Stock Status of Two Commercially Important Catfishes, Mystus gulio (Hamilton 1822) and Mystus cavasius (Hamilton 1822), in Relation to Environmental Variables Along the Lower Stretches of the River Ganga, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling and Data Collection
2.3. Estimation of Population Parameters
2.4. Stock Assessment
2.5. Water Quality Parameters
3. Results and Discussion
3.1. Age and Growth
3.2. Mortality Parameters
3.3. Recruitment Pattern
3.4. Length at First Capture
3.5. Virtual Population Analysis
3.6. Relative Yield per Recruit and Relative Biomass per Recruit
3.7. Water Quality Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarkar, U.K.; Pathak, A.K.; Sinha, R.K.; Sivakumar, K.; Pandian, A.K.; Pandey, A.; Lakra, W.S. Freshwater fish biodiversity in the River Ganga (India): Changing pattern, threats and conservation perspectives. Rev. Fish Biol. Fish. 2012, 22, 251–272. [Google Scholar] [CrossRef]
- Das, B.K.; Ray, A.; Johnson, C.; Verma, S.K.; Alam, A.; Baitha, R.; Manna, R.K.; Sarkar, U.K. The present status of ichthyofaunal diversity of river Ganga India: Synthesis of present v/s past. Acta Ecol. Sin. 2023, 43, 307–332. [Google Scholar] [CrossRef]
- Fricke, R.; Eschmeyer, W.; Van der Laan, R. Catalog of Fishes: Genera, Species, References; California Academy of Sciences: San Francisco, CA, USA, 2023; Available online: http://research.calacademy.org/research/Ichthyology/catalog/fishcatmain.asp (accessed on 23 July 2024).
- Hossain, M.Y.; Hossen, M.A.; Pramanik, M.N.U.; Sharmin, S.; Nawer, F.; Naser, S.M.A.; Bahkali, A.H.; Elgorban, A.M. Length–weight and length–length relationships of five Mystus species from the Ganges and Rupsha rivers, Bangladesh. J. Appl. Ichthyol. 2016, 32, 994–997. [Google Scholar] [CrossRef]
- Talwar, P.K.; Jhingran, A.G. Inland Fishes of India and Adjacent Countries; A.A. Balkema: Rotterdam, The Netherland, 1991; Volume 2. [Google Scholar]
- Riede, K. Global Register of Migratory Species—From Global to Regional Scales; Final Report of the R&D-Project 808 05 081; Federal Agency for Nature Conservation: Bonn, Germany, 2004; 329p. [Google Scholar]
- Day, F. The Fishes of India: Being a Natural History of the Fishes Known to Inhabit the Seas and Fresh Waters of India, Burma, and Ceylon; B. Quaritch: London, UK, 1888; Volume 1. [Google Scholar]
- Islam, M.K.; Das, M. Fecundity of Gulsha Mystus cavasius (Hamilton) from Brahmaputra and Kongsa rivers. J. Bangladesh Agril. Univ. 2006, 4, 347–355. [Google Scholar] [CrossRef]
- Gupta, S. A review on Mystus cavasius, a popular food fish of Indian subcontinent. Int. J. Fauna Biol. Stud. 2014, 1, 27–31. [Google Scholar]
- Roos, N.; Islam, M.M.; Thilsted, S.H. Small indigenous fish species in Bangladesh: Contribution to vitamin A, calcium and iron intakes. J. Nutr. 2003, 133, 4021S–4026S. [Google Scholar] [CrossRef] [PubMed]
- CIBA. Annual Report 2015-16; Central Institute of Brackishwater Aquaculture: Chennai, India, 2015; p. 242. [Google Scholar]
- Alam, M.J.; Begum, M.; Islam, M.A.; Pal, H.K. Spawning behaviour and induced breeding of an estuarine catfish, Mystus gulio (Ham.). Bangladesh J. Fish. Res. 2006, 10, 101–109. [Google Scholar]
- Hossain, M.Y. Threatened fishes of the world: Mystus vittatus (Bloch, 1794) (Siluriformes: Bagridae). Croat. J. Fish. 2014, 72, 183–185. [Google Scholar] [CrossRef]
- Hilborn, R.; Walters, C.J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty; Chapman and Hall: London, UK, 1992. [Google Scholar]
- Chung, K.C.; Woo, N.Y.S. Age and growth by scale analysis of Pomacanthus imperator (Teleostei: Pomacanthidae) from Dongsha Islands, southern China. Environ. Biol. Fishes 1999, 55, 399–412. [Google Scholar] [CrossRef]
- Devries, D.R.; Frie, R.V. Determination of Age and Growth. Fisheries Techniques, 2nd ed.; Murphy, B.R., Willis, D.W., Eds.; American Fisheries Society: Bethesda, MD, USA, 1996; pp. 483–512. [Google Scholar]
