Evaluation of Seaweed Meal and Konjac Glucomannan Mixture as Feed Ingredients in Largemouth Bass Micropterus salmoides
Abstract
1. Introduction
2. Materials and Methods
2.1. Feed Formulation and Diet Preparation
2.2. Fish Management and Feeding
2.3. Water Collection and Metrics Determination
2.4. Growth Performance
2.5. Benefit-Cost Evaluation
2.6. Proximate Composition, Amino Acids Profile, and Nutrient Retention Efficiency
2.7. Apparent Digestibility Coefficients
2.8. Statistical Analysis
3. Results
3.1. Fish Survival Rate and Growth Performance
3.2. Economic Benefit Evaluation
3.3. Proximate Composition of Fish Body and Nutrition Retention Efficiency
3.4. Hydrolyzed Amino Acids Profile of the Fish Body and Nutrient Retention Efficiency
3.5. Apparent Digestibility Coefficient
3.6. Water Quality Metrics
3.7. The Non-Utilization Amounts of Nitrogen and Phosphorus
4. Discussion
4.1. Effect on SR, Growth Performance, and Feed Utilization
4.2. Effect on ADC
4.3. Effect on Body Composition and Nutrient Retention Efficiency
4.4. Effect on Culture Water Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LMB | largemouth bass |
SF | strong flour |
GKM | a Gracilaria lemaneiformis-konjac glucomannan mixture at the ratio of 2:1 |
GL | Gracilaria lemaneiformis |
KG | konjac glucomannan |
SR | survival rate |
WG | weight gain |
SGR | specific growth rate |
ADC | apparent digestibility coefficients |
DM | dry matter |
CP | crude protein |
TP | total phosphorus |
NSPs | non-starch polysaccharides |
IBW | initial body weight |
FBW | final body weight |
FI | feed intake |
FCR | feed conversion ratio |
PER | protein efficiency |
IFC | the incremental feed cost for obtaining per kilogram of weight gain |
NRE | nutrient retention efficiency |
NUA | non-utilization amounts for obtaining per kilogram of weight gain |
EAA | essential amino acid |
NEAA | non-essential amino acid |
TAA | total amino acid |
References
- Karim, A.; Naila, B.; Khwaja, S.; Hussain, S.I.; Ghafar, M. Evaluation of Different Starch Binders on Physical Quality of Fish Feed Pellets. Braz. J. Biol. 2024, 84, e256242. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, T.; Zhang, J.; Wang, Y.; Han, T.; Wang, J. Effects of Digestible Carbohydrate Levels on Growth Performance, Feed Utilization, Body Composition, and Biochemical Indices of Juvenile Spotted Knifejaw, Oplegnathus Punctatus. Aquac. Rep. 2023, 31, 101653. [Google Scholar] [CrossRef]
- Callet, T.; Hu, H.; Larroquet, L.; Surget, A.; Liu, J.; Plagnes-Juan, E.; Maunas, P.; Turonnet, N.; Mennigen, J.A.; Bobe, J.; et al. Exploring the Impact of a Low-Protein High-Carbohydrate Diet in Mature Broodstock of a Glucose-Intolerant Teleost, the Rainbow Trout. Front. Physiol. 2020, 11, 303. [Google Scholar] [CrossRef]
- Stone, D.A.J. Dietary Carbohydrate Utilization by Fish. Rev. Fish. Sci. 2003, 11, 337–369. [Google Scholar] [CrossRef]
- Bureau of Fisheries of the Ministry of Agriculture and Rural Affairs (MARA) of the People’s Republic of China. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2023; p. 25. [Google Scholar]
- Chen, Y.; Yang, H.; Guo, B.; Li, X.; Leng, X. Dietary effects of protein and lipid levels on growth performance and flesh quality of large-size largemouth bass (Micropterus salmoides). Aquac. Rep. 2023, 33, 101852. [Google Scholar] [CrossRef]
- Huang, D.; Wu, Y.; Lin, Y.; Chen, J.; Karrow, N.; Ren, X.; Wang, Y. Dietary protein and lipid requirements for juvenile largemouth bass, Micropterus salmoides. J. World Aquac. Soc. 2017, 48, 782–790. [Google Scholar] [CrossRef]
- Li, X.; Zheng, S.; Ma, X.; Cheng, K.; Wu, G. Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides). Amino Acids 2020, 52, 1043–1061. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-M.; Shi, C.-M.; Mu, M.-M.; Chen, Y.-J.; Luo, L. Effect of High Dietary Starch Levels on Growth, Hepatic Glucose Metabolism, Oxidative Status and Immune Response of Juvenile Largemouth Bass, Micropterus salmoides. Fish Shellfish Immunol. 2018, 78, 121–126. [Google Scholar] [CrossRef]
- Ma, H.-J.; Mou, M.-M.; Pu, D.-C.; Lin, S.-M.; Chen, Y.-J.; Luo, L. Effect of Dietary Starch Level on Growth, Metabolism Enzyme and Oxidative Status of Juvenile Largemouth Bass, Micropterus salmoides. Aquaculture 2019, 498, 482–487. [Google Scholar] [CrossRef]
- Li, X.; Zheng, S.; Ma, X.; Cheng, K.; Wu, G. Effects of Dietary Starch and Lipid Levels on the Protein Retention and Growth of Largemouth Bass (Micropterus salmoides). Amino Acids 2020, 52, 999–1016. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, S.; Wei, H.; Zheng, L.; Liu, Z.; Fang, H.; Xie, J.; Liao, S.; Tian, L.; Liu, Y.; et al. High Dietary Starch Impaired Growth Performance, Liver Histology and Hepatic Glucose Metabolism of Juvenile Largemouth Bass, Micropterus salmoides. Aquac. Nutr. 2020, 26, 1083–1095. [Google Scholar] [CrossRef]
- Zuo, Z.; Wang, S.; Wang, Q.; Wang, D.; Wu, Q.; Xie, S.; Zou, J. Effects of Partial Replacement of Dietary Flour Meal with Seaweed Polysaccharides on the Resistance to Ammonia Stress in the Intestine of Hybrid Snakehead (Channa maculatus♀ × Channa argus♂). Fish Shellfish Immunol. 2022, 127, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zuo, Z.; Wang, Q.; Zhou, A.; Wang, G.; Xu, G.; Zou, J. Replacing Starch with Resistant Starch (Laminaria japonica) Improves Water Quality, Nitrogen and Phosphorus Budget and Microbial Community in Hybrid Snakehead (Channa maculatus♀ × Channa argus♂). Water Environ. Res. 2023, 95, e10836. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, D.; Wang, C.; Xu, G.; Zou, J. Dietary Kelp Meal Alleviates Feed Starch Intolerance of Hybrid Snakehead (Channa maculata♀ × Channa argus♂) by Improving Liver Glycolipid Metabolism and Metabolite Profile. Aquac. Rep. 2025, 42, 102741. [Google Scholar] [CrossRef]
- Kong, Q.; Yang, Z.; Su, Q.; Yang, J.; Xiao, G.; Liu, D.; Tang, H. Effects of Kelp Meal (Laminaria japonica) on the Growth, Nutrition, and Intestinal Health of the Largemouth Bass (Micropterus salmoides). Aquac. Rep. 2024, 39, 102525. [Google Scholar] [CrossRef]
- Øverland, M.; Mydland, L.T.; Skrede, A. Marine Macroalgae as Sources of Protein and Bioactive Compounds in Feed for Monogastric Animals. J. Sci. Food Agric. 2019, 99, 13–24. [Google Scholar] [CrossRef]
- Mwendwa, R.; Wawire, M.; Kahenya, P. Potential for Use of Seaweed as a Fish Feed Ingredient: A Review. J. Agric. Sci. 2023, 15, 96. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Francis, P.; Rohani, M.F.; Azam, M.S.; Mock, T.S.; Francis, D.S. Seaweed and Seaweed-Based Functional Metabolites as Potential Modulators of Growth, Immune and Antioxidant Responses, and Gut Microbiota in Fish. Antioxidants 2023, 12, 2066. [Google Scholar] [CrossRef]
- Saleh, H.H.E. Review on Use of Macro Algae (Seaweed) in Fish Nutrition. J. Zool. Res. 2020, 2, 6–11. [Google Scholar] [CrossRef]
- O’mahoney, M.; Mouzakitis, G.; Doyle, J.; Burnell, G. A Novel Konjac Glucomannan–Xanthan Gum Binder for Aquaculture Feeds: The Effect of Binder Configuration on Formulated Feed Stability, Feed Palatability and Growth Performance of the Japanese Abalone, Haliotis Discus Hannai. Anim. Nutr. 2011, 17, 395–407. [Google Scholar] [CrossRef]
- Li, Y.; Liang, S.; Shao, Y.; Li, Y.; Chen, C.; You, C.; Monroig, Ó.; Rahimnejad, S.; Tocher, D.R.; Wang, S. Impacts of Dietary Konjac Glucomannan Supplementation on Growth, Antioxidant Capacity, Hepatic Lipid Metabolism and Inflammatory Response in Golden Pompano (Trachinotus ovatus) Fed a High Fat Diet. Aquaculture 2021, 545, 737113. [Google Scholar] [CrossRef]
- GB/T 6435-2014; Determination of Moisture in Feedstuffs. National Standardization Administration: Beijing, China, 2014.
- GB/T 6432-2018; Determination of Crude Protein in Feeds—Kjeldahl Method. National Standardization Administration: Beijing, China, 2018.
- GB/T 6433-2006; Determination of Crude Fat in Feeds. National Standardization Administration: Beijing, China, 2006.
- GB/T 6438-2007; Animal Feeding Stuffs-Determination of Crude Ash. National Standardization Administration: Beijing, China, 2007.
- GB/T 6434-2022; Determination of Crude Fiber Content in Feeds. National Standardization Administration: Beijing, China, 2022.
- GB/T 6437-2018; Determination of Phosphorus in Feeds—Spectrophotometry. National Standardization Administration: Beijing, China, 2018.
- Cheng, Y.; Fan, L.; Liu, Y.; Su, K.; Xu, G. Integrated commercial and low-fishmeal fermented feed boosts survival and modulates intestinal microbiota in pacific white shrimp Litopenaeus vannamei. Anim. Nutr. 2025; in press. [Google Scholar] [CrossRef]
- HJ535-2009; Water Quality─Determination of Ammonia Nitrogen—Nessler’s Reagent Spectrophotometry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2009.
- GB7493-87; Water Quality-Determination of Nitrogen (Nitrite)—Spectrophotometric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 1987.
- HJ/T346-2007; Water Quality—Determination of Nitrate-Nitrogen—Ultraviolet Spectrophotometry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2007.
- HJ501-2009; Water Quality—Determination of Total Organic Carbon—Combustion Oxidation Nondispersive Infrared Absorption Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2009.
- GB11893-89; Water Quality—Determination of Total Phosphorus—Ammonium Molybdate Spectrophotometric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 1989.
- GB7477-87; Water Quality-Determination of the Sum of Calcium and Magueslum-EDTA Titrimetrlc Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 1987.
- Xia, R.; Zhang, Q.; Xia, D.; Hao, Q.; Ding, Q.; Ran, C.; Yang, Y.; Cao, A.; Zhang, Z.; Zhou, Z. The Direct and Gut Microbiota-Mediated Effects of Dietary Bile Acids on the Improvement of Gut Barriers in Largemouth Bass (Micropterus salmoides). Anim. Nutr. 2023, 14, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, Y.; Xu, G.; Dong, Z.; Shi, B.; Han, D.; Zhang, Y. Effects of Hydrolyzed Hairtail Protein Partially Replacing Fish Meal in Diets on Growth and Protein Turnover Rate for Hybrid Grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂). Anim. Feed Sci. Technol. 2025, 319, 116156. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Huang, L.; Dong, Z.; Lu, Q.; Zou, Y.; Tang, F.; Zhao, S.; Storebakken, T. Evaluation of Conventional or Hydrolyzed Stickwater from Food-Grade Skipjack Tuna by-Product in Diet for Hybrid Grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Aquaculture 2022, 548, 737714. [Google Scholar] [CrossRef]
- GB 5009.5-2016; Determination of Crude Protein in Food. National Standardization Administration: Beijing, China, 2016.
- GB 5009.6-2016; Determination of Crude Lipid in Food. National Standardization Administration: Beijing, China, 2016.
- GB 5009.4-2016; Determination of Crude Ash in Food. National Standardization Administration: Beijing, China, 2016.
- GB 5009.87-2016; Determination of Phosphorus in Foods. National Standardization Administration: Beijing, China, 2016.
- Prakash, S.; Maas, R.M.; Fransen, P.-M.M.M.; Kokou, F.; Schrama, J.W.; Philip, A.J.P. Effect of Feed Ingredients on Nutrient Digestibility, Waste Production and Physical Characteristics of Rainbow Trout (Oncorhynchus mykiss) Faeces. Aquaculture 2023, 574, 739621. [Google Scholar] [CrossRef]
- Biris-Dorhoi, E.-S.; Michiu, D.; Pop, C.R.; Rotar, A.M.; Tofana, M.; Pop, O.L.; Socaci, S.A.; Farcas, A.C. Macroalgae—A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020, 12, 3085. [Google Scholar] [CrossRef]
- HJ 766-2015; Solid Waste–Determination of Metals–Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2015.
- Gordalina, M.; Pinheiro, H.M.; Mateus, M.; Da Fonseca, M.M.R.; Cesário, M.T. Macroalgae as Protein Sources—A Review on Protein Bioactivity, Extraction, Purification and Characterization. Appl. Sci. 2021, 11, 7969. [Google Scholar] [CrossRef]
- Zhou, Y.-L.; He, G.-L.; Jin, T.; Chen, Y.-J.; Dai, F.-Y.; Luo, L.; Lin, S.-M. High Dietary Starch Impairs Intestinal Health and Microbiota of Largemouth Bass, Micropterus salmoides. Aquaculture 2021, 534, 736261. [Google Scholar] [CrossRef]
- Xie, Y.; Shao, X.; Zhang, P.; Zhang, H.; Yu, J.; Yao, X.; Fu, Y.; Wei, J.; Wu, C. High Starch Induces Hematological Variations, Metabolic Changes, Oxidative Stress, Inflammatory Responses, and Histopathological Lesions in Largemouth Bass (Micropterus salmoides). Metabolites 2024, 14, 236. [Google Scholar] [CrossRef]
- Sun, L.; Guo, J.; Li, Q.; Jiang, J.; Chen, J.; Gao, L.; Yang, B.; Peng, J. Effects of High Dietary Starch Levels on the Growth Performance, Liver Function, and Metabolome of Largemouth Bass (Micropterus salmoides). Fishes 2024, 9, 256. [Google Scholar] [CrossRef]
- Wang, T.; Xu, R.; Qiao, F.; Du, Z.; Zhang, M. Effects of Mannan Oligosaccharides (MOS) on Glucose and Lipid Metabolism of Largemouth Bass (Micropterus salmoides) Fed with High Carbohydrate Diet. Anim. Feed Sci. Technol. 2022, 292, 115449. [Google Scholar] [CrossRef]
- Li, S.; Sang, C.; Turchini, G.M.; Wang, A.; Zhang, J.; Chen, N. Starch in Aquafeeds: The Benefits of a High Amylose to Amylopectin Ratio and Resistant Starch Content in Diets for the Carnivorous Fish, Largemouth Bass (Micropterus salmoides). Br. J. Nutr. 2020, 124, 1145–1155. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Fan, J.; Zhou, H.; Huang, H.; Cao, Y.; Jiang, W.; Zhang, W.; Deng, J.; Tan, B. Effects of Different Viscous Guar Gums on Growth, Apparent Nutrient Digestibility, Intestinal Development and Morphology in Juvenile Largemouth Bass, Micropterus salmoides. Front. Physiol. 2022, 13, 927819. [Google Scholar] [CrossRef] [PubMed]
- Suomalainen, L.-R.; Bandilla, M.; Valtonen, E.T. Immunostimulants in Prevention of Columnaris Disease of Rainbow Trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 2009, 32, 723–726. [Google Scholar] [CrossRef]
- Gioacchini, G.; Lombardo, F.; Avella, M.A.; Olivotto, I.; Carnevali, O. Welfare Improvement Using Alginic Acid in Rainbow Trout (Oncorhynchus mykiss) Juveniles. Chem. Ecol. 2010, 26, 111–121. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, R.; Li, M.; Zhou, Q.; Liang, X.; Elmada, Z.C. Effects of Dietary Fucoidan on the Blood Constituents, Anti-Oxidation and Innate Immunity of Juvenile Yellow Catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol. 2014, 41, 264–270. [Google Scholar] [CrossRef]
- Thépot, V.; Campbell, A.H.; Rimmer, M.A.; Paul, N.A. Meta-analysis of the Use of Seaweeds and Their Extracts as Immunostimulants for Fish: A Systematic Review. Rev. Aquac. 2021, 13, 907–933. [Google Scholar] [CrossRef]
- Mendonça, A.J.C.d.; Rosas, V.T.; Monserrat, J.M.; Romano, L.A.; Tesser, M.B. The Inclusion of Algae Gracilaria Domingensis in the Diet of Mullet Juveniles (Mugil liza) Improves the Immune Response. J. Appl. Aquac. 2019, 31, 210–223. [Google Scholar] [CrossRef]
- Zhou, Z.; Pan, S.; Wu, S. Modulation of the Growth Performance, Body Composition and Nonspecific Immunity of Crucian Carp Carassius auratus upon Enteromorpha prolifera Polysaccharide. Int. J. Biol. Macromol. 2020, 147, 29–33. [Google Scholar] [CrossRef]
- Negm, S.S.; Ismael, N.E.M.; Ahmed, A.I.; Asely, A.M.E.; Naiel, M.A.E. The Efficiency of Dietary Sargassum Aquifolium on the Performance, Innate Immune Responses, Antioxidant Activity, and Intestinal Microbiota of Nile Tilapia (Oreochromis Niloticus) Raised at High Stocking Density. J. Appl. Phycol. 2021, 33, 4067–4082. [Google Scholar] [CrossRef]
- Tejpal, C.S.; Elavarasan, K.; Lekshmi, R.G.K.; Ebeneezar, S.; Mandakini Devi, H.; Anas, K.K.; Sathish Kumar, K.; Geethalakshmi, V.; Mathew, S. Valorisation of Brown Seaweed (Sargassum wightii) Waste as a Feed Ingredient in Rohu (Labeo Rohita): Effects on Growth and Metabolism. Aquac. Nutr. 2021, 27, 2662–2672. [Google Scholar]
- Liu, Y.; Fan, J.; Huang, H.; Zhou, H.; Cao, Y.; Zhang, Y.; Jiang, W.; Zhang, W.; Deng, J.; Tan, B. High Dietary Non-Starch Polysaccharides Detrimental to Nutrient Digestibility, Digestive Enzyme Activity, Growth Performance, and Intestinal Morphology in Largemouth Bass, Micropterus salmoides. Front. Nutr. 2022, 9, 1015371. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, H.; Martins, N.; Vieira, L.; Salgado, J.M.; Castro, C.; Oliva-Teles, A.; Belo, I.; Peres, H. Pre-Treatment of Ulva Rigida Improves Its Nutritional Value for European Seabass (Dicentrarchus labrax) Juveniles. Algal Res. 2022, 66, 102803. [Google Scholar] [CrossRef]
- Kamunde, C.; Sappal, R.; Melegy, T.M. Brown Seaweed (AquaArom) Supplementation Increases Food Intake and Improves Growth, Antioxidant Status and Resistance to Temperature Stress in Atlantic Salmon, Salmo salar. PLoS ONE 2019, 14, e0219792. [Google Scholar] [CrossRef]
- Ferreira, M.; Larsen, B.K.; Granby, K.; Cunha, S.C.; Monteiro, C.; Fernandes, J.O.; Nunes, M.L.; Marques, A.; Dias, J.; Cunha, I.; et al. Diets Supplemented with Saccharina Latissima Influence the Expression of Genes Related to Lipid Metabolism and Oxidative Stress Modulating Rainbow Trout (Oncorhynchus mykiss) Fillet Composition. Food Chem. Toxicol. 2020, 140, 111332. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, X.; Sun, Y.; Mi, H.; Zhang, L. Effects of Different Types of Non-Starch Polysaccharides on Growth, Digestive Enzyme Activity, Intestinal Barrier Function and Antioxidant Activity of Rainbow Trout (Oncorhynchus mykiss). Aquac. Rep. 2021, 21, 100864. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, X.; Zhou, H.; Fan, J.; Huang, H.; Deng, J.; Tan, B. Different Types of Non-Starch Polysaccharides Alter the Growth, Intestinal Flora and Serum Metabolite Profile of Grass Carp, Ctenopharyngodon Idella. Metabolites 2022, 12, 1003. [Google Scholar] [CrossRef]
- Huang, Z.; Ye, Y.; Xu, A.; Li, Z. Effects of Dietary Crude Polysaccharides from Lycium barbarum on Growth Performance, Digestion, and Serum Physiology and Biochemistry of Spotted Sea Bass Lateolabrax maculatus. Aquac. Rep. 2023, 32, 101710. [Google Scholar] [CrossRef]
- Li, S.; Zhou, D.; Pang, D.; Li, Q.; Li, Q.; Wang, H.; Zou, Y.; Liao, S.; Li, E. Effects of Ramulus Mori Oligosaccharides on Growth Performance, Serum Physiological and Biochemical Parameters, and Immunomodulation in Largemouth Bass (Micropterus salmoides). Aquaculture 2024, 589, 741008. [Google Scholar] [CrossRef]
- Azaza, M.S.; Mensi, F.; Ksouri, J.; Dhraief, M.N.; Brini, B.; Abdelmouleh, A.; Kraïem, M.M. Growth of Nile Tilapia (Oreochromis niloticus L.) Fed with Diets Containing Graded Levels of Green Algae Ulva Meal (Ulva rigida) Reared in Geothermal Waters of Southern Tunisia. J. Appl. Ichthyol. 2008, 24, 202–207. [Google Scholar] [CrossRef]
- Vizcaíno, A.J.; Mendes, S.I.; Varela, J.L.; Ruiz-Jarabo, I.; Rico, R.; Figueroa, F.L.; Abdala, R.; Moriñigo, M.Á.; Mancera, J.M.; Alarcón, F.J. Growth, Tissue Metabolites and Digestive Functionality in Sparus Aurata Juveniles Fed Different Levels of Macroalgae, Gracilaria cornea and Ulva rigida. Aquac. Res. 2016, 47, 3224–3238. [Google Scholar] [CrossRef]
- Jørgensen, H.; Zhao, X.-Q.; Theil, P.K.; Gabert, V.M.; Knudsen, K.E.B. Energy Metabolism and Protein Balance in Growing Rats Fed Different Levels of Dietary Fibre and Protein. Arch. Anim. Nutr. 2003, 57, 83–98. [Google Scholar] [CrossRef]
- Sartipiyarahmadi, S.; Philip, A.J.P.; Sveier, H.; Steinsund, S.; Lock, E.-J.; Madaro, A.; Hansen, T.J.; Wiech, M.; Strand, Ø.; Jakobsen, J.V.; et al. Growth Performance, Nutrient Digestibility, and Retention in Atlantic Salmon, Salmo salar L., Fed Diets with Fermented Sugar Kelp, Saccharina Latissima. Aquac. Nutr. 2023, 2023, 6664947. [Google Scholar] [CrossRef]
- Leenhouwers, J.; Ortega, R.C.; Verreth, J.A.; Schrama, J.W. Digesta characteristics in relation to nutrient digestibility and mineral absorption in Nile tilapia (Oreochromis niloticus L.) Fed Cereal Grains of Increasing Viscosity. Aquaculture 2007, 273, 556–565. [Google Scholar] [CrossRef]
- Wang, M.; Song, Z.; Guo, P.; Li, B.; Wang, J.; Huang, B.; Sun, Y.; Li, P. Effects of Dietary Supplementation with Enzymatically Hydrolyzed Kelp Powder on Growth, Digestion, Metabolism, and Oxidation Resistance of Juvenile Sea Cucumber (Apostichopus japonicus). Prog. Fish. Sci. 2023, 44, 176–187. [Google Scholar]
- Zhang, Y.; Maas, R.M.; Hilgers, P.; Horstmann Zuther, P.; Kokou, F.; Staessen, T.W.O.; Schrama, J.W. Effect of Non-Starch Polysaccharides and Bile Acid Supplementation on Nutrient Digestibility, Bile Acid Balance, Faecal Waste Production and Characteristics of Yellowtail Kingfish (Seriola lalandi). Aquac. Rep. 2025, 41, 102708. [Google Scholar] [CrossRef]
- Miller, K.K.; Rossi, W.; Habte-Tsion, H. Assessment of Total Dietary Phosphorus Requirement of Juvenile Largemouth Bass, Micropterus salmoides, Using Soybean Meal-based Diets: Effects on Production Performance, Tissue Mineralization, Physiological Parameters in Plasma and Intestine and Expression of Head-kidney Genes. Aquac. Nutr. 2021, 27, 116–128. [Google Scholar]
- Yang, H.; Bian, Y.; Huang, L.; Lan, Q.; Ma, L.; Li, X.; Leng, X. Effects of Replacing Fish Meal with Fermented Soybean Meal on the Growth Performance, Intestinal Microbiota, Morphology and Disease Resistance of Largemouth Bass (Micropterus salmoides). Aquac. Rep. 2022, 22, 100954. [Google Scholar] [CrossRef]
- Luan, X.; Li, X.; He, J.; Xu, H.; Feng, W.; Chen, Q.; Han, T.; Wang, J. Effects of Arginine Family Amino Acids Supplementation on Growth, Whole-Body Amino Acid Profiles, Antioxidant Capacity, and Gene Expression of Juvenile Largemouth Bass (Micropterus salmoides). Aquaculture 2025, 594, 741312. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, Y.; Qian, S.; Zhang, W.; Huang, M.; Yang, S.; Fei, H. An Evaluation of Laminarin Additive in the Diets of Juvenile Largemouth Bass (Micropterus salmoides): Growth, Antioxidant Capacity, Immune Response and Intestinal Microbiota. Animals 2023, 13, 459. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, L.; Wang, Y.; Yan, Q.; He, H.; Li, X.; Zhang, S. Effects of three species of macroalgae on growth performance, physiology and biochemistry index of juvenile largemouth bass (Micropterus salmoides). Feed. Res. 2024, 47, 17. [Google Scholar]
- He, L.; Qin, Y.; Wang, Y.; Li, D.; Chen, W.; Ye, J. Effects of Dietary Replacement of Fish Oil with Soybean Oil on the Growth Performance, Plasma Components, Fatty Acid Composition and Lipid Metabolism of Groupers Epinephelus coioides. Aquac. Nutr. 2021, 27, 1494–1511. [Google Scholar] [CrossRef]
- Mata-Sotres, J.A.; Marques, V.H.; Barba, D.; Braga, A.; Araújo, B.; Viana, M.T.; Rombenso, A.N. Increasing Dietary SFA: MUFA Ratio with Low Levels of LC-PUFA Affected Lipid Metabolism, Tissue Fatty Acid Profile and Growth of Juvenile California Yellowtail (Seriola dorsalis). Aquaculture 2021, 543, 737011. [Google Scholar] [CrossRef]
- Villasante, A.; Ramírez, C.; Rodríguez, H.; Dantagnan, P.; Hernández, A.; Figueroa, E.; Romero, J. Dietary Carbohydrate-to-Protein Ratio Influences Growth Performance, Hepatic Health and Dynamic of Gut Microbiota in Atlantic Salmon (Salmo salar). Anim. Nutr. 2022, 10, 261–279. [Google Scholar] [CrossRef]
- Li, P.; Song, Z.; Huang, L.; Sun, Y.; Sun, Y.; Wang, X.; Li, L. Effects of Dietary Protein and Lipid Levels in Practical Formulation on Growth, Feed Utilization, Body Composition, and Serum Biochemical Parameters of Growing Rockfish Sebastes schlegeli. Aquac. Nutr. 2023, 2023, 9970252. [Google Scholar] [CrossRef] [PubMed]
- Manh, H.N.; Tram, N.D.; Ha, T.N.; Suong, T.T.; Bossier, P. Effects of the replacement of dietary fish oil by soybean oil on growth performance, body composition, and fatty acid profiles of rabbitfish (Siganus guttatus) under mono-and polyculture systems. Aquac. Aquar. Conserv. Legis. 2023, 16, 1887–1900. [Google Scholar]
- Liu, S.; Liu, S.; Sun, Z.; Fang, Z.; Gong, Y.; Huang, X.; Zhang, H.; Chen, N.; Li, S. Effects of Dietary Lipid and Protein Levels on Growth, Body Composition, Antioxidant Capacity, and Flesh Quality of Mandarin Fish (Siniperca chuatsi). Aquac. Int. 2024, 33, 78. [Google Scholar] [CrossRef]
- Ren, M.; Ai, Q.; Mai, K.; Ma, H.; Wang, X. Effect of Dietary Carbohydrate Level on Growth Performance, Body Composition, Apparent Digestibility Coefficient and Digestive Enzyme Activities of Juvenile Cobia, Rachycentron Canadum L.: Effect of Dietary Carbohydrate Level on Growth Performance. Aquac. Res. 2011, 42, 1467–1475. [Google Scholar] [CrossRef]
- Li, S.; Yin, J.; Zhang, H.; Liu, Z.; Chen, N. Effects of Dietary Carbohydrate and Lipid Levels on Growth Performance, Feed Utilization, Body Composition and Non-specific Immunity of Large Yellow Croaker (Larimichthys crocea). Aquac. Nutr. 2019, 25, 995–1005. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, Y.; Yang, Z.; Kong, Q.; Liu, P.; Liao, H.; Tang, H. Effects of Partial Replacement of Fishmeal with Spirulina Platensis Powder and Addition of Spirulina Platensis Polysaccharide on Growth, Nutrition, Antioxidant Capacity and Gut Microbiota of Micropterus salmoides. Aquaculture 2024, 586, 740802. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Dong, Z.; Changarawe, S.M.; Huang, L.; Hu, J.; Storebakken, T.; Shi, B. The Effects of Replacing Fish Meal or Soy Protein Concentrate with Wheat Gluten on Growth, Whole-Body Composition, and the Retention and Apparent Digestibility Coefficient of Amino Acids in Japanese Seabass (Lateolabrax japonicus). Front. Physiol. 2023, 14, 1220192. [Google Scholar] [CrossRef] [PubMed]
- Sotoudeh, E.; Mardani, F. Antioxidant-related Parameters, Digestive Enzyme Activity and Intestinal Morphology in Rainbow Trout (Oncorhynchus mykiss) Fry Fed Graded Levels of Red Seaweed, Gracilaria pygmaea. Aquac. Nutr. 2018, 24, 777–785. [Google Scholar] [CrossRef]
- Eissa, A.A.; Chen, P.; Brown, P.B.; Huang, J.-Y. Effects of Feed Formula and Farming System on the Environmental Performance of Shrimp Production Chain from a Life Cycle Perspective. J. Ind. Ecol. 2022, 26, 2006–2019. [Google Scholar] [CrossRef]
- Horstmann, P.; Alliney, N.; Eding, E.H.; Kals, J.; Prakash, S.; Staessen, T.W.O.; Kokou, F.; Schrama, J.W.; Maas, R.M. Practical Implications of Lowering Dietary Starch Content on Waste Management in Recirculating Aquaculture Systems Operated with Drum Filtration or Sedimentation in Yellowtail Kingfish (Seriola lalandi). Aquaculture 2024, 584, 740587. [Google Scholar] [CrossRef]
- Tabrett, S.; Ramsay, I.; Paterson, B.; Burford, M.A. A Review of the Benefits and Limitations of Waste Nutrient Treatment in Aquaculture Pond Facilities. Rev. Aquac. 2024, 16, 1766–1786. [Google Scholar] [CrossRef]
- Sánchez-Muros, M.J.; Renteria, P.; Vizcaino, A.; Barroso, F.G. Innovative Protein Sources in Shrimp (Litopenaeus vannamei) Feeding. Rev. Aquac. 2020, 12, 186–203. [Google Scholar] [CrossRef]
- Nguyen, T.; Foysal, M.; Fotedar, R.; Gupta, S.; Siddik, M.; Tay, C. The effect of two dietary protein sources on water quality and the aquatic microbial communities in marron (Cherax cainii) culture. Microb. Ecol. 2021, 82, 299–308. [Google Scholar] [CrossRef]
Items | FM 1 | SBM 2 | SPI 3 | SF 4 | GL 5 | KG 6 |
---|---|---|---|---|---|---|
Moisture | 9.32 | 11.29 | 6.79 | 12.61 | 8.53 | 7.26 |
Crude protein | 65.27 | 44.24 | 84.76 | 15.83 | 18.40 | 3.98 |
Crude lipid | 8.01 | 0.28 | 2.64 | 1.43 | 2.20 | 0.20 |
Ash | 17.32 | 6.74 | 4.78 | 1.21 | 19.82 | 1.49 |
Crude fiber | / | 5.90 | 0.20 | 0.90 | 6.10 | 1.70 |
NFE 7 | 0.08 | 31.55 | 0.83 | 68.02 | 44.95 | 85.37 |
Items | GK00 | GK05 | GK10 | GK15 |
---|---|---|---|---|
Ingredients | ||||
Fish meal (g/kg) | 480.0 | 480.0 | 480.0 | 480.0 |
Soybean meal (g/kg) | 170.0 | 170.0 | 170.0 | 170.0 |
Soy protein isolates (g/kg) | 45.0 | 50.0 | 50.0 | 50.0 |
Fish oil (g/kg) 1 | 75.0 | 75.0 | 75.0 | 75.0 |
Premix (g/kg) 2 | 20.0 | 20.0 | 20.0 | 20.0 |
Monocalcium phosphate (g/kg) 3 | 10.0 | 10.0 | 10.0 | 10.0 |
Choline chloride (g/kg) 4 | 3.0 | 3.0 | 3.0 | 3.0 |
Yttrium (III) oxide (g/kg) 5 | 3.0 | 3.0 | 3.0 | 3.0 |
Strong flour (g/kg) | 150 | 100.0 | 50.0 | 0.00 |
GL (g/kg) | 0.0 | 34.0 | 67.0 | 100.0 |
KG (g/kg) | 0.0 | 16.0 | 33.0 | 50.0 |
Medical stone (g/kg) 6 | 44.0 | 39.0 | 39.0 | 39.0 |
Composition | ||||
Dry matter (g/kg) | 935.2 | 931.7 | 930.5 | 922.5 |
In dry matter | ||||
Crude protein (g/kg) | 493.2 | 503.5 | 496.4 | 485.1 |
Crude lipid (g/kg) | 113.6 | 104.2 | 106.5 | 105.5 |
Ash (g/kg) | 171.5 | 179.2 | 180.1 | 186.8 |
Phosphorus (g/kg) | 18.2 | 17.4 | 16.6 | 16.2 |
Starch (g/kg) 7 | 116.8 | 77.8 | 38.92 | 0 |
Gross energy (MJ/kg) 8 | 18.14 | 17.34 | 16.57 | 15.58 |
Items | GK00 | GK05 | GK10 | GK15 | p-Value |
---|---|---|---|---|---|
SR (%) | 87.50 ± 1.966 | 98.15 ± 1.605 | 94.44 ± 2.775 | 94.44 ± 0.000 | 0.003 |
IBW (g) | 10.34 ± 0.014 | 10.35 ± 0.030 | 10.47 ± 0.147 | 10.52 ± 0.181 | 0.328 |
FBW (g) | 76.91 ± 0.658 b | 86.61 ± 1.738 a | 87.63 ± 3.334 a | 78.88 ± 3.296 b | 0.005 |
WG (%) | 643.5 ± 5.35 b | 736.8 ± 14.84 a | 736.9 ± 25.96 a | 649.7 ± 40.72 b | 0.006 |
SGR (%/d) | 2.87 ± 0.010 b | 3.09 ± 0.105 a | 3.03 ± 0.044 a | 2.88 ± 0.077 b | 0.022 |
FI (g) | 87.8 ± 4.94 b | 107.4 ± 3.94 a | 108.7 ± 3.11 a | 106.8 ± 4.23 a | 0.003 |
FCR | 1.32 ± 0.057 | 1.39 ± 0.103 | 1.43 ± 0.053 | 1.54 ± 0.053 | 0.053 |
PER (%) | 1.53 ± 0.007 | 1.48 ± 0.091 | 1.39 ± 0.110 | 1.33 ± 0.087 | 0.146 |
Items | GK00 | GK05 | GK10 | GK15 |
---|---|---|---|---|
Usage amount of diets (kg/kg) | 1.32 ± 0.057 | 1.39 ± 0.102 | 1.43 ± 0.053 | 1.54 ± 0.053 |
Usage amount of SF (g/kg) | 198 ± 8.5 | 139 ± 10.3 | 72 ± 2.6 | 0 |
Usage amount of GKM (g/kg) | 0 | 70 ± 5.1 | 143 ± 5.3 | 231 ± 7.9 |
IFC (USD/kg) | - | 0.06 ± 0.011 c | 0.12 ± 0.008 b | 0.20 ± 0.010 a |
Items | GK000 | GK05 | GK10 | GK15 | p-Value | Regression Model | Adj. R2 |
---|---|---|---|---|---|---|---|
Moisture (%) | 70.25 ± 0.353 | 69.96 ± 0.109 | 70.82 ± 0.143 | 70.03 ± 0.352 | 0.375 | - | - |
Crude protein (%) | 18.75 ± 0.531 | 18.55 ± 0.443 | 18.05 ± 0.576 | 18.80 ± 0.409 | 0.405 | - | - |
Crude lipid (%) | 6.08 ± 0.024 a | 5.91 ± 0.070 a | 5.62 ± 0.001 b | 5.51 ± 0.114 b | <0.001 | 6.093 − 0.007 x + 1.106 e−5 x2 | 0.885 |
Ash (%) | 4.49 ± 0.004 b | 4.87 ± 0.241 ab | 5.03 ± 0.209 ab | 5.23 ± 0.245 a | 0.047 | 4.566 + 0.007 x | 0.637 |
Phosphorus (%) | 0.32 ± 0.001 b | 0.35 ± 0.027 ab | 0.38 ± 0.020 a | 0.38 ± 0.023 a | 0.019 | 0.316 + 0.008 x − 2.638 e−4 x2 | 0.620 |
Gross energy (MJ/kg) | 6.78 ± 0.118 | 6.58 ± 0.109 | 6.44 ± 0.137 | 6.63 ± 0.164 | 0.194 | - | - |
PRE (%) | 31.36 ± 0.458 a | 28.48 ± 1.488 ab | 28.44 ± 1.420 ab | 27.34 ± 0.416 b | 0.034 | 31.125 − 0.080 x + 4.367 e−4 x2 | 0.579 |
LRE (%) | 46.03 ± 1.013 a | 45.37 ±1.492 a | 42.74 ± 0.518 ab | 38.06 ± 1.030 b | 0.002 | 46.029 + 0.011 x − 9.023 e−4 x2 | 0.867 |
ARE (%) | 21.27 ± 1.013 | 20.99 ± 1.839 | 21.98 ± 1.322 | 19.86 ± 1.095 | 0.461 | - | - |
TPRE (%) | 42.06 ± 1.655 b | 44.41 ± 1.246 ab | 46.30 ± 2.380 ab | 48.26 ± 1.242 a | 0.017 | 42.225 + 0.061 x | 0.548 |
EER (%) | 28.72 ± 0.788 a | 26.49 ± 0.462 ab | 26.35 ± 0.979 ab | 24.79 ± 0.660 b | 0.005 | 28.255 − 0.035 x | 0.751 |
Items | GK00 | GK05 | GK10 | GK15 | p-Value |
---|---|---|---|---|---|
Val | 2.97 ± 0.147 | 2.85 ± 0.086 | 2.84 ± 0.049 | 2.90 ± 0.148 | 0.532 |
Lys | 5.16 ± 0.438 | 4.81 ± 0.096 | 4.79 ± 0.131 | 4.91 ± 0.222 | 0.334 |
Ile | 2.71 ± 0.210 | 2.51 ± 0.080 | 2.51 ± 0.057 | 2.56 ± 0.112 | 0.281 |
Leu | 4.56 ± 0.373 | 4.22 ± 0.094 | 4.26 ± 0.104 | 4.33 ± 0.203 | 0.327 |
Phe | 2.54 ± 0.091 | 2.40 ± 0.066 | 2.43 ± 0.050 | 2.46 ± 0.095 | 0.207 |
Met | 1.74 ± 0.103 | 1.66 ± 0.023 | 1.64 ± 0.037 | 1.68 ± 0.056 | 0.309 |
Thr | 2.73 ± 0.085 | 2.60 ± 0.058 | 2.63 ± 0.049 | 2.67 ± 0.113 | 0.322 |
Arg | 3.92 ± 0.248 | 4.02 ± 0.081 | 3.96 ± 0.075 | 4.06 ± 0.154 | 0.682 |
Cys | 0.60 ± 0.088 | 0.52 ± 0.005 | 0.53 ± 0.090 | 0.54 ± 0.04 | 0.481 |
His | 1.39 ± 0.086 | 1.30 ± 0.055 | 1.28 ± 0.043 | 1.33 ± 0.087 | 0.350 |
Asp | 5.93 ± 0.274 | 5.62 ± 0.130 | 5.70 ± 0.094 | 5.75 ± 0.244 | 0.342 |
Ser | 2.66 ± 0.103 | 2.63 ± 0.046 | 2.65 ± 0.053 | 2.68 ± 0.110 | 0.890 |
Glu | 9.17 ± 0.311 | 8.84 ± 0.188 | 8.86 ± 0.181 | 9.04 ± 0.331 | 0.419 |
Gly | 4.73 ± 1.595 | 5.76 ± 0.162 | 5.46 ± 0.111 | 5.72 ± 0.100 | 0.420 |
Ala | 4.18 ± 0.422 | 4.45 ± 0.108 | 4.32 ± 0.067 | 4.49 ± 0.112 | 0.391 |
Tyr | 1.91 ± 0.181 | 1.68 ± 0.027 | 1.68 ± 0.035 | 1.72 ± 0.127 | 0.102 |
Pro | 2.21 ± 0.715 | 2.63 ± 0.173 | 2.60 ± 0.052 | 2.61 ± 0.058 | 0.491 |
EAA | 22.41 ± 1.433 | 21.05 ± 0.491 | 21.11 ± 0.463 | 21.51 ± 0.942 | 0.317 |
NEAA | 36.70 ± 2.472 | 37.46 ± 0.877 | 37.04 ± 0.533 | 37.95 ± 1.198 | 0.752 |
TAA | 59.10 ± 1.631 | 58.51 ± 1.356 | 58.14 ± 0.993 | 59.46 ± 2.139 | 0.750 |
Items | GK00 | GK05 | GK10 | GK15 | p-Value | Regression Model | Adj. R2 |
---|---|---|---|---|---|---|---|
Val (%) | 28.96 ± 0.414 a | 27.61 ± 0.228 ab | 26.40 ± 0.933 b | 26.00 ± 1.252 b | 0.008 | 28.994 − 0.3433 x + 0.00942 x2 | 0.699 |
Lys (%) | 36.30 ± 0.566 a | 33.38 ± 0.287 ab | 32.95 ± 1.658 b | 33.43 ± 1.411 ab | 0.024 | 36.219 − 0.6914 x + 0.03405 x2 | 0.758 |
Ile (%) | 28.10 ± 0.638 a | 26.02 ± 0.182 b | 25.36 ± 0.870 b | 25.21 ± 1.008 b | 0.004 | 28.049 − 0.4753 x + 0.01930 x2 | 0.745 |
Leu (%) | 29.21 ± 0.975 a | 26.54 ± 0.172 b | 26.43 ± 1.271 b | 26.42 ± 1.162 b | 0.015 | 29.085 − 0.5687 x + 0.02661 x2 | 0.600 |
Phe (%) | 27.38 ± 0.056 a | 24.38 ± 0.114 b | 24.44 ± 1.009 b | 24.47 ± 0.837 b | 0.001 | 27.227 − 0.6282 x + 0.03032 x2 | 0.740 |
Met (%) | 36.57 ± 0.154 a | 32.89 ± 0.940 b | 32.20 ± 1.336 b | 33.74 ± 0.956 b | 0.002 | 36.528 − 0.9650 x + 0.05212 x2 | 0.779 |
Thr (%) | 31.93 ± 0.202 a | 29.12 ± 0.272 b | 28.68 ± 1.204 b | 28.14 ± 1.098 b | 0.002 | 31.811 − 0.5789 x + 0.02284 x2 | 0.749 |
His (%) | 24.40 ± 0.051 | 22.49 ± 0.628 | 22.12 ± 1.384 | 23.92 ± 1.531 | 0.088 | - | - |
Arg (%) | 32.80 ± 0.117 a | 30.48 ± 0.363 b | 29.43 ± 1.320 b | 30.28 ± 1.001 b | 0.007 | 32.829 − 0.6467 x + 0.03164 x2 | 0.709 |
Cys (%) | 28.01 ± 7.068 | 22.82 ± 0.918 | 23.39 ± 3.919 | 25.84 ± 2.394 | 0.297 | - | - |
ASP (%) | 30.71 ± 0.631 a | 27.99 ± 0.191 b | 27.47 ± 1.081 b | 26.66 ± 1.038 b | 0.001 | 30.590 − 0.5395 x + 0.01904 x2 | 0.780 |
Ser (%) | 29.99 ± 0.302 a | 27.88 ± 0.322 ab | 27.28 ± 1.241 b | 27.09 ± 1.034 b | 0.010 | 29.934 − 0.4736 x + 0.01919 x2 | 0.674 |
Glu (%) | 28.13 ± 0.238 | 26.87 ± 0.195 | 26.73 ± 1.120 | 27.39 ± 0.888 | 0.156 | - | - |
Gly (%) | 50.27 ± 2.707 a | 48.83 ± 0.907 ab | 44.13 ± 2.026 c | 45.78 ± 0.799 bc | 0.004 | 50.746 − 0.8252 x + 0.03082 x2 | 0.555 |
Ala (%) | 38.29 ± 0.914 a | 36.65 ± 0.394 a | 33.59 ± 1.291 b | 34.19 ± 0.615 b | 0.000 | 38.546 − 0.6438 x + 0.02245 x2 | 0.770 |
Tyr (%) | 29.42 ± 0.519 a | 24.73 ± 0.343 b | 24.67 ± 0.878 b | 27.26 ± 2.051 ab | 0.003 | 29.319 − 1.2235 x + 0.07287 x2 | 0.764 |
Pro (%) | 31.32 ± 0.553 | 29.50 ± 2.093 | 29.24 ± 0.743 | 30.35 ± 0.438 | 0.190 | - | - |
EAA (%) | 30.97 ± 0.525 a | 28.41 ± 0.199 b | 27.94 ± 1.199 b | 27.97 ± 1.125 b | 0.007 | 30.894 − 0.5793 x + 0.02597 x2 | 0.696 |
NEAA (%) | 32.44 ± 0.419 a | 30.41 ± 0.424 b | 29.41 ± 1.098 b | 30.13 ± 0.777 b | 0.005 | 32.478 − 0.5720 x + 0.02755 x2 | 0.734 |
TAA (%) | 31.90 ± 0.068 a | 29.66 ± 0.338 b | 28.86 ± 1.131 b | 29.31 ± 0.908 b | 0.005 | 31.888 − 0.5747 x + 0.02691 x2 | 0.739 |
Items | GK00 | GK05 | GK10 | GK15 | p-Value | Regression Model | Adj. R2 |
---|---|---|---|---|---|---|---|
Dry matter (%) | 54.64 ± 0.383 a | 65.64 ± 4.102 a | 58.82 ± 4.704 a | 37.63 ± 6.790 b | <0.001 | 54.810 + 0.551 x − 0.007 x2 | 0.855 |
Crude protein (%) | 87.08 ± 0.690 a | 89.99 ± 1.449 a | 83.81 ± 5.098 a | 72.47 ± 4.756 b | 0.004 | 87.362 + 0.168 x − 0.003 x2 | 0.789 |
Crude lipid (%) | 89.78 ± 1.534 ab | 92.21 ± 1.904 a | 92.38 ± 0.858 a | 81.04 ± 7.554 b | 0.026 | 89.322 + 1.543 x − 0.138 x2 | 0.635 |
TP (%) | 39.57 ± 3.999 b | 40.99 ± 0.504 b | 53.04 ± 4.127 ab | 59.70 ± 6.199 a | 0.010 | 36.816 + 0.226 x | 0.700 |
Val (%) | 91.13 ± 1.697 a | 92.98 ± 0.492 a | 91.47 ± 1.483 a | 83.17 ± 1.637 b | 0.000 | 90.955 + 1.015 x − 0.102 x2 | 0.888 |
Lys (%) | 95.62 ± 1.294 a | 95.66 ± 0.284 a | 92.11 ± 2.427 a | 85.41 ± 4.214 b | 0.003 | 95.646 + 0.327 x − 0.067 x2 | 0.761 |
Ile (%) | 93.45 ± 0.404 a | 95.06 ± 1.372 a | 91.90 ± 1.483 a | 84.70 ± 1.436 b | 0.000 | 93.483 + 0.734 x − 0.088 x2 | 0.923 |
Leu (%) | 95.16 ± 0.319 a | 95.75 ± 0.720 a | 93.17 ± 1.375 a | 87.14 ± 1.509 b | 0.000 | 95.145 + 0.461 x − 0.066 x2 | 0.921 |
Phe (%) | 94.22 ± 0.426 a | 95.29 ± 0.467 a | 92.08 ± 2.390 a | 86.04 ± 3.249 b | 0.002 | 94.293 + 0.511 x − 0.071 x2 | 0.780 |
Met (%) | 80.06 ± 5.047 a | 81.82 ± 8.802 a | 67.61 ± 4.467 ab | 55.16 ± 4.976 b | 0.002 | 80.948 + 0.353 x − 0.142 x2 | 0.751 |
Thr (%) | 90.98 ± 1.462 a | 93.55 ± 0.301 a | 91.14 ± 1.792 a | 83.26 ± 2.455 b | 0.000 | 90.953 + 1.057 x − 0.105 x2 | 0.862 |
His (%) | 96.27 ± 0.754 a | 96.88 ± 0.412 a | 95.37 ± 1.470 a | 91.31 ± 2.058 b | 0.004 | 96.252 + 0.371 x − 0.047 x2 | 0.753 |
Arg (%) | 96.54 ± 0.434 ab | 97.34 ± 0.159 a | 96.79 ± 0.905 ab | 94.00 ± 2.102 b | 0.033 | 96.494 + 0.376 x − 0.036 x2 | 0.562 |
Cys (%) | 87.40 ± 0.945 ab | 89.90 ± 0.944 a | 84.16 ± 2.218 b | 68.34 ± 1.991 c | 0.000 | 87.817 + 1.927 x − 0.217 x2 | 0.891 |
Asp (%) | 90.04 ± 2.385 a | 92.77 ± 0.121 a | 89.35 ± 3.004 a | 80.66 ± 3.279 b | 0.002 | 90.080 + 1.083 x − 0.114 x2 | 0.791 |
Ser (%) | 93.04 ± 0.738 a | 94.95 ± 0.210 a | 93.19 ± 1.528 a | 87.34 ± 2.520 b | 0.001 | 93.022 + 0.785 x − 0.078 x2 | 0.806 |
Glu (%) | 92.74 ± 1.128 a | 95.05 ± 0.175 a | 92.22 ± 2.719 a | 85.14 ± 2.743 b | 0.002 | 92.784 + 0.896 x − 0.094 x2 | 0.798 |
Gly (%) | 87.35 ± 1.479 a | 91.58 ± 0.399 a | 89.96 ± 2.685 a | 80.42 ± 1.021 b | 0.000 | 87.249 + 1.618 x − 0.138 x2 | 0.889 |
Ala (%) | 90.62 ± 2.157 a | 93.30± 0.295 a | 91.78 ± 2.457 a | 83.59 ± 3.416 b | 0.005 | 90.492 + 1.178 x − 0.109 x2 | 0.735 |
Cyr (%) | 94.17 ± 0.891 a | 96.79 ± 1.275 a | 93.80 ± 3.270 a | 87.17 ± 1.985 b | 0.003 | 94.272 + 0.908 x − 0.093 x2 | 0.771 |
Pro (%) | 91.06 ± 1.133 b | 93.85 ± 0.058 a | 92.77 ± 0.996 ab | 84.54 ± 0.287 c | 0.000 | 90.897 + 1.239 x − 0.110 x2 | 0.952 |
EAA (%) | 92.59 ± 0.494 a | 93.96 ± 0.703 a | 90.42 ± 1.825 a | 82.33 ± 3.191 b | 0.000 | 92.611 + 0.731 x − 0.094 x2 | 0.872 |
NEAA (%) | 91.31 ± 1.380 a | 93.98 ± 0.131 a | 91.57 ± 2.477 a | 83.74 ± 2.362 b | 0.000 | 91.290 + 1.074 x − 0.105 x2 | 0.837 |
TAA (%) | 92.34 ± 0.908 a | 94.30± 0.240 a | 91.55 ± 2.054 a | 84.07 ± 2.545 b | 0.001 | 92.336 + 0.865 x − 0.094 x2 | 0.861 |
Metrics | Days | GK00 | GK05 | GK10 | GK15 | p-Value | Regression Model | Adj. R2 |
---|---|---|---|---|---|---|---|---|
pH | 14 | 7.38 ± 0.028 | 7.42 ± 0.056 | 7.45 ± 0.110 | 7.46 ± 0.066 | 0.682 | - | - |
28 | 7.60 ± 0.120 | 7.59 ± 0.021 | 7.60 ± 0.040 | 7.62 ± 0.058 | 0.894 | - | - | |
42 | 7.29 ± 0.078 | 7.26 ± 0.058 | 7.23 ± 0.036 | 7.31 ± 0.076 | 0.525 | - | - | |
70 | 6.97 ± 0.127 | 6.76 ± 0.068 | 6.83 ± 0.171 | 6.74 ± 0.137 | 0.299 | - | - | |
NH4+-N (mg/L) | 14 | 7.61 ± 0.594 a | 0.33 ± 0.146 b | 0.65 ± 0.339 b | 0.32 ± 0.09 b | <0.001 | 7.1125 − 0.2285 x + 0.0016 x2 | 0.866 |
28 | 0.31 ± 0.008 b | 1.12 ± 0.04 a | 0.70 ± 0.25 ab | 0.61 ± 0.090 ab | 0.023 | 0.3971 + 0.0196 x − 1.8378 x2 | 0.608 | |
42 | 2.33 ± 0.283 a | 2.01 ± 0.355 a | 0.98 ± 0.109 b | 1.86 ± 0.040 a | 0.001 | 2.5229 − 0.0365 x + 2.8611 e−4 x2 | 0.440 | |
70 | 0.68 ± 0.099 | 0.74 ± 0.133 | 0.74 ± 0.198 | 0.59 ± 0.189 | 0.690 | - | - | |
NO2−-N (mg/L) | 14 | 0.95 ± 0.057 b | 1.70 ± 0.212 a | 2.06 ± 0.007 a | 1.07 ± 0.087 b | <0.001 | 0.9020 + 0.0414 x − 3.9257 e−4 x2 | 0.888 |
28 | 0.12 ± 0.014 | 0.28 ± 0.130 | 0.23 ± 0.101 | 0.31 ± 0.142 | 0.392 | - | - | |
42 | 0.96 ± 0.311 | 1.11 ± 0.098 | 0.77 ± 0.098 | 1.16 ± 0.231 | 0.131 | - | - | |
70 | 0.32 ± 0.092 | 0.34 ± 0.127 | 0.29 ± 0.035