To What Inanimate Matter Are We Most Closely Related and Does the Origin of Life Harbor Meaning?
Abstract
:1. Introduction
1.1. Narratives Are Set in Places
1.2. Molecules or Cells?
1.3. Teleology and the Notion of Epistemological Obstacles
1.4. Could Nei’s Conjecture Be True?
1.5. The Concept of Epistemological Obstacles in Hypothesis Pervading Origins
1.6. Settings in Origins Theories: Where to Start?
- The initial setting and medium including soluble materials and catalysts;
- Generation of organic molecules—substrates and energy;
- Concentration of organics;
- Increased molecular system complexity;
- Stable but far from equilibrium environment fostering the newly formed system;
- Emergence of the first free living cells;
- The lifestyle of those first cells.
2. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kudella, P.W.; Tkachenko, A.V.; Salditt, A.; Maslov, S.; Braun, D. Structured sequences emerge from random pool when replicated by templated ligation. Proc. Natl. Acad. Sci. USA 2021, 118, e2018030118. [Google Scholar] [CrossRef]
- Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015, 7, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Martin, W.; Russell, M.J. On the origins of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 59–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, W.; Russell, M.J. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1887–1926. [Google Scholar] [CrossRef] [PubMed]
- Priestley, J.; Hey, W. XIX. Observations on different kinds of air. Philos. Trans. R. Soc. Lond. 1772, 62, 147–264. [Google Scholar] [CrossRef]
- Krebs, H.A. Otto Heinrich Warburg, 1883-1970. Biogr. Mem. Fellows R. Soc. 1972, 18, 628–699. [Google Scholar]
- Höxtermann, E. A comment on Warburg’s early understanding of biocatalysis. Photosynth. Res. 2007, 92, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.D.N.; Kleinermanns, K.; Martin, W.F.; Preiner, M. The ambivalent role of water at the origins of life. FEBS Lett. 2020, 594, 2717–2733. [Google Scholar] [CrossRef] [PubMed]
- Preiner, M.; Igarashi, K.; Muchowska, K.B.; Yu, M.; Varma, S.J.; Kleinermanns, K.; Nobu, M.K.; Kamagata, Y.; Tüysüz, H.; Moran, J.; et al. A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat. Ecol. Evol. 2020, 4, 534–542. [Google Scholar] [CrossRef]
- Amend, J.P.; Shock, E.L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. Fems Microbiol. Rev. 2001, 25, 175–243. [Google Scholar] [CrossRef]
- Martin, W.F. Physiology, phylogeny, and the energetic roots of life. Period. Biol. 2017, 118, 343. [Google Scholar] [CrossRef] [Green Version]
- Oparin, A.I. The Origin of Life; Moscow Worker Publisher: Moscow, Russia, 1924. [Google Scholar]
- Darwin, C.R. Darwin Correspondence Project. Available online: https://www.darwinproject.ac.uk/letter/DCP-LETT-7471.xml (accessed on 3 February 2021).
- Liu, D. The cell and protoplasm as container, object, and substance, 1835–1861. J. Hist. Biol. 2016, 50, 889–925. [Google Scholar] [CrossRef]
- Hall, T.S. Ideas of life and matter. Philos. Sci. 1969, 39, 101–102. [Google Scholar]
- Geison, G.L. The protoplasmic theory of life and the vitalist-mechanist debate. Isis 1969, 60, 273–292. [Google Scholar] [CrossRef]
- Drysdale, G.J.S. The Protoplasmic Theory of Life, 1st ed.; Bailliere, Tindall & Cox: London, UK, 1874. [Google Scholar]
- Kowallik, K.V.; Martin, W.F. The origin of symbiogenesis: An annotated English translation of Mereschkowsky’s 1910 paper on the theory of two plasma lineages. Biosystems 2021, 199, 104281. [Google Scholar] [CrossRef]
- Madigan, M.T.; Bender, K.S.; Buckley, D.H.; Sattley, M.; Stahl, D.A. Brock Biology of Microorganisms, 15th ed.; Pearson Global Edition: New York, NY, USA, 2019. [Google Scholar]
