/R B-NHL |
NCT06793475 | BCMA/GPRC5D CAR-T + Thalidomide+ Apornemin | R/R MM |
NCT03070327 | BCMA CAR-T + Lenalidomide | MM |
NCT05840107 | BCMA/CD19 CAR-T + Lenalidomide | MM |
NCT06913192 | ASCT + BCMA CAR-T + Lenalidomide ± Bortezomib | MM |
NCT04196491 | Idecabtagene vicleucel + Lenalidomide | MM |
NCT06762431 | CD19 CAR-T + Lenalidomide | R/R CLL |
NCT04935580 (Uknown status) | BCMA/CD19 CAR-T + Lenalidomide | R/R MM |
NCT05860036 | BCMA CAR-T Consolidation: Lenalidomide + Bortezomib Maintenance: Lenalidomide | MM |
NCT05850286 | BCMA CAR-T + Consolidation + ASCT + BCMA CAR-T + Lenalidomide | MM |
NCT07045909 | Anitocabtagene Autoleucel + Lenalidomide | MM |
NCT04133636 | Ciltacabtagene autoleucel + Lenalidomide | MM |
NCT03601078 | Idecabtagene vicleucel + Lenalidomide | MM |
NCT05257083 | Ciltacabtagene autoleucel + Lenalidomide vs. SoC | MM |
NCT06045806 | (Post ASCT) Idecabtagene vicleucel + Lenalidomide | MM |
NCT05870917 | Induction: Lenalidomide + Bortezomib + first infusion of BCMA CAR-T Consolidation: Lenalidomide + Bortezomib + ASCT + second infusion of BCMA CAR-T Maintenance: Lenalidomide | PCL |
NCT05979363 | Induction: Lenalidomide + Bortezomib + BCMA CAR-T Consolidation: Lenalidomide + Bortezomib Maintenance: Lenalidomide + Bortezomib | PCL |
NCT06414148 | (MRD+ post CD19 CAR-T) Epcoritamab or Lenalidomide + Epcoritamab + Rituximab | R/R LBCL |
NCT06179888 | (Post-idecabtagene vicleucel) Iberdomide | R/R MM |
NCT06121843 | Arlocabtagene Autoleucel + Alnuctamab or Mezigdomide or Iberdomide | R/R MM |
NCT06048250 | Idecabtagene vicleucel + Mezigdomide | R/R MM |
NCT06209619 | CD19 CAR-T + Golcadomide + Rituximab | R/R B-NHL |
NCT06271057 | CD19 CAR-T + Golcadomide | R/R LBCL |
NCT04850560 (Uknown status) | CD19 CAR-T + Decitabine | R/R B-NHL |
NCT04337606 | (Post CAR-T) Decitabine + Chidamide or Decitabine + Camrelizumab | R/R B-NHL |
NCT04553393 (Uknown status) | Decitabine-primed CD19/CD20 CAR-T ± Chidamide or Decitabine or Chidamide + Decitabine | R/R B-NHL |
NCT04093596 | Anti-BCMA Allogeneic CAR-T ± Nirogacestat | R/R MM |
NCT06464185 | CD19 CAR-T + Glofitamab | R/R B-NHL |
NCT06567366 | CAR-T + Glofitamab | R/R LBCL |
NCT04703686 | (Post CD19 CAR-T) Obinutuzumab + Glofitamab | R/R B-NHL |
NCT07003295 | (Post CD19 CAR-T) Obinutuzumab + Glofitamab | R/R MCL |
NCT06552572 | (PR post CD19 CAR-T): Obinutuzumab + Glofitamab | R/R DLBCL |
NCT06071871 | (Post CAR-T): Obinutuzumab + Glofitamab + Polatuzumab vedotin | R/R LBCL |
NCT06015880 | (Post CAR-T): Mosunetuzumab + Polatuzumab vedotin + Lenalidomide | R/R B-NHL |
NCT04889716 | (Post CD19 CAR-T): Mosunetuzumab or Obinutuzumab + Glofitamab | R/R LBCL |
NCT05260957 | CAR-T + Mosunetuzumab + Polatuzumab vedotin | R/R B-NHL |
NCT05633615 | CD19 CAR-T + Mosunetuzumab or Polatuzumab vedotin or Mosunetuzumab + Polatuzumab vedotin | R/R B-NHL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Legato, L.; Bisio, M.; Fasano, F.; Benevolo Savelli, C.; Secreto, C.; Dellacasa, C.M.; Botto, B.; Busca, A.; Cerrano, M.; Freilone, R.; et al. Mechanisms of Resistance to CAR T-Cells and How to Overcome Them. Methods Protoc. 2025, 8, 108. https://doi.org/10.3390/mps8050108
Legato L, Bisio M, Fasano F, Benevolo Savelli C, Secreto C, Dellacasa CM, Botto B, Busca A, Cerrano M, Freilone R, et al. Mechanisms of Resistance to CAR T-Cells and How to Overcome Them. Methods and Protocols. 2025; 8(5):108. https://doi.org/10.3390/mps8050108
Chicago/Turabian StyleLegato, Luca, Matteo Bisio, Filippo Fasano, Corrado Benevolo Savelli, Carolina Secreto, Chiara Maria Dellacasa, Barbara Botto, Alessandro Busca, Marco Cerrano, Roberto Freilone, and et al. 2025. "Mechanisms of Resistance to CAR T-Cells and How to Overcome Them" Methods and Protocols 8, no. 5: 108. https://doi.org/10.3390/mps8050108
APA StyleLegato, L., Bisio, M., Fasano, F., Benevolo Savelli, C., Secreto, C., Dellacasa, C. M., Botto, B., Busca, A., Cerrano, M., Freilone, R., & Novo, M. (2025). Mechanisms of Resistance to CAR T-Cells and How to Overcome Them. Methods and Protocols, 8(5), 108. https://doi.org/10.3390/mps8050108