Dietary Incorporation of Natural and Synthetic Reproductive Inhibitors: Exploring Their Impact on Sex Characteristics in Cyprinus carpio (Common Carp)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feed Preparation
2.2. Experimental Fish and Rearing Conditions
2.3. Experimental Framework and Feed Formulation
2.4. Growth Parameters
2.5. Digestive Enzyme Assay
2.6. Identification of Sex
2.7. Histological Evaluation
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Sex Ratio and Gonad Index
3.3. Enzymatic Assay
3.4. Histological Examination
4. Discussion
4.1. Growth Parameters
4.2. Sex Ratio
4.3. Enzymatic Activity
4.4. Histology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, A.; Abdullah, S.R.S.; Hasan, H.A.; Othman, A.R.; Ismail, N.I. Aquaculture industry: Supply and demand, best practices, effluent and its current issues and treatment technology. J. Environ. Manag. 2021, 287, 112271. [Google Scholar] [CrossRef]
- Ahmed, I.; Jan, K.; Fatma, S.; Dawood, M.A.O. Muscle proximate composition of various food fish species and their nutritional significance: A review. J. Anim. Physiol. Anim. Nutr. 2022, 106, 690–719. [Google Scholar] [CrossRef]
- Li, Z.; Shah, S.W.A.; Zhou, Q.; Yin, X.; Teng, X. The contributions of miR-25-3p, oxidative stress, and heat shock protein in a complex mechanism of autophagy caused by pollutant cadmium in common carp (Cyprinus carpio L.) hepatopancreas. Environ. Pollut. 2021, 287, 117554. [Google Scholar] [CrossRef]
- Mohsen, A.-T.; Monier, M.N.; Abdelrhman, A.M.; Dawood, M.A.O. Effect of dietary multi-stimulants blend supplementation on performance, digestive enzymes, and antioxidants biomarkers of common carp, Cyprinus carpio L. and its resistance to ammonia toxicity. Aquaculture 2020, 528, 735529. [Google Scholar]
- Opiyo, M.A.; Obiero, K.O.; Abwao, J.; Awuor, F.J.; Kyule, D.; Munguti, J. Comparative growth performance of genetically male, sex-reversed, and mixed-sex nile tilapia (Oreochromis niloticus) reared in earthen ponds in Sagana, Kenya. Aquac. Stud. 2020, 21, 23–30. [Google Scholar] [CrossRef]
- Bardhan, A.; Sau, S.K.; Khatua, S.; Bera, M.; Paul, B.N. A review on the production and culture techniques of Monosex tilapia. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 565–577. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.; Abdel-Daim, M.M.; Shukry, M.; Nowosad, J.; Kucharczyk, D. Benefits and applications of Moringa oleifera as a plant protein source in Aquafeed: A review. Aquaculture 2022, 547, 737369. [Google Scholar] [CrossRef]
- Mahmoud, R.; Darweesh, K.F.; Ghanem, S.F.; Abdelhadi, Y.; Kareem, Z.H.; Christianus, A.; Karim, M.; Waheed, R.M.; El-Sharkawy, M.A. Regulatory roles of Pawpaw (Carica papaya) seed extract on growth performance, sexual maturity, and health status with resistance against bacteria and parasites in Nile tilapia (Oreochromis niloticus). Aquac. Int. 2023, 31, 2475–2493. [Google Scholar]
- Nuushona, I.L.; Gabriel, N.N.; Iitembu, J.A. Pawpaw (Carica papaya) Extracts as Potential Growth Promoters and Sex Reversal Agents in Aquaculture. In Emerging Sustainable Aquaculture Innovations in Africa; Springer: Singapore, 2023. [Google Scholar]
- Waweru, J.N.; Raburu, P.O.; Odhiambo, E.A. Gonad Histology, Proximate Composition and Growth Efficiency of Nile Tilapia Fed with Pawpaw (Carica papaya) Seeds Powder. Asian J. Fish. Aquat. Res. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Bolu, S.; Sola-Ojo, F.; Olorunsany, O.; Idris, K. Effect of Graded Levels of Dried Pawpaw (Carica papaya) Seed on the Performance, Haematology, Serum Biochemistry and Carcass Evaluation of Chicken Broilers. Int. J. Poult. Sci. 2009, 8, 905–909. [Google Scholar] [CrossRef]