- Campana, S.E. Accuracy, precision, and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish Biol. 2001, 59, 197–242. [Google Scholar] [CrossRef]
- Robinson, M.P.; Motta, P.J. Patterns of growth and the effects of scale on the feeding kinematics of the nurse shark (Ginglymostoma cirratum). J. Zool. 2002, 256, 449–462. [Google Scholar] [CrossRef]
- Sparre, P.J.; Venema, S.C. Introduction to Tropical Fish Stock Assessment Part I: Manual; FAO Fisheries Technical Paper, No. 306/Rev. 2; FAO: Rome, Italy, 1998; p. 407. [Google Scholar]
- Bhakta, D.; Das, S.K.; Das, B.K.; Nagesh, T.S.; Samanta, R. Growth, mortality and exploitation status of Otolithoides pama (Hamilton, 1822) from Hooghly-Matlah estuary of West Bengal, India. Reg. Stud. Mar. Sci. 2020, 39, 101451. [Google Scholar] [CrossRef]
- Bhakta, D.; Das, S.K.; Das, B.K.; Nagesh, T.S. Relationship between otolith morphometry and fish size of Otolithoides pama (Hamilton, 1822) from Hooghly-Matlah estuary, India. Indian J. Geo Mar. Sci. 2020, 49, 1636–1642. [Google Scholar]
- Ray, A.; Das, B.K.; Bhakta, D.; Johnson, C.; Roy, S.; Gupta, S.D.; Panda SPBaitha, R. Stock status of a few small indigenous fish species exploited in the river Ganga, India. Fishes 2023, 8, 572. [Google Scholar] [CrossRef]
- Jana, S.; Srinivasan, N.T.; Bhakta, D.; Johnson, C. Population age structure and stock assessment of reeve’s croaker Chrysochir aurea (Richardson, 1846) along West Bengal coast of India. Thalassas Int. J. Mar. Sci. 2024, 40, 835–845. [Google Scholar] [CrossRef]
- Chirwatkara, B.B.; Das, S.K.; Bhakta, D.; Nagesha, T.S.; Behera, S. Growth, mortality and stock assessment of Arius arius (Hamilton, 1822) from Hooghly-Matlah estuary, West Bengal. Indian J. Geo-Mar. Sci. 2022, 50, 302–309. [Google Scholar]
- Bhakta, D.; Das, S.K.; Das, B.K.; Nagesh, T.S.; Behera, B.K. Fishery and population dynamics of Otolithoides pama (Hamilton, 1822) from Hooghly-Matlah Estuary of West Bengal, India. Aquat. Ecosyst. Health Manag. 2022, 25, 36–43. [Google Scholar] [CrossRef]
- Bhakta, D.; Das, B.K.; Singh, U.; Ray, A.; Johnson, C.; Thakur, V.R.; Mishra, S.K.; Verma, S.K.; Alam, A.; Jha, D.N. Fishery, growth, mortality, and stock assessment of endangered Tor putitora from Tehri dam reservoir, Uttarakhand, Himalayan foothills of India in relation to environmental variables. Environ. Monit. Assess. 2023, 195, 1377. [Google Scholar] [CrossRef]
- Ricard, D.; Minto, C.; Jensen, O.P.; Baum, J.K. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish Fish. 2012, 13, 380–398. [Google Scholar] [CrossRef]
- Gayanilo, F.C., Jr.; Sparre, P.; Pauly, D. FAO-ICLARM stock assessment tools II: Revised version: User’s guide. FAO Comput. Inf. Ser. Fish. 2005, I, 1–168. [Google Scholar]
- Le Cren, E.D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 1951, 20, 201–219. [Google Scholar]
- Pauly, D. Theory and Management of Tropical Multispecies Stocks: A Review, with Emphasis on the Southeast Asian Demersal Fisheries; ICLARM: Manila, Philippines, 1979. [Google Scholar]
- Pauly, D.; Munro, J.L. Once more on the comparison of growth in fish and invertebrates. Fishbyte 1984, 2, 1–21. [Google Scholar]
- Pauly, D. Length-converted catch curves: A powerful tool for fisheries research in the tropics (part 1). Fishbyte 1983, 1, 9–13. [Google Scholar]
- Pauly, D. Length-converted catch curves: A powerful tool for fisheries research in the tropics (Part 2). Fishbyte 1984, 2, 17–19. [Google Scholar]
- Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 1980, 39, 175–192. [Google Scholar]
- IMD. India Meteorological Department, (2018–19). Ministry of Earth Sciences Government of India. 2019. Available online: https://mausam.imd.gov.in/ (accessed on 1 October 2019).
