The Characteristics of Sex Differentiation Based on Morphological Traits During the Early Development Stage of the Swimming Crab Portunus trituberculatus and Sex Prediction Model Comparison
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crab Culture and Sampling
2.2. Morphological Trait Measurement and Observation
2.3. Scanning Electron Microscopy
2.4. Identification of Genetic Sex
2.5. Data Analysis
3. Results
3.1. Identification of Genetic Sex at Different Developmental Stages
3.2. Analysis of Morphological Traits in Crablets at Different Developmental Stages
3.3. Correlation Analysis Between Morphological Traits and Sex
3.4. Construction and Test of Sex Prediction Models
- (1)
- Threshold method. A comparison of morphological indices and correlation analysis between morphological traits and sex revealed that AW3 and AW4 were significantly correlated with sex. Therefore, AW3 and AW4 at stage C V were normalized by AL and FCW to construct the threshold model. First, we tested whether the normalized data followed a normal distribution. Then, we plotted the normal distribution curves for male and female crabs and used the x-coordinate of their intersection as the threshold to assign individuals to different sexes. The reliability of the threshold method was assessed using 405 individuals from five development stages. When compared with genetic sex identification, the AW4/FCW index performed the best for sex assignment, and the overall accuracy rate of sex assignment increased from C I to C V based on thresholds calculated using AW4/FCW (Table 6), with an accuracy rate of 87.18% for female and 73.81% for males at stage C V.
- (2)
- Stepwise discriminant analysis method: One morphological trait and two normalized Variables (AL, AW2/AL and AW4/AL) of stage C V were identified as contributors to Fisher’s linear discriminant function for sex identification based on stepwise discriminant analysis. The discriminant equations were established as follows:
- (3)
- Multinomial logistic regression (MLR) analysis. Multinomial logistic regression model for different developmental stages were analyzed under both known and unknown AL1-5 conditions (models were provided in the Supplementary Material). The MLR analyses were conducted for 29 combinations of elements with known AL1-5 and 19 combinations without AL1-5. When compared with genetic sex identification, the accuracy of sex assignment was higher than that of the threshold method or the stepwise discriminant analysis, reaching 86.96% for female and 81.82% for male at stage C I without AL1-5. When AL1-5 data were added, the accuracy of sex assignment increased to 94.87% for female and 92.86% for male at stage C V (Table 8).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Han, X.; Han, Z. Effects of climate change on the potential habitat distribution of swimming crab Portunus trituberculatus under the species distribution model. J. Oceanol. Limnol. 2022, 40, 1556–1565. [Google Scholar] [CrossRef]
- Bureau of Fisheries, Ministry of Agriculture and Rural Affairs of China. China Fishery Statistical Yearbook 2024; Chinese Agriculture Press: Beijing, China, 2024. [Google Scholar]