- Haeckel, E. Natürliche Schöpfungs-Geschichte. Gemeinverständliche Wissenschaftliche Vorträge Über Die Entwickelungslehre. Zehnte Verbesserte Auflage. Zweiter Theil: Allgemeine Stammesgeschichte; Georg Reimer: Berlin, Germany, 1902. [Google Scholar]
- Marshall, M. How the first life on Earth survived its biggest threat—water. Nature 2020, 588, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L. A production of amino acids under possible primitive earth conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haldane, J.B.S. The origin of life. Ration. Annu. 1929, 148, 3–10. [Google Scholar]
- Eigen, M.; Gardiner, W.; Schuster, P.; Winkler-Oswatitsch, R. The origin of genetic information. Sci. Am. 1981, 244, 88–118. [Google Scholar] [CrossRef]
- Powner, M.W.; Gerland, B.; Sutherland, J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nat. Cell Biol. 2009, 459, 239–242. [Google Scholar] [CrossRef]
- Shapiro, R. Prebiotic cytosine synthesis: A critical analysis and implications for the origin of life. Proc. Natl. Acad. Sci. USA 1999, 96, 4396–4401. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, R. Small Molecule Interactions were Central to the Origin of Life. Q. Rev. Biol. 2006, 81, 105–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Genet. 2008, 6, 805–814. [Google Scholar] [CrossRef]
- Sossi, P.A.; Burnham, A.D.; Badro, J.; Lanzirotti, A.; Newville, M.; O’Neill, H.S. Redox state of Earth’s magma ocean and its Venus-like early atmosphere. Sci. Adv. 2020, 6, eabd1387. [Google Scholar] [CrossRef]
- Zahnle, K.J.; Lupu, R.; Catling, D.C.; Wogan, N. Creation and evolution of impact-generated reduced atmospheres of early Earth. Planet. Sci. J. 2020, 1, 11. [Google Scholar] [CrossRef]
- Mann, A. Cataclysm’s end. A popular theory about the early solar system comes under fire. Nature 2018, 553, 393–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.; Morowitz, H.J. Universality in intermediary metabolism. Proc. Natl. Acad. Sci. USA 2004, 101, 13168–13173. [Google Scholar] [CrossRef] [Green Version]
- Abel, P. Evidence for the universality of the genetic code. Cold Spring Harb. Symp. Quant. Biol. 1964, 29, 185–187. [Google Scholar] [CrossRef]
- Tashiro, T.; Ishida, A.; Hori, M.; Igisu, M.; Koike, M.; Méjean, P.; Takahata, N.; Sano, Y.; Komiya, T. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nat. Cell Biol. 2017, 549, 516–518. [Google Scholar] [CrossRef] [PubMed]
- Schönheit, P.; Buckel, W.; Martin, W.F. On the origin of heterotrophy. Trends Microbiol. 2016, 24, 12–25. [Google Scholar] [CrossRef]
- Tempest, D.W.; Neijssel, O.M. The status of YATP and maintenance energy as biologically interpretable phenomena. Annu. Rev. Microbiol. 1984, 38, 459–486. [Google Scholar] [CrossRef]
- Russell, J.B. The energy spilling reactions of bacteria and other organisms. J. Mol. Microbiol. Biotechnol. 2007, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bachelard, G. Formation de l’Esprit Scientifique, 5th ed.; Librairie Philosophique J. VRIN: Paris, France, 1934. [Google Scholar]
- Herscovics, N.; Linchevski, L. A cognitive gap between arithmetic and algebra. Educ. Stud. Math. 1994, 27, 59–78. [Google Scholar] [CrossRef]
- Brousseau, G.; Balacheff, N. Theory of Didactical Situations in Mathematics: Didactique des Mathématiques, 1970–1990, 1st ed.; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Cornu, B. Limits. In Advanced Mathematical Thinking; J.B. Metzler: Dordrecht, The Netherlands, 2002; pp. 153–166. [Google Scholar]
- Mayr, E. What Makes Biology Unique? Considerations on the Autonomy of a Scientific Discipline, 1st ed.; Cambridge University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Mayr, E. The Idea of Teleology. J. Hist. Ideas 1992, 53, 117. [Google Scholar] [CrossRef] [Green Version]