- Pauly, D. Fish population dynamics in tropical waters: A manual for use with programmable calculators (Vol. 8). WorldFish. ICLARM Stud. Rev. 1984, 8, 325. [Google Scholar]
- Beverton, R.J.; Holt, S.J. Manual of methods for fish stock assessment. part 2. Tables of yield function. FAO Fish Biol. Tech. Pap. 1966, 1, 67. [Google Scholar]
- Pauly, D. Some Simple Methods for the Assessment of Tropical Fish Stocks (No. 234); Food & Agriculture Organization: Rome, Italy, 1983; p. 52. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association, American Water Works Association and Water Environment Federation: Washington, DC, USA, 1998. [Google Scholar]
- Apha, A.W.; Greenberg, W.I.A.; Clesceri, L.; Eaton, A. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Mustafa, M.G.; Ahmed, I.; Ilyas, M. Population dynamics of five important commercial fish species in the Sundarbans ecosystem of Bangladesh. J. Appl. Life Sci. Int. 2019, 22, 1–13. [Google Scholar]
- Thippeswamy, S.; D’Cunha, P.; Shettigar, M.; Anupama, N.M.; Harish, K. Growth and mortality of Mystus cavasius (Hamilton 1822) from Bhadra reservoir in the Western Ghats, India. 2. Environ. Ecol. 2022, 40, 2683–2689. [Google Scholar]
- Nath, B.B.; Ahmed, A.M.; Das, J.; Sarma, J.; Phukan, B.; Ali, A.; Goswami, P.K.; Borah, S. Age and growth of gangatic Mystus: Mystus cavasius (Hamilton-Buchanan, 1822) by length-frequency analysis from central Brahmaputra Valley, Assam. Int. J. Clin. Biol. Biochem. 2023, 5, 6–10. [Google Scholar]
- Tesch, F.W. Age and growth. In Methods for Assessment of Fish Production in Fresh Waters; Blackwell Scientific Publication: Oxford, UK, 1971. [Google Scholar]
- Sekitar, P.K.A.; Hamid, M.; Mansor, M.A.S.H.H.O.R.; Nor, S.A.M. Length-weight relationship and condition factor of fish populations in Temengor Reservoir: Indication of environmental health. Sains Malays. 2015, 44, 61–66. [Google Scholar]
- Beverton, R.J.; Holt, S.J. A review of the lifespans and mortality rates of fish in nature, and their relation to growth and other physiological characteristics. In Ciba Foundation symposium—The Lifespan of Animals (Colloquia on Aging), 5th ed.; John Wiley & Sons Ltd.: Chichester, UK, 1959; pp. 142–180. [Google Scholar]
- Rahman, O.; Hossain, M.Y.; Rahman, M.A.; Islam, M.A.; Rahman, M.A.; Parvin, M.F.; Habib, K. A Temporal variations of condition factor and relative weight for Mystus gulio (Hamilton, 1822) from the coastal water in Bangladesh. J. Bio-Sci. 2021, 29, 111–122. [Google Scholar] [CrossRef]
- Paujiah, E.; Dhahiyat, Y.; Herawati, T.; Iskandar, I.; Haryono, H.; Zulfahmi, I.; Fahri, F. Length-weight relationships and condition factors of brackish water catfish, Mystus gulio (Hamilton, 1822) from three different estuaries, West Java, Indonesia. Biodivers. J. Biol. Divers. 2023, 24, 2855–2864. [Google Scholar] [CrossRef]
- Soomro, A.N.; Baloch, W.A.; Laghari, Z.A.; Palh, Z.K.; Lashari, K.H.; Mastomi, G.M. Length-weight relationship and condition of Mystus cavasius (Hamilton) from lower Indus River at Thatta District, Sindh, southern Pakistan. Int. J. Emerg. Trends Sci. Technol. 2015, 2, 1875–1879. [Google Scholar]
- Akther, S.; Akhter, M.; Hossain, M. Length-weight relationship and condition factor of two gangetic Mystus species, Mystus tengra (Hamilton, 1822) and Mystus cavasius (Hamilton, 1822). J. Entomol. Zool. Stud. 2017, 5, 979–982. [Google Scholar]
- Latif, M.; Ullah, M.Z.; Minhas, I.B.; Latif, S. Length-weight relationships of Mystus cavasius with special reference to body morphometric characters from river Chenab, Punjab, Pakistan. J. Entomol. Zool. Stud. 2018, 6, 2418–2421. [Google Scholar]