- Khanal, N.B.; Shrestha, M.K.; Rai, S.; Bhujel, R.C. Comparative evaluation of Carp testis as an alternative to 17 α-Methyltestosterone on Tilapia sex reversal. Our Nat. 2014, 12, 1–7. [Google Scholar] [CrossRef]
- Ranjan, R.; Shrestha, M.K.; Pandit, N.P.; Khanal, N. Efficacy of common carp (Cyprinus carpio) testis on sex reversal of Nile tilapia (Oreochromis niloticus) fry. Nepal. J. Aquac. Fish. 2015, 2, 92–100. [Google Scholar]
- Yustiati, A.; Bangkit, I.; Zidni, I. Masculinization of nile tilapia (Oreochromis niloticus) using extract of bull testes. IOP Conf. Ser. Earth Environ. Sci. 2018, 139, 012008. [Google Scholar] [CrossRef]
- Ugonna, B.O.; Solomon, S.G.; Olufeagba, S.O.; Okomoda, V.T. Effect of pawpaw Carica papaya seed meal on growth and as a natural sex-reversal agent for Nile tilapia. N. Am. J. Aquac. 2018, 80, 278–285. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water, 15th ed.; American Public Health Association: Washington, DC, USA, 1985. [Google Scholar]
- Marcaret, B. Experimental studies on growth. In The Physiology of Fishes; Academic Press: London, UK, 1957; pp. 361–400. [Google Scholar]
- Guerrero, R.D., III; Shelton, W.L. An aceto-carmine squash method for sexing juvenile fishes. Progress. Fish-Cult. 1974, 36, 56. [Google Scholar] [CrossRef]
- Wassermann, G.J. Validação Da Técnica No Acroc Armm Para Avaliar O Sexo De Alevnos De Tilápia Nilótica (Oreochromis niloticus). Ciênc. Rural 2002, 32, 133–139. [Google Scholar] [CrossRef]
- Bhujel, R.C.; Little, D.C.; Turner, W.A. Quality monitoring of sex-reversed tilapia fry. Fish Farmer 1998, 21, 34–37. [Google Scholar]
- Carleton, M.D. A Survey of Gross Stomach Morphology in New World Cricetinae (Rodentia, Muroidea), with Comments on Functional Interpretations; University of Michigan: Ann Abor, MI, USA, 1973. [Google Scholar]
- Steel, R.G.; Torrie, J.H. Principles and Procedures of Statistics, a Biometrical Approach; McGraw-Hill Kogakusha, Ltd.: Tokyo, Japan, 1981; No. Ed. 2; 633p. [Google Scholar]
- Tessema, A.; Getahun, A.; Mengistou, S.; Fetahi, T.; Dejen, E. Reproductive biology of common carp (Cyprinus carpio Linnaeus, 1758) in Lake Hayq, Ethiopia. Fish. Aquat. Sci. 2020, 23, 1–10. [Google Scholar] [CrossRef]
- Hamid, N.K.A.; Somdare, P.O.; Harashid, K.A.M.; Othman, N.A.; Kari, Z.A.; Wei, L.S.; Dawood, M.A. Effect of papaya (Carica papaya) leaf extract as dietary growth promoter supplement in red hybrid tilapia (Oreochromis mossambicus × Oreochromis niloticus) diet. Saudi J. Biol. Sci. 2022, 29, 3911–3917. [Google Scholar] [CrossRef] [PubMed]
- George, A.D.I.; Uedeme-Naa, B.; Okon, M.A. Comparative study of testis histology and haematology of Clarias gariepinus exposed to phytochemicals of Moringa oleifera and Carica papaya leaf powder. Int. J. Fish. Aquat. Stud. 2020, 8, 301–306. [Google Scholar]
- Jegede, T. Effects of Aloe vera (Liliaceae) on the gonad development in Nile Tilapia (Oreochromis niloticus) (Linnaeus 1758). In Proceedings of the Ninth International Symposium on Tilapia Aquaculture, Shanghai, China, 21–24 April 2011; Fitzsimmons, K., Liping, L., Eds.; AquaFish Collaborative Research Support Program: Corvallis, OR, USA, 2012; pp. 222–227. [Google Scholar]