- Nei, M. Mutation-Driven Evolution, 1st ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Whitman, W.B.; Coleman, D.C.; Wiebe, W.J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 1998, 95, 6578–6583. [Google Scholar] [CrossRef] [Green Version]
- Hoehler, T.M.; Jørgensen, B.B. Microbial life under extreme energy limitation. Nat. Rev. Genet. 2013, 11, 83–94. [Google Scholar] [CrossRef]
- Foster, P.L.; Lee, H.; Popodi, E.; Townes, J.P.; Tang, H. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc. Natl. Acad. Sci. USA 2015, 112, E5990–E5999. [Google Scholar] [CrossRef] [Green Version]
- Sprouffske, K.; Aguilar-Rodríguez, J.; Sniegowski, P.; Wagner, A. High mutation rates limit evolutionary adaptation in Escherichia coli. PLoS Genet. 2018, 14, e1007324. [Google Scholar] [CrossRef] [Green Version]
- Orgogozo, V. Replaying the tape of life in the twenty-first century. Interface Focus 2015, 5, 20150057. [Google Scholar] [CrossRef]
- Bedau, M. Can biological teleology be naturalized? J. Philos. 1991, 88, 647–655. [Google Scholar] [CrossRef]
- Wächtershäuser, G. The origin of life and its methodological challenge. J. Theor. Biol. 1997, 187, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Galli, L.M.G.; Meinardi, E.N. the role of teleological thinking in learning the Darwinian model of evolution. Evol. Educ. Outreach 2010, 4, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Toepfer, G. Teleology and its constitutive role for biology as the science of organized systems in nature. Stud. Hist. Philos. Sci. Part C Stud. Hist. Philos. Biol. Biomed. Sci. 2012, 43, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.G.L.; Larentis, A.L.; Caldas, L.A.; Garcia, T.C.; Terra, L.L.; Herbst, M.H.; Almeida, R. On the debate about teleology in biology: The notion of “teleological obstacle”. História Ciências Saúde-Manguinhos 2015, 22, 1321–1333. [Google Scholar] [CrossRef] [Green Version]
- Bonnin, T. Monist and pluralist approaches on underdetermination: A case study in evolutionary microbiology. J. Gen. Philos. Sci. 2020, 1–21. [Google Scholar] [CrossRef]
- Hordijk, W.; Steel, M.; Kauffman, S.A. The structure of autocatalytic sets: Evolvability, enablement, and emergence. Acta Biotheor. 2012, 60, 379–392. [Google Scholar] [CrossRef]
- Xavier, J.C.; Hordijk, W.; Kauffman, S.; Steel, M.; Martin, W.F. Autocatalytic chemical networks at the origin of metabolism. Proc. R. Soc. B Biol. Sci. 2020, 287, 20192377. [Google Scholar] [CrossRef]
- Muller, H.J. Pilgrim trust lecture—The gene. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1947, 134, 1–37. [Google Scholar]
- Oparin, A.I. The Origin of Life on the Earth, 3rd ed.; Academic Press Inc.: New York, NY, USA, 1957. [Google Scholar]
- Cairns-Smith, A. The origin of life and the nature of the primitive gene. J. Theor. Biol. 1966, 10, 53–88. [Google Scholar] [CrossRef]
- Fox, S.W. A Theory of macromolecular and cellular origins. Nat. Cell Biol. 1965, 205, 328–340. [Google Scholar] [CrossRef]
- Bernal, J.D. The Physical Basis of Life, 1st ed.; Routledge and Paul: London, UK, 1951. [Google Scholar]
- Sillen, L. Oxidation state of Earths ocean and atmosphere. I. A model calculation on earlier states. Myth of probiotic soup. Ark. Kemi 1965, 24, 431. [Google Scholar]
- Hulett, H. Limitations on prebiological synthesis. J. Theor. Biol. 1969, 24, 56–72. [Google Scholar] [CrossRef]
- Ross, D.S.; Deamer, D. Dry/wet cycling and the thermodynamics and kinetics of prebiotic polymer synthesis. Life 2016, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Ponnamperuma, C.; Shimoyama, A.; Friebele, E. Clay and the origin of life. Orig. Life Evol. Biosph. 1982, 12, 9–40. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L.; Urey, H.C.; Oró, J. Origin of organic compounds on the primitive earth and in meteorites. J. Mol. Evol. 1976, 9, 59–72. [Google Scholar] [CrossRef]
- Kvenvolden, K.A.; Lawless, J.G.; Ponnamperuma, C. Nonprotein amino acids in the Murchison meteorite. Proc. Natl. Acad. Sci. USA 1971, 68, 486–490. [Google Scholar] [CrossRef] [Green Version]
- Arrhenius, S. Die Verbreitung des Lebens im Weltenraum. Die Umsch. 1903, 7, 481–485. [Google Scholar]
- Weber, P.; Greenberg, J.M. Can spores survive in interstellar space? Nature 1985, 316, 403–407. [Google Scholar] [CrossRef]
- Melosh, H.J. The rocky road to panspermia. Nature 1988, 332, 687–688. [Google Scholar] [CrossRef]
- Benner, S.A.; Kim, H.-J. The case for a Martian origin for Earth life. In Proceedings of the Instruments, Methods, and Missions for Astrobiology XVII, San Diego, CA, USA, 9–13 August 2015; p. 96060C. [Google Scholar]
- Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; Von Herzen, R.P.; Ballard, R.D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; et al. Submarine thermal springs on the Galápagos Rift. Science 1979, 203, 1073–1083. [Google Scholar] [CrossRef]
- Corliss, J.B.; Baross, J.; Hoffman, S. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol. Acta 1981, SP, 59–69. [Google Scholar]
- Baross, J.A.; Hoffman, S.E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life Evol. Biosph. 1985, 15, 327–345. [Google Scholar] [CrossRef]
- Joyce, G. Hydrothermal vents too hot? Nature 1988, 334, 564. [Google Scholar] [CrossRef]
- Nisbet, E.G. Origin of life. Nature 1989, 337, 23. [Google Scholar] [CrossRef]
- Brock, T.D.; Isaksen, M.F.; Jannasch, H.W. Life at high temperatures. Science 1985, 230, 132–138. [Google Scholar] [CrossRef]
- Kurr, M.; Huber, R.; Jannasch, H.W.; Fricke, H.; Trincone, A.; Kristjansson, J.K.; Stetter, K.O. Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch. Microbiol. 1991, 156, 239–247. [Google Scholar] [CrossRef]
- Maden, B.H. No soup for starters? Autotrophy and the origins of metabolism. Trends Biochem. Sci. 1995, 20, 337–341. [Google Scholar] [CrossRef]
- Wächtershäuser, G. Groundworks for an evolutionary biochemistry: The iron-sulphur world. Prog. Biophys. Mol. Biol. 1992, 58, 85–201. [Google Scholar] [CrossRef]
- Wächtershäuser, G. Pyrite formation, the first energy source for life: A hypothesis. Syst. Appl. Microbiol. 1988, 10, 207–210. [Google Scholar] [CrossRef]
- Wächtershäuser, G. Before enzymes and templates: Theory of surface metabolism. Microbiol. Rev. 1988, 52, 452–484. [Google Scholar] [CrossRef]
- De Duve, C.; Miller, S.L. Two-dimensional life? Proc. Natl. Acad. Sci. USA 1991, 88, 10014–10017. [Google Scholar] [CrossRef] [Green Version]
- Ebisuzaki, T.; Maruyama, S. Nuclear geyser model of the origin of life: Driving force to promote the synthesis of building blocks of life. Geosci. Front. 2017, 8, 275–298. [Google Scholar] [CrossRef] [Green Version]
- Schiller, M.R. The minimotif synthesis hypothesis for the origin of life. J. Transl. Sci. 2016, 2, 289–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crick, F. The origin of the genetic code. J. Mol. Biol. 1968, 38, 367–379. [Google Scholar] [CrossRef]
- Orgel, L. Evolution of the genetic apparatus. J. Mol. Biol. 1968, 38, 381–393. [Google Scholar] [CrossRef]
- Kruger, K.; Grabowski, P.J.; Zaug, A.J.; Sands, J.; Gottschling, D.E.; Cech, T.R. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 1982, 31, 147–157. [Google Scholar] [CrossRef]
- Pace, N.R.; Marsh, T.L. Rna catalysis and the origin of life. Orig. Life Evol. Biosph. 1985, 16, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, W. Origin of life: The RNA world. Nature 1986, 319, 618. [Google Scholar] [CrossRef]
- Cech, T.R.; Zaug, A.J.; Grabowski, P.J. In vitro splicing of the ribosomal RNA precursor of tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 1981, 27, 487–496. [Google Scholar] [CrossRef]
- White, H.B. Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 1976, 7, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 1971, 58, 465–523. [Google Scholar] [CrossRef]
- Baross, J.A.; Martin, W.F. The ribofilm as a concept for life’s origins. Cell 2015, 162, 13–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahnle, K.; Arndt, N.; Cockell, C.; Halliday, A.; Nisbet, E.; Selsis, F.; Sleep, N.H. Emergence of a habitable planet. Space Sci. Rev. 2007, 129, 35–78. [Google Scholar] [CrossRef]
- Shapiro, R. A replicator was not involved in the origin of life. Iubmb Life 2000, 49, 173–176. [Google Scholar] [CrossRef]
- Nisbet, E.G. Origin of life: RNA and hot-water springs. Nature 1986, 322, 206. [Google Scholar] [CrossRef]
- Russell, M.J.; Daniel, R.M.; Hall, A.J.; Sherringham, J.A. A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol. 1994, 39, 231–243. [Google Scholar] [CrossRef]
- Russell, M.J.; Hall, A.J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. 1997, 154, 377–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, D.S.; Karson, J.A.; Früh-Green, G.L.; Yoerger, D.R.; Shank, T.M.; Butterfield, D.A.; Hayes, J.M.; Schrenk, M.O.; Olson, E.J.; Proskurowski, G.; et al. A serpentinite-hosted ecosystem: The Lost City hydrothermal field. Science 2005, 307, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Preiner, M.; Xavier, J.C.; Sousa, F.L.; Zimorski, V.; Neubeck, A.; Lang, S.Q.; Greenwell, H.C.; Kleinermanns, K.; Tüysüz, H.; McCollom, T.M.; et al. Serpentinization: Connecting geochemistry, ancient metabolism and industrial hydrogenation. Life 2018, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Martin, W.F. Older than genes: The acetyl CoA pathway and origins. Front. Microbiol. 2020, 11, 817. [Google Scholar] [CrossRef]
- Martin, W. On the ancestral state of microbial physiology. In Life Strategies of Microorganisms in the Environment and in Host Organisms; Amann, R., Goebel, W., Schink, B., Widdel, F., Eds.; Wissenschaftliche: Darmstadt, Germany, 2008; Volume 96, pp. 53–60. [Google Scholar]
- Weiss, M.C.; Sousa, F.L.; Mrnjavac, N.; Neukirchen, S.; Roettger, M.; Nelson-Sathi, S.; Martin, W.F. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 2016, 1, 16116. [Google Scholar] [CrossRef]
- Mulkidjanian, A.Y.; Bychkov, A.Y.; Dibrova, D.V.; Galperin, M.Y.; Koonin, E.V. Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl. Acad. Sci. USA 2012, 109, E821–E830. [Google Scholar] [CrossRef] [Green Version]
- Damer, B.; Deamer, D. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: A scenario to guide experimental approaches to the origin of cellular life. Life 2015, 5, 872–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damer, B.; Deamer, D. The hot spring hypothesis for an origin of life. Astrobiology 2020, 20, 429–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, A.; Damer, B. Factoring origin of life hypotheses into the search for life in the solar system and beyond. Life 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, W.; Russell, M.J. Beating the acetyl coenzyme A-pathway to the origin of life. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducluzeau, A.-L.; Van Lis, R.; Duval, S.; Schoepp-Cothenet, B.; Russell, M.J.; Nitschke, W. Was nitric oxide the first deep electron sink? Trends Biochem. Sci. 2009, 34, 9–15. [Google Scholar] [CrossRef]
- Lathe, R. Fast tidal cycling and the origin of life. Icarus 2004, 168, 18–22. [Google Scholar] [CrossRef]
- Trevors, J.T.; Pollack, G.H. Hypothesis: The origin of life in a hydrogel environment. Prog. Biophys. Mol. Biol. 2005, 89, 1–8. [Google Scholar] [CrossRef]
- Trevors, J.T. Hypothesized origin of microbial life in a prebiotic gel and the transition to a living biofilm and microbial mats. C. R. Biol. 2011, 334, 269–272. [Google Scholar] [CrossRef]
- Martin, W.F.; Bryant, D.A.; Beatty, J.T. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol. Rev. 2018, 42, 205–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, S.; Parnell, J. The deep history of Earth’s biomass. J. Geol. Soc. 2018, 175, 716–720. [Google Scholar] [CrossRef]
- Cleland, C.E.; Chyba, C.F. Does “life” have a definition? In Planets and Life: The Emerging Science of Astrobiology; Sullivan, W.T., Baross, J.A., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 119–131. [Google Scholar]
- Cleland, C.E. Life without definitions. Synthese 2011, 185, 125–144. [Google Scholar] [CrossRef]
- Bell, E.A.; Boehnke, P.; Harrison, T.M.; Mao, W.L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. USA 2015, 112, 14518–14521. [Google Scholar] [CrossRef] [Green Version]
- Wacey, D.; Kilburn, M.R.; Saunders, M.; Cliff, J.; Brasier, M.D. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat. Geosci. 2011, 4, 698–702. [Google Scholar] [CrossRef]
- Morrison, P.R.; Mojzsis, S.J. Tracing the early emergence of microbial sulfur metabolisms. Geomicrobiol. J. 2020, 38, 66–86. [Google Scholar] [CrossRef]
- Korenaga, J.; Planavsky, N.J.; Evans, D.A.D. Global water cycle and the coevolution of the Earth’s interior and sur-face environment. Philos. Trans. R. Soc. A 2017, 375, 20150393. [Google Scholar] [CrossRef]
- Dhuime, B.; Wuestefeld, A.; Hawkesworth, C.J. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 2015, 8, 552–555. [Google Scholar] [CrossRef]
- Tang, M.; Chen, K.; Rudnick, R.L. Archean upper crust transition from mafic to felsic marks the onset of plate tecton-ics. Science 2016, 351, 372–375. [Google Scholar] [CrossRef] [Green Version]
- Prigogine, I. Time, Structure, and Fluctuations. Science 1978, 201, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Kondepudi, D.K.; De Bari, B.; Dixon, J.A. Dissipative structures, organisms and evolution. Entropy 2020, 22, 1305. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.F. Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biological energy conservation. FEBS Lett. 2012, 586, 485–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wimmer, J.L.E.; Vieira, A.d.N.; Xavier, J.C.; Kleinermanns, K.; Martin, W.F.; Preiner, M. The autotrophic core: An ancient network of 404 reactions converts H2, CO2, and NH3 into amino acids, bases, and cofactors. Microorganisms 2021, 9, 458. [Google Scholar] [CrossRef] [PubMed]
- Amend, J.P.; McCollom, T.M. Energetics of biomolecule synthesis on early Earth. In ACS Symposium Series; American Chemical Society (ACS): Washington, DC, USA, 2010; pp. 63–94. [Google Scholar]
- Hansen, L.D.; Criddle, R.S.; Battley, E.H. Biological calorimetry and the thermodynamics of the origination and evo-lution of life. Pure Appl. Chem. 2009, 81, 1843–1855. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, W.F.; Nagies, F.S.P.; do Nascimento Vieira, A. To What Inanimate Matter Are We Most Closely Related and Does the Origin of Life Harbor Meaning? Philosophies 2021, 6, 33. https://doi.org/10.3390/philosophies6020033
Martin WF, Nagies FSP, do Nascimento Vieira A. To What Inanimate Matter Are We Most Closely Related and Does the Origin of Life Harbor Meaning? Philosophies. 2021; 6(2):33. https://doi.org/10.3390/philosophies6020033
Chicago/Turabian StyleMartin, William F., Falk S. P. Nagies, and Andrey do Nascimento Vieira. 2021. "To What Inanimate Matter Are We Most Closely Related and Does the Origin of Life Harbor Meaning?" Philosophies 6, no. 2: 33. https://doi.org/10.3390/philosophies6020033
APA StyleMartin, W. F., Nagies, F. S. P., & do Nascimento Vieira, A. (2021). To What Inanimate Matter Are We Most Closely Related and Does the Origin of Life Harbor Meaning? Philosophies, 6(2), 33. https://doi.org/10.3390/philosophies6020033