- Lal, S.S.; Jaya, D.S.; Sherly, W.E. Reproductive biology of estuarine catfish, Mystus gulio (Hamilton-Buchanan). Int. J. Sci. Res. 2016, 5, 1792–1794. [Google Scholar]
- Kaliyamurthy, M. Spawning biology of Mystvsgulio in Lake Pulicat, India. Indian J. Fish. 1981, 28, 36–40. [Google Scholar]
- Bhatt, V.S. Studies on the biology of some freshwater fishes Part VI. Mystus cavasius (Ham.). Hydrobiologia 1971, 38, 289–302. [Google Scholar] [CrossRef]
- Rao, L.M.; Reddy, K.S.; Hymavathi, V. Breeding biology and fecundity in Mystus species from Mehadrigedda stream of Visakhapatnam. Ecol. Environ. Conserv. 1999, 5, 25–28. [Google Scholar]
- Krishna Rao, D.S. Biology of the catfish Mystus cavasius in the Hemavathi reservoir (Cauvery River System, Karnataka). J. Inland Fish. Soc. India 2007, 39, 35–39. [Google Scholar]
- Chaturvedi, J.; Saksena, D.N. Diet composition, feeding intensity, gastrosomatic index and hepatosomatic index of a catfish, Mystus cavasius from Chambal river (near, Rajghat) Morena, Madhya Pradesh. Int. J. Recent Sci. Res. 2013, 4, 1350–1356. [Google Scholar]
- Pantulu, V.R. Determination of age and growth of Mystus gulio (Ham.) by the use of pectoral spines, with observations on its biology and fishery in the Hooghly estuary. Proc. Natl. Inst. Sci. India 1961, 27, 198–225. [Google Scholar]
- Agatsuma, Y. Hemicentrotus pulcherrimus, Pseudocentrotus depressus, and Heliocidaris crassispina. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands; Laboratory of Marine Plant Ecology, Graduate School of Agricultural Science, Tohoku University: Sendai, Japan, 2013; Volume 43, pp. 643–659. [Google Scholar] [CrossRef]
- Nath, D. Zonal distribution of nutrients and their bearing on primary production in Hooghly estuary. J. Inland Fish. Soc. India 1998, 30, 64–74. [Google Scholar]
- Kaushal, S.S.; Likens, G.E.; Jaworski, N.A.; Pace, M.L.; Sides, A.M.; Seekell, D.; Belt, K.T.; Secor, D.H.; Wingate, R.L. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 2010, 8, 461–466. [Google Scholar] [CrossRef]
- Manna, R.K.; Satpathy, B.B.; Roshith, C.M.; Naskar, M.; Bhaumik, U.; Sharma, A.P. Spatio-temporal changes of hydro-chemical parameters in the estuarine part of the river Ganges under altered hydrological regime and its impact on biotic communities. Aquat. Ecosyst. Health Manag. 2013, 16, 433–444. [Google Scholar] [CrossRef]
- Tiwari, N.K.; Das Gupta, S.; Swain, H.S.; Jha, D.N.; Samanta, S.; Manna, R.K.; Das, A.K.; Das, B.K. Water quality assessment in the ecologically stressed lower and estuarine stretches of river Ganga using multivariate statistical tool. Environ. Monit. Assess. 2022, 194, 469. [Google Scholar] [CrossRef]
- Effler, S.W. Secchi disc transparency and turbidity. Environ. Eng. 1988, 114, 1436–1447. [Google Scholar]
- Miraj, A.; Pal, S.; Bhattacharya, S.; Chakraborty, K.; Miraj, A.; Pal, S.; Chakraborty, K. Observation on the TDS and EC values of different water bodies at Cooch Behar, West Bengal, India. Int. J. Theor. Appl. Sci. 2017, 9, 106–113. [Google Scholar]
- Ray, P. Impact of man on the Hooghly Estuary. In Water Pollution and Management Review; Varshney, C.K., Ed.; Jawaharlal Nehru University: New Delhi, India, 1981; pp. 79–120. [Google Scholar]
- Boesch, D.F.; Josselyn, M.N.; Mehta, A.J.; Morris, J.T.; Nuttle, W.K.; Simenstad, C.A.; Swift, D.J. Scientific assessment of coastal wetland loss, restoration and management in Louisiana. J. Coast. Res. 1994, i-103. Available online: http://www.jstor.org/stable/25735693 (accessed on 19 January 2025).
- Iqbal, M.Z.; Chamily, F.A.; Rahman, M.M.; Tasnim, R.; Mohiuddin, M.; Sultana, F.; Rahman, M.S.; Ali, M.M.; Asaduzzaman, M. Habitat salinity and source-induced variation in body shape of euryhaline long whiskers catfish (Mystus gulio). Reg. Stud. Mar. Sci. 2024, 69, 103308. [Google Scholar] [CrossRef]
- Mitra, S.; Ghosh, S.; Satpathy, K.K.; Bhattacharya, B.D.; Sarkar, S.K.; Mishra, P.; Raja, P. Water quality assessment of the ecologically stressed Hooghly River Estuary, India: A multivariate approach. Mar. Pollut. Bull. 2018, 126, 592–599. [Google Scholar] [CrossRef] [PubMed]
Sl. No. | Parameters | M. gulio | M. cavasius |
---|---|---|---|
1 | Asymptotic length (L∞) in m | 183.23 | 246.23 |
2 | Growth coefficient (K) in yr−1 | 0.31 | 0.19 |
3 | Age at zero length (t0) in year | −0.486 | −0.302 |
4 | Growth performance index (φ’) | 4.017 | 4.061 |
5 | Longevity (tmax) | 9.19 | 15.49 |
6 | Total mortality coefficient (Z) in yr−1 | 1.78 | 0.68 |
7 | Natural mortality coefficient (M) in yr−1 | 0.49 | 0.33 |
8 | Fishing mortality coefficient (F) in yr−1 | 1.29 | 0.35 |
9 | Exploitation ratio (E) | 0.72 | 0.52 |
Species | Authors | Study Area | n | TL (mm) | TW (g) | Regression Parameters | L∞ (mm) | K (yr−1) | t0 (years) | Z (yr−1) | M (yr−1) | F (yr−1) | φ’ | E | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | ||||||||||||||
Mystus gulio | Hossain et al. (2016) [4] | Rupsha River, Bangladesh | 59 | 74–172 | 6.1–62.2 | 0.0091 | 3.11 | - | - | - | - | - | - | - | - |
Mustafa et al. (2019) [41] | Bangladesh | - | - | - | - | - | 230 | 0.75 | - | 3.01 | 1.591 | 1.42 | 2.599 | 0.47 | |
Rahman et al. (2021) [47] | Maloncho River, Bangladesh | 1200 | 78–183 | 8.09–128.8 | - | 2.50–2.85 | - | - | - | - | - | - | - | - | |
Paujiah et al. (2023) [48] | West Java, Indonesia | - | - | - | 0.015- 0.036 | 2.424–2.786 | - | - | - | - | - | - | - | - | |
Present Study | Ganga river, India | 609 | 84–190 | 7.3–83.3 | 0.000002 | 3.370 | 183.23 | 0.31 | −0.486 | 1.78 | 0.49 | 1.29 | 4.017 | 0.72 | |
Mystus cavasius | Soomro et al. (2015) [49] | Indus river, Pakistan | 391 | 75–235 | 7–94 | - | 2.54 | - | - | - | - | - | - | - | - |
Hossain et al. (2016) [4] | Ganges river, Bangladesh | 171 | 50–150 | 1.3–30.4 | 0.0069 | 3.10 | - | - | - | - | - | - | - | - | |
Aktheret al. (2017) [50] | Bangladesh | 300 | 102–148 | 10.6–20.2 | 0.000005 | 3.07 | - | - | - | - | - | - | - | - | |
Latif et al. (2018) [51] | Chenab river, Pakistan | 100 | 59–178 | 2.00–42.0 | - | 2.71 | - | - | - | - | - | - | - | - | |
Thippeswamy et al. (2022) [42] | Bhadra reservoir, Karnataka | 0.56 | −0.046 | 3.86 | 1.35 | 2.51 | 2.413 | 0.65 | |||||||
Nath et al. (2023) [43] | Assam, India | 285 | - | - | - | - | 217 | 0.8 | −0.41 | - | - | - | - | - | |
Present study | Ganga river, India | 377 | 51–232 | 1.72–82.32 | 0.000024 | 2.749 | 246.23 | 0.19 | −0.302 | 0.68 | 0.33 | 0.35 | 4.061 | 0.52 |
Species | Authors | Study Area | Peak Spawning Season |
---|---|---|---|
Mystus gulio | Kaliyamurthy (1981) [53] | Pulicat lake, Andhra Pradesh | August–October |
Lal et al. (2016) [52] | Astamudi estuary, Kerala | June– July | |
Mustafa et al. (2019) [41] | Sundarbans ecosystem of Bangladesh | May | |
Present study | Ganga river, India | May–July | |
Mystus cavasius | Bhatt (1971) [54] | Uttar Pradesh | July and August |
Rao et al. (1999) [55] | Visakhapatnam, Andhra Pradesh | August–September | |
Rao (2007) [56] | Karnataka | June–July | |
Chaturvedi and Saksena (2013) [57] | Madhya Pradesh | July and September | |
Present study | Ganga river, India | June–August |
Water Quality Parameters | Mystus cavasius | Mystus gulio | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Farakka | Nabadwip | Tribeni | Balagarh | Godakhali | Diamond Harbour | Kakdwip | Fraserganj | |||||||||
Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | |
Water temp. (0 C) | 19.1–30.6 | 26.56 ± 3.56 | 18.2–31.6 | 24.33 ± 6.03 | 17.4–32.8 | 27.36 ± 5.06 | 18.7–33.9 | 27.28 ± 4.72 | 19–31.5 | 28.05 ± 3.99 | 22–31.7 | 27.81 ± 3.37 | 21–31.7 | 25.48 ± 4.86 | 19.2–31.1 | 27.53 ± 4.18 |
Depth (m) | 4.0–18.0 | 8.57 ± 4.60 | 2.2–11.5 | 6.84 ± 3.82 | 7.0–18.7 | 10.94 ± 4.69 | 2.3–17.4 | 7.43 ± 4.44 | 0.13–14.0 | 8.85 ± 5.18 | 0.18–35.2 | 15.02 ± 11.26 | 1.8–7.5 | 4.1 ± 2.42 | 0.15–17.0 | 4.64 ± 5.19 |
Transparency (cm) | 12.2–145.0 | 78.95 ± 47.89 | 18–50 | 35 ± 12.33 | 13.2–37.0 | 24.9 ± 7.77 | 9.5–43.5 | 27.08 ± 12.07 | 15–34.5 | 26.75 ± 7.20 | 6.5–26.2 | 16.96 ± 7.65 | 19–26 | 22.13 ± 2.53 | 15.0–41.0 | 34.28 ± 8.32 |
Specific conductivity (μS/cm) | 0.21–1.0 | 0.40 ± 0.25 | 0.21–0.38 | 0.33 ± 0.06 | 0.15–1.4 | 0.44 ± 0.40 | 0.17–1.2 | 0.41 ± 0.33 | 0.28–0.6 | 0.43 ± 0.12 | 1.4–6.05 | 4.19 ± 2.01 | 6.12–8.32 | 7.21 ± 1.09 | 0.8–43.0 | 34.26 ± 13.81 |
pH | 8.2–9.0 | 8.53 ± 0.26 | 8.08–8.55 | 8.36 ± 0.18 | 7.25–9.43 | 8.30 ± 0.64 | 7.2–9.14 | 8.25 ± 0.62 | 7.14–8.75 | 8.03 ± 0.53 | 7.01–8.9 | 7.98 ± 0.53 | 7.94–8.34 | 8.20 ± 0.12 | 9.1–6.88 | 8.15 ± 0.67 |
DO (mg/L) | 5.2–8.8 | 7.01 ± 1.10 | 5.8–8.2 | 7.33 ± 0.83 | 6.5–10.52 | 7.55 ± 1.43 | 6.0–10.87 | 7.51 ± 1.76 | 3.8–9.0 | 5.86 ± 1.85 | 4.4–7.6 | 5.95 ± 1.81 | 5.2–6.9 | 6.35 ± 0.67 | 3.0–6.8 | 5.25 ± 1.52 |
TDS (mg/L) | 0.14–0.26 | 0.19 ± 0.04 | 0.15–0.60 | 0.22 ± 0.15 | 0.11–0.50 | 0.21 ± 0.13 | 0.12–0.28 | 0.20 ± 0.07 | 0.22–0.35 | 0.28 ± 0.05 | 0.21–0.95 | 0.43 ± 0.28 | 2.18–13.42 | 5.94 ± 4.41 | 26.38–72.14 | 46.49 ± 14.83 |
Total Alkalinity (mg/L) | 50–184 | 121.55 ± 40.87 | 100–150 | 120.25 ± 22.71 | 96–178 | 135.75 ± 35.35 | 88–182 | 132.75 ± 32.86 | 96–162 | 133 ± 24.89 | 100–162 | 132.75 ± 20.78 | 110–136 | 120.5 ± 9.67 | 88–136 | 117.75 ± 19.14 |
Chlorophyll-a (mg/m3) | 0.64–5.27 | 2.42 ± 1.81 | 1.48–12.31 | 5.77 ± 3.44 | 0.57–8.84 | 3.90 ± 3.39 | 0.29–6.26 | 3.16 ± 2.15 | 1.49–19.11 | 6.47 ± 5.66 | 1.60–6.72 | 3.49 ± 2.18 | 1.62–5.25 | 2.81 ± 1.71 | 0.64–5.75 | 3.98 ± 1.66 |
Salinity (ppt) | 0.01–0.05 | 0.03 ± 0.01 | 0.03–0.04 | 0.04 ± 0.01 | 0.02–0.07 | 0.03 ± 0.01 | 0.03–0.05 | 0.03 ± 0.01 | 0.03–0.66 | 0.25 ± 0.28 | 1.22–5.87 | 4.32 ± 1.54 | 4.55–11.01 | 7.21 ± 3.05 | 25.2–30.35 | 28.73 ± 1.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, B.K.; Jana, S.; Ray, A.; Bhakta, D.; Johnson, C.; Chanu, T.N.; Das Gupta, S.; Ramteke, M.H. Stock Status of Two Commercially Important Catfishes, Mystus gulio (Hamilton 1822) and Mystus cavasius (Hamilton 1822), in Relation to Environmental Variables Along the Lower Stretches of the River Ganga, India. Fishes 2025, 10, 142. https://doi.org/10.3390/fishes10040142
Das BK, Jana S, Ray A, Bhakta D, Johnson C, Chanu TN, Das Gupta S, Ramteke MH. Stock Status of Two Commercially Important Catfishes, Mystus gulio (Hamilton 1822) and Mystus cavasius (Hamilton 1822), in Relation to Environmental Variables Along the Lower Stretches of the River Ganga, India. Fishes. 2025; 10(4):142. https://doi.org/10.3390/fishes10040142
Chicago/Turabian StyleDas, Basanta Kumar, Susmita Jana, Archisman Ray, Dibakar Bhakta, Canciyal Johnson, Thangjam Nirupada Chanu, Subhadeep Das Gupta, and Mitesh H. Ramteke. 2025. "Stock Status of Two Commercially Important Catfishes, Mystus gulio (Hamilton 1822) and Mystus cavasius (Hamilton 1822), in Relation to Environmental Variables Along the Lower Stretches of the River Ganga, India" Fishes 10, no. 4: 142. https://doi.org/10.3390/fishes10040142
APA StyleDas, B. K., Jana, S., Ray, A., Bhakta, D., Johnson, C., Chanu, T. N., Das Gupta, S., & Ramteke, M. H. (2025). Stock Status of Two Commercially Important Catfishes, Mystus gulio (Hamilton 1822) and Mystus cavasius (Hamilton 1822), in Relation to Environmental Variables Along the Lower Stretches of the River Ganga, India. Fishes, 10(4), 142. https://doi.org/10.3390/fishes10040142