- Zhang, S.Y.; Zhang, L.B. Research progress in the genetic basis of sex determination and sex identification methods in economically important aquatic animals. Mar. Sci. 2020, 44, 29–38. [Google Scholar]
- Li, X.Y.; Mei, J.; Ge, C.T.; Liu, X.L.; Gui, J.F. Sex determination mechanisms and sex control approaches in aquaculture animals. Sci. China Life Sci. 2022, 65, 1091–1122. [Google Scholar] [CrossRef]
- De Giosa, M.; Czerniejewski, P.; Tanski, A. Sexual dimorphism in the relative growth of the claw weight of adult chinese mitten crab (Eriocheir sinensis). A generalized least squares approach. Ital. J. Zool. 2013, 80, 222–226. [Google Scholar] [CrossRef]
- Cui, W.; Fang, S.; Lv, L.; Huang, Z.; Lin, F.; Wu, Q.; Zheng, H.; Li, S.; Zhang, Y.; Ikhwanuddin, M.; et al. Evidence of sex differentiation based on morphological traits during the early development stage of mud crab Scylla paramamosain. Front. Vet. Sci. 2021, 8, 712942. [Google Scholar] [CrossRef]
- Hidir, A.; Aaqillah-Amr, M.A.; Azra, M.N.; Shahreza, M.S.; Abualreesh, M.H.; Peng, T.H.; Ma, H.; Waiho, K.; Fazhan, H.; Ikhwanuddin, M. Sexual dimorphism of mud crab, genus Scylla between sexes based on morphological and physiological characteristics. Aquac. Res. 2021, 52, 5943–5961. [Google Scholar] [CrossRef]
- Duan, H.B.; Mao, S.; Xia, Q.; Ge, H.X.; Liu, M.M.; Li, W.Q.; Feng, S.L.; Wu, X.G.; Dong, Z.G. Comparisons of growth performance, gonadal development and nutritional composition among monosex and mixed-sex culture modes in the swimming crab (Portunus trituberculatus). Aquac. Res. 2021, 52, 3403–3414. [Google Scholar] [CrossRef]
- Li, R.H.; Bekaert, M.; Lu, J.K.; Lu, S.K.; Zhang, Z.Y.; Zhang, W.J.; Shi, O.W.; Chen, C.; Mu, C.K.; Song, W.W.; et al. Mapping and validation of sex-linked SNP markers in the swimming crab Portunus trituberculatus. Aquaculture 2020, 524, 735228. [Google Scholar] [CrossRef]
- Mair, G.C.; Abucay, J.S.; Abella, T.A.; Beardmore, J.A.; Skibinski, D. Genetic manipulation of sex ratio for the large-scale production of all-male tilapia Oreochromis niloticus. Can. J. Fish. Aquat. Sci. 1997, 54, 396–404. [Google Scholar] [CrossRef]
- Hunter, G.A.; Donaldson, E.M.; Stoss, J.; Baker, I. Production of monosex female groups of chinook salmon (Oncorhynchus tshawytscha) by the fertilization of normal ova with sperm from sex-reversed females. Aquaculture 1983, 33, 355–364. [Google Scholar] [CrossRef]
- Tvedt, H.B.; Benfey, T.J.; Martin-Robichaud, D.J.; McGowan, C.; Reith, M. Gynogenesis and sex determination in Atlantic Halibut (Hippoglossus hippoglossus). Aquaculture 2006, 252, 573–583. [Google Scholar] [CrossRef]
- Mohanakumaran Nair, C.; Salin, K.R.; Raju, M.S.; Sebastian, M. Economic analysis of monosex culture of giant freshwater prawn (Macrobrachium rosenbergii De Man): A case study. Aquac. Res. 2006, 37, 949–954. [Google Scholar] [CrossRef]
- Aflalo, E.D.; Hoang, T.T.T.; Nguyen, V.H.; Lam, Q.; Nguyen, D.M.; Trinh, Q.S.; Raviv, S.; Sagi, A. A novel two-step procedure for mass production of all-male populations of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 2006, 256, 468–478. [Google Scholar] [CrossRef]
- Liu, H. Studies of Androgenic Gland in the Mud Crab Scylla paramamosain; The Chinese University of Hong Kong: Hong Kong, China, 2004; p. 3182169. [Google Scholar]
- Malison, J.A.; Held, J.A.; Kaatz, S.E. Sex determination of yellow perch by external morphology. N. Am. J. Aquac. 2011, 73, 285–287. [Google Scholar] [CrossRef]
- Falahatkar, B.; Poursaeid, S. Gender identification in great sturgeon (Huso huso) using morphology, sex steroids, histology and endoscopy. Anat. Histol. Embryol. 2014, 43, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.K.; Li, R.H.; Michaël, B.; Herve, M.; Liu, X.; Chen, Q.W.; Zhang, W.R.; Mu, C.K.; Song, W.W.; Wang, C.L. Development and validation of SNP genotyping assays to identify genetic sex in the swimming crab Portunus trituberculatus. Aquac. Rep. 2021, 20, 2352–5134. [Google Scholar] [CrossRef]
- Miao, M.; Li, S.; Yuan, J.; Liu, P.; Fang, X.; Zhang, C.; Zhang, X.; Li, F. CRISPR/Cas9-mediated gene mutation of EcIAG leads to sex reversal in the male ridgetail white prawn Exopalaemon carinicauda. Front. Endocrinol. 2023, 14, 1266641. [Google Scholar] [CrossRef]
- Wahl, M.; Levy, T.; Ventura, T.; Sagi, A. Monosex Populations of the Giant Freshwater Prawn Macrobrachium rosenbergii-From a Pre-Molecular Start to the Next Generation Era. Int. J. Mol. Sci. 2023, 24, 17433. [Google Scholar] [CrossRef]
- Bauer, R.T. Remarkable Shrimps—Adaptations and Natural History of the Carideans. J. Crustac. Biol. 2004, 25, 319. [Google Scholar]
- Lee, T.H.; Yamauchi, M.; Yamazaki, F. Sex differentiation in the crab Eriocheir japonicus (Decapoda, Grapsidae). Invertebr. Reprod. Dev. 1994, 25, 123–137. [Google Scholar] [CrossRef]
- Syafaat, M.N.; Che Ismail, C.Z.; Amin-Safwan, A.; Azra, M.N.; Syahnon, M.; Abol-Munafi, A.B.; Ikhwanuddin, M. Morphometric Measurements, Gonopod and Gonopores Appearances in Early Sexual Crablet Stage of Scylla paramamosain (Estampador, 1949). Pak. J. Zool. 2023, 1–8. [Google Scholar] [CrossRef]
- Costa, C.; Antonucci, F.; Boglione, C.; Menesatti, P.; Vandeputte, M.; Chatain, B. Automated sorting for size, sex and skeletal anomalies of cultured seabass using external shape analysis, Aquac. Eng. 2013, 52, 58–64. [Google Scholar]
- Molina, W.F.; Benetti, D.D.; Fiorentino, J.N.; Lima-filho, P.; Alencar, C.E.; Costa, G.W.; Motta-Neto, C.C.; Nóbrega, M.F. Early sex shape dimorphism (SShD) in Rachycentron canadum (Linnaeus, 1766) and its applications for monosex culture. Aquaculture 2018, 495, 320–327. [Google Scholar] [CrossRef]
- Cui, Y.; Pan, T.; Chen, S.; Zou, X. A gender classification method for Chinese mitten crab using deep convolutional neural network. Multimed Tools Appl. 2020, 79, 7669–7684. [Google Scholar] [CrossRef]
- Fernandes, A.F.A.; Turra, E.M.; de Alvarenga, É.R.; Passafaro, T.L.; Lopes, F.B.; Alves, G.F.O.; Singh, V.; Rosa, G.J.M. Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia. Comput. Electron. Agric. 2020, 170, 105274. [Google Scholar] [CrossRef]
- Dai, P.; Li, D.; Sui, J.; Kong, J.; Meng, X.; Luan, S. Prediction of meat yield in the Pacific whiteleg shrimp Penaeus vannamei. Aquaculture 2023, 577, 739914. [Google Scholar] [CrossRef]
- Saberioon, M.; Gholizadeh, A.; Cisar, P.; Pautsina, A.; Urban, J. Application of machine vision systems in aquaculture with emphasis on fish: State-of-the-art and key issues. Rev. Aquac. 2017, 9, 369–387. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, S.; Liu, J.; Wang, H.; Zhu, J.; Li, D.; Zhao, R. Application of machine learning in intelligent fish aquaculture: A review. Aquaculture 2021, 540, 736724. [Google Scholar] [CrossRef]
Stage | Number | Female | Male | Ratio (Female/Male) | χ2 |
---|---|---|---|---|---|
C I | 81 | 36 | 45 | 0.80 | 1.000 |
C II | 81 | 40 | 41 | 0.98 | 0.012 |
C III | 81 | 42 | 39 | 1.08 | 0.111 |
C IV | 81 | 49 | 32 | 1.53 | 3.568 |
C V | 81 | 39 | 42 | 0.93 | 0.111 |
Total | 405 | 206 | 199 | 1.04 | 0.121 |
Stage | C I | C Ⅱ | C Ⅲ | C Ⅳ | C V |
---|---|---|---|---|---|
Molting time | PJ3 | PJ6 | PJ10 | PJ14 | |
Sampling time | PJ2 | PJ4 | PJ7 | PJ11 | PJ15 |
Traits | Sex | C I | C Ⅱ | C Ⅲ | C Ⅳ | C V |
---|---|---|---|---|---|---|
FCW (mm) | Female | 5.11 ± 0.24 | 7.20 ± 0.32 | 9.94 ± 0.59 | 16.79 ± 1.05 | 22.00 ± 1.18 |
Male | 5.12 ± 0.28 | 7.07 ± 0.30 | 9.96 ± 0.51 | 17.10 ± 0.92 | 21.50 ± 1.22 | |
CL (mm) | Female | 3.25 ± 0.13 | 3.88 ± 0.23 | 5.03 ± 0.23 | 8.20 ± 0.50 | 10.67 ± 0.60 |
Male | 3.24 ± 0.20 | 3.83 ± 0.23 | 4.96 ± 0.29 | 8.36 ± 0.47 | 10.46 ± 0.56 | |
AW1 (mm) | Female | 0.39 ± 0.03 | 0.41 ± 0.04 | 0.52 ± 0.06 | 0.85 ± 0.09 | 1.03 ± 0.09 |
Male | 0.39 ± 0.02 | 0.40 ± 0.39 | 0.50 ± 0.05 | 0.87 ± 0.09 | 1.02 ± 0.08 | |
AW2 (mm) | Female | 0.50 ± 0.03 | 0.55 ± 0.05 | 0.70 ± 0.07 | 1.17 ± 0.11 | 1.48 ± 0.13 |
Male | 0.49 ± 0.02 | 0.53 ± 0.05 | 0.70 ± 0.07 | 1.20 ± 0.10 | 1.45 ± 0.12 | |
AW3 (mm) | Female | 0.63 ± 0.04 | 0.67 ± 0.05 | 0.87 ± 0.08 | 1.49 ± 0.14 | 1.96 ± 0.16 ** |
Male | 0.66 ± 0.04 | 0.65 ± 0.01 | 0.87 ± 0.07 | 1.49 ± 0.17 | 1.81 ± 0.15 ** | |
AW4 (mm) | Female | 0.83 ± 0.03 | 0.89 ± 0.05 | 1.20 ± 0.10 | 2.10 ± 0.21 | 2.78 ± 0.22 ** |
Male | 0.85 ± 0.05 | 0.89 ± 0.06 | 1.16 ± 0.08 | 2.04 ± 0.22 | 2.46 ± 0.23 ** | |
AW5 (mm) | Female | 1.15 ± 0.01 | 1.72 ± 0.08 | 2.56 ± 0.21 | 4.58 ± 0.38 | 6.04 ± 0.46 |
Male | 1.17 ± 0.01 | 1.69 ± 0.10 | 2.53 ± 0.19 | 4.65 ± 0.34 | 5.91 ± 0.42 | |
AL (mm) | Female | 1.45 ± 0.08 | 1.73 ± 0.13 | 2.38 ± 0.22 | 4.18 ± 0.46 | 5.55 ± 0.45 |
Male | 1.46 ± 0.07 | 1.69 ± 0.13 | 2.32 ± 0.18 | 4.20 ± 0.35 | 5.49 ± 0.40 |
Traits | Sex | C I | C Ⅱ | C Ⅲ | C Ⅳ | C V |
---|---|---|---|---|---|---|
CL/FCW | Female | 0.64 ± 0.02 | 0.54 ± 0.02 | 0.51 ± 0.02 | 0.49 ± 0.02 | 0.49 ± 0.01 |
Male | 0.63 ± 0.04 | 0.54 ± 0.03 | 0.50 ± 0.02 | 0.49 ± 0.01 | 0.49 ± 0.01 | |
AW1/AL | Female | 0.27 ± 0.02 | 0.24 ± 0.02 | 0.22 ± 0.02 | 0.21 ± 0.02 | 0.19 ± 0.01 |
Male | 0.27 ± 0.02 | 0.24 ± 0.02 | 0.22 ± 0.02 | 0.21 ± 0.02 | 0.19 ± 0.01 | |
AW2/AL | Female | 0.35 ± 0.02 | 0.32 ± 0.03 | 0.30 ± 0.03 | 0.28 ± 0.03 | 0.27 ± 0.02 |
Male | 0.34 ± 0.02 | 0.32 ± 0.03 | 0.30 ± 0.03 | 0.29 ± 0.03 | 0.27 ± 0.02 | |
AW3/AL | Female | 0.44 ± 0.03 | 0.39 ± 0.04 | 0.37 ± 0.03 | 0.36 ± 0.04 | 0.35 ± 0.02 ** |
Male | 0.45 ± 0.04 | 0.39 ± 0.03 | 0.38 ± 0.03 | 0.36 ± 0.05 | 0.33 ± 0.03 ** | |
AW4/AL | Female | 0.58 ± 0.04 | 0.52 ± 0.04 | 0.51 ± 0.04 | 0.51 ± 0.05 | 0.50 ± 0.03 ** |
Male | 0.58 ± 0.04 | 0.53 ± 0.04 | 0.50 ± 0.04 | 0.49 ± 0.05 | 0.45 ± 0.04 ** | |
AW5/AL | Female | 0.80 ± 0.04 | 1.00 ± 0.06 | 1.08 ± 0.07 | 1.10 ± 0.07 | 1.09 ± 0.05 |
Male | 0.80 ± 0.04 | 1.00 ± 0.07 | 1.09 ± 0.06 | 1.11 ± 0.07 | 1.08 ± 0.07 |
Stage | FCW | CL | AW1 | AW2 | AW3 | AW4 | AW5 | AL |
---|---|---|---|---|---|---|---|---|
C I | −0.003 | −0.039 | −0.024 | −0.176 | 0.286 | 0.140 | 0.175 | −0.027 |
C Ⅱ | −0.210 | −0.127 | −0.076 | −0.152 | −0.241 * | −0.061 | −0.149 | −0.146 |
C Ⅲ | 0.049 | −0.085 | −0.148 | 0.012 | 0.001 | −0.193 | −0.020 | −0.100 |
C Ⅳ | 0.152 | 0.126 | 0.101 | 0.125 | −0.012 | −0.161 | 0.080 | 0.055 |
C V | −0.199 | −0.194 | −0.055 | −0.140 | −0.437 ** | −0.589 ** | −0.146 | −0.057 |
Traits of Different Stage | Genetic Sex | Threshold | Identification Accuracy (%) |
---|---|---|---|
Female | 0.1700 | 26.09 | |
Male | 63.64 | ||
Female | 0.1278 | 25.00 | |
Male | 68.42 | ||
Female | 0.1199 | 60.00 | |
Male | 92.31 | ||
Female | 0.1186 | 75.51 | |
Male | 48.39 | ||
Female | 0.1200 | 87.18 | |
Male | 73.81 |
Stage | Genetic Sex | Number | Predicted Sex | Identification Accuracy (%) | Total Discriminant Accuracy (%) | |
---|---|---|---|---|---|---|
Female | Male | |||||
C I | Female | 36 | 1 | 35 | 2.78 | 54.32 |
Male | 45 | 2 | 43 | 95.56 | ||
C II | Female | 40 | 0 | 40 | 0.00 | 50.62 |
Male | 41 | 0 | 41 | 100.00 | ||
C III | Female | 42 | 0 | 42 | 0.00 | 48.15 |
Male | 39 | 0 | 39 | 100.00 | ||
C IV | Female | 49 | 17 | 32 | 34.69 | 53.09 |
Male | 32 | 6 | 26 | 81.25 | ||
C V | Female | 39 | 33 | 6 | 84.62 | 82.72 |
Male | 42 | 8 | 34 | 80.95 |
Identification Accuracy (%) | |||
---|---|---|---|
Stage | Genetic Sex | Unknown for AL1-5 Segments (Unable to Obtain Values for S1–S5) | Known for AL1-5 (S1–S5 Values Can Be Obtained) |
C I | Female | 86.96% | / |
Male | 81.82% | ||
C II | Female | 72.22% | / |
Male | 76.32% | ||
C III | Female | 67.50% | 80.00% |
Male | 63.89% | 72.22% | |
C IV | Female | 85.71% | 87.76% |
Male | 61.29% | 61.29% | |
C V | Female | 89.74% | 94.87% |
Male | 85.71% | 92.86% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Lu, J.; Li, R.; Xu, C.; Zheng, S.; Ren, Z.; He, C.; Mu, C.; Song, W.; Wang, C. The Characteristics of Sex Differentiation Based on Morphological Traits During the Early Development Stage of the Swimming Crab Portunus trituberculatus and Sex Prediction Model Comparison. Fishes 2025, 10, 8. https://doi.org/10.3390/fishes10010008
Peng Y, Lu J, Li R, Xu C, Zheng S, Ren Z, He C, Mu C, Song W, Wang C. The Characteristics of Sex Differentiation Based on Morphological Traits During the Early Development Stage of the Swimming Crab Portunus trituberculatus and Sex Prediction Model Comparison. Fishes. 2025; 10(1):8. https://doi.org/10.3390/fishes10010008
Chicago/Turabian StylePeng, Yanqing, Junkai Lu, Ronghua Li, Chendong Xu, Shangbiao Zheng, Zhiming Ren, Chuan He, Changkao Mu, Weiwei Song, and Chunlin Wang. 2025. "The Characteristics of Sex Differentiation Based on Morphological Traits During the Early Development Stage of the Swimming Crab Portunus trituberculatus and Sex Prediction Model Comparison" Fishes 10, no. 1: 8. https://doi.org/10.3390/fishes10010008
APA StylePeng, Y., Lu, J., Li, R., Xu, C., Zheng, S., Ren, Z., He, C., Mu, C., Song, W., & Wang, C. (2025). The Characteristics of Sex Differentiation Based on Morphological Traits During the Early Development Stage of the Swimming Crab Portunus trituberculatus and Sex Prediction Model Comparison. Fishes, 10(1), 8. https://doi.org/10.3390/fishes10010008