- Joanna, B.; Babiak, I.; van Nes, S.; Harboe, T.; Haugen, T.; Norberg, B. Induced sex reversal using an aromatase inhibitor, Fadrozole, in Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 2012, 324, 276–280. [Google Scholar]
- Obaroh, I.O.; Nzeh, G.C. Antifertility effect of some plant leaf extracts on the prolific breeding of Oreochromis niloticus. Acad. J. Interdiscip. Stud. 2013, 2, 87–96. [Google Scholar] [CrossRef]
- Wibowo, I. MicroRNAs Analysis in Gonadal Maturity Regulation of Male Nile Tilapia (Oreochromis niloticus) in response to Carica papaya Seeds Powder Exposure. Rep. Grant-Support. Res. Asahi Glass Found. 2022, 91, 91–98. [Google Scholar]
- Enyidi, U. Effects of phytogenic feeds on the sex ratio of larval African catfish Clarias gariepinus. Acad. Lett. 2022, 10, 5613. [Google Scholar]
- Christopher, U.B.; Ajuzieogu, N.A.; Adeolu, A.O. Effect of pawpaw seed meal using various inclusion level on the gonad structure of Oreochromis niloticus (gift). Int. J. Aqua. Fish. Sci. 2021, 7, 24–29. [Google Scholar]
- Omeje, V.O. Effect of Pawpaw (Carica papaya) Seed Meal on the Reproductive, Endocrine and Immune System of Mozambique tilapia (Oreochromis mossambicus). Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2015. [Google Scholar]
- Omeje, O.V. Effect of Pawpaw (Carica papaya) Seed Meal on the Masculinization of Sexually Undifferentiated Mozambique tilapia (Oreochromis mozambicus). Ph.D. Thesis, Department of Animal Sciences, Faculty of Agrisciences, University of Stellenbosch, Stellenbosch, South Africa, 2015. [Google Scholar]
- Meyer, D.; Guevara, M.; Chan, W.; Castillo, C. Use of fresh bull and hog testis in the sex reversal of Nile tilapia fry. World Aquac. 2008, 24, 1–13. [Google Scholar]
- Perera, A.D.; Bhujel, R.C.; Visudtiphole, V. Use of Bull Urine, Catfish Testis and Goat Testis to Replace Alcohol, Fishmeal and Steroid Hormone for the Production of Mono-Sex Tilapıa Fry. Aquac. Stud. 2023, 24, 1186–1198. [Google Scholar] [CrossRef]
- Asad, F.; Naz, S.; Ali, T.; Gul, Y.; Jamal, R.; Shaheen, Z.; Tasadaq, M.; Nadeem, A.; Anwar, N.; Batool, N.; et al. Effect of natural and synthetic androgen hormone on sex reversal of Nile Tilapia (Oreochromis niloticus). Braz. J. Biol. 2023, 84, e272413. [Google Scholar] [CrossRef]
- Theophilus, A.; Blay, J.; Aggreyfynn, J.; Drafor, S. Effect of Different Doses of 17?-Methyltestosterone on Masculinization, Pre-Post Treatment Growth Parameters and Condition Factor of Sarotherodon Melanotheron in Pond System. Acad. J. Life Sci. 2021, 7, 56–62. [Google Scholar]
- Zaki, F.M.; Said, M.M.; Tahoun, A.-A.; Amer, M. Evaluation of different sex reversal treatments in red tilapia hybrid. Egypt. J. Aquat. Biol. Fish. 2021, 25, 279–292. [Google Scholar] [CrossRef]
- Yadav, C.N.; Pandit, N.P.; Jha, D.K.; Gharti, K. Study of effect of papaya seed on reproductive performance in Nile Tilapia (Oreochromis niloticus). Int. J. Agric. Appl. Sci. 2021, 2, 151–158. [Google Scholar] [CrossRef]
- Ogunji, J.O.; Iheanacho, S.C.; Abe, G.A.; Ikeh, O.R. Assessing effects of substituting dietary fish meal with boiled donkey and cow blood meal on growth performance and digestive enzyme activities of Clarias gariepinus juvenile. J. World Aquac. Soc. 2020, 51, 1066–1079. [Google Scholar] [CrossRef]
- Rachmawati, D.; Hutabarat, J.; Samidjan, I.; Windarto, S. Utilization of Papain as Feed Additive in the Fish Feed on Activity of Digestive Enzymes, Contents of Nutrient and Minerals of Sangkuriang catfish (Clarias gariepinus var. Sangkuriang). AACL Bioflux 2020, 13, 2738–2744. [Google Scholar]
- Wiszniewski, G.; Jarmołowicz, S.; Hassaan, M.S.; Soaudy, M.R.; Kamaszewski, M.; Szudrowicz, H.; Terech-Majewska, E.; Pajdak-Czaus, J.; Wiechetek, W.; Siwicki, A.K. Beneficial effects of dietary papain supplementation in juvenile sterlet (Acipenser ruthenus): Growth, intestinal topography, digestive enzymes, antioxidant response, immune response, and response to a challenge test. Aquac. Rep. 2022, 22, 100923. [Google Scholar] [CrossRef]
- Lin, S.; Mai, K.; Tan, B. Effects of exogenous enzyme supplementation in diets on growth and feed utilization in tilapia, Oreochromis niloticus x O. aureus. Aquac. Res. 2007, 38, 1645–1653. [Google Scholar] [CrossRef]
- Hasheesh, W.S.; Marie MA, S.; Abbas, H.H.; Eshak, M.G.; Zahran, E.A. An evaluation of the effect of 17α-Methyltestosterone hormone on some biochemical, molecular and histological changes in the liver of Nile Tilapia, Oreochromis niloticus. Life Sci. J. 2011, 8, 343–358. [Google Scholar]
- Rivero-Wendt, C.L.G.; Miranda-Vilela, A.L.; Domingues, I.; Oliveira, R.; Monteiro, M.S.; Moura-Mello, M.A.M.; Matias, R.; Soares, A.M.V.M.; Grisolia, C.K. Steroid androgen 17 alpha methyltestosterone used in fish farming induces biochemical alterations in zebrafish adults. J. Environ. Sci. Health Part A 2020, 55, 1321–1332. [Google Scholar] [CrossRef]
- Abdelhak, M.E.; Madkour, F.F.; Ibrahim, M.A.; Sharaf, M.S.; Sharaf, M.M.; Mohammed, D.A. Effects of pawpaw, Carica papaya seeds meal on the productive performance and histological characters of gonads in Nile tilapia, Oreochromis niloticus. Int. J. Aquac. Res. 2013, 3, 34–37. [Google Scholar]
- Omeje, V.O.; Lambrechts, H.; Brink, D. Hormonal profile and reproductive parameters of pre-vitellogenic Mozambique tilapia (Oreochromis mossambicus) on pawpaw (Carica papaya) seed meal. J. Agric. Sci. 2019, 11, 524–532. [Google Scholar] [CrossRef]
- Owolabi, O.D.; Abdulkareem, S.I. Carica papaya and Mangifera indica modulate haematological, biochemical and histological alterations in atrazine-intoxicated fish, Clarias gariepinus (Burchell 1822). J. Basic Appl. Zool. 2021, 82, 1–18. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, J.; Yang, Q.; Wang, W.; Liu, Q.; Liu, W.; Liu, S. Effects of 17 α-methyltestosterone on the transcriptome, gonadal histology and sex steroid hormones in Pseudorasbora parva. Theriogenology 2020, 155, 88–97. [Google Scholar] [CrossRef] [PubMed]
Diet Ingredients (g/kg) | T0 | T1 | T2 | T3 | T4 | T5 | T6 |
---|---|---|---|---|---|---|---|
Control (without Hormone) | MT1 60 mg/kg | MT 70 mg/kg | PSM2 6 g/kg | PSM 7 g/kg | FTP3 70% | FTP 80% | |
Fish Meal | 28 | 28 | 28 | 28 | 28 | 28 | 28 |
Rice Polish | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
Canola Meal | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
Wheat Bran | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
Rice Broken | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Fish Oil | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Vitamin Premix | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
17α-methyltestosterone | - | 60 | 70 | - | - | - | - |
Fish (Tilapia) Testes powder (%) | - | - | - | - | - | 70 | 80 |
Papaya seeds powder | - | - | - | 6 | 7 | - | - |
Proximate Composition of diet (%) | |||||||
Moisture | 3.00 ± 0.06 E | 4.00 ± 0.17 C | 4.40 ± 0.06 B | 3.50 ± 0.12 D | 4.00 ± 0.08 C | 5.00 ± 0.12 A | 4.00 ± 0.05 C |
Ash | 76.00 ± 0.93 D | 80.00 ± 0.51 AB | 81.00 ± 1.15 A | 79.01 ± 0.77 ABC | 80.00 ± 0.17 AB | 77.00 ± 1.03 CD | 78.00 ± 1.06 BCD |
Protein | 29.01 ± 0.35 C | 31.34 ± 0.70 B | 31.86 ± 0.45 B | 32.00 ± 0.48 B | 33.00 ± 1.14 AB | 33.07 ± 0.44 AB | 34.50 ± 0.69 A |
Lipid | 16.00 ± 0.42 D | 17.00 ± 0.22 CD | 18.00 ± 0.26 BC | 19.01 ± 0.47 AB | 19.50 ± 0.28 A | 16.00 ± 0.43 D | 18.00 ± 0.24 BC |
Growth Index | Treatments | ||||||
---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T4 | T5 | T6 | |
Control | MT (60 mg/kg) | MT (70 mg/kg) | PSM (6 g/kg) | PSM (7 g/kg) | FTP (70%) | FTP (80%) | |
IW | 1.29 ± 0.005 S | 1.28 ± 0.015 S | 1.28 ± 0.010 S | 1.29 ± 0.005 S | 1.28 ± 0.020 S | 1.27 ± 0.000 S | 1.26 ± 0.020 S |
FW (g) | 3.86 ± 0.060 EFG | 4.17 ± 0.065 D | 4.64 ± 0.035 C | 4.98 ± 0.005 A | 4.81 ± 0.105 B | 4.24 ± 0.030 D | 4.28 ± 0.020 D |
WG 1 (g) | 2.57 ± 0.643 E | 2.89 ± 0.833 CD | 3.35 ± 0.482 C | 3.69 ± 0.643 B | 3.53 ± 0.833A | 2.97 ± 1.322 A | 3.02 ± 0.583 B |
CF | 1.42 ± 0.040 AB | 1.43 ± 0.041 AB | 1.44 ± 0.039 A | 1.44 ± 0.053 A | 1.41 ± 0.050 B | 1.32 ± 0.062 D | 1.34 ± 0.061 C |
PER 2 | 0.08 ± 0.002 C | 0.09 ± 0.005 BC | 0.10 ± 0.004 AB | 0.11 ± 0.003 A | 0.11 ± 0.002 A | 0.09 ± 0.006 BC | 0.09 ± 0.005 BC |
SGR 3 (% day−1) | 1.22 ± 0.015 E | 1.31 ± 0.017 D | 1.42 ± 0.020 BC | 1.50 ± 0.023 A | 1.46 ± 0.021 AB | 1.34 ± 0.018 D | 1.36 ± 0.038 CD |
Treatments | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | CR | MT 60 mg/kg | MT 70 mg/kg | PSM 6 g/kg | PSM 7 g/kg | FTP (70%) | FTP (80%) | |||||||
Control | T1 | T2 | T3 | T4 | T5 | T6 | ||||||||
M* | F* | M | F | M | F | M | F | M | F | M | F | M | F | |
Sex (%) | 54 ± 0.7 C | 46 ± 1.4 A | 76 ± 0.4 B | 24 ± 0.5 B | 85 ± 0.89 C | 15 ± 0.85 C | 85 ± 0.892 C | 15 ± 0.854 C | 90 ± 1.042 A | 10 ± 0.744 E | 84.00 ± 2.08 A | 16.00 ± 1.83 C | 88.00 ± 1.16 A | 12.00 ± 1.01 CD |
Sex ratio | 1.17:1 A | 3.16:1 B | 5.66:1 C | 5.25:1 CD | 9:1 E | 5.25:1 CD | 7.33:1 F | |||||||
GSI values of male and female Cyprinus carpio | ||||||||||||||
GSI* (Male) | 1.54 ± 0.025 B | 1.76 ± 0.035 A | 1.82 ± 0.015 A | 1.00 ± 0.010 E | 1.08 ± 0.010 D | 1.18 ± 0.030 C | 1.10 ± 0.020 D | |||||||
GSI (Female) | 1.67 ± 0.005 C | 1.94 ± 0.010 B | 2.12 ± 0.015 A | 1.18 ± 0.015 E | 1.32 ± 0.010 D | 1.24 ± 0.015 E | 1.38 ± 0.050 D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamal, R.; Asad, F.; Naz, S.; Hussain, S.M. Dietary Incorporation of Natural and Synthetic Reproductive Inhibitors: Exploring Their Impact on Sex Characteristics in Cyprinus carpio (Common Carp). Fishes 2025, 10, 284. https://doi.org/10.3390/fishes10060284
Jamal R, Asad F, Naz S, Hussain SM. Dietary Incorporation of Natural and Synthetic Reproductive Inhibitors: Exploring Their Impact on Sex Characteristics in Cyprinus carpio (Common Carp). Fishes. 2025; 10(6):284. https://doi.org/10.3390/fishes10060284
Chicago/Turabian StyleJamal, Rafia, Farkhanda Asad, Shabana Naz, and Syed Makhdoom Hussain. 2025. "Dietary Incorporation of Natural and Synthetic Reproductive Inhibitors: Exploring Their Impact on Sex Characteristics in Cyprinus carpio (Common Carp)" Fishes 10, no. 6: 284. https://doi.org/10.3390/fishes10060284
APA StyleJamal, R., Asad, F., Naz, S., & Hussain, S. M. (2025). Dietary Incorporation of Natural and Synthetic Reproductive Inhibitors: Exploring Their Impact on Sex Characteristics in Cyprinus carpio (Common Carp). Fishes, 10(6), 284. https://doi.org/10.3390/fishes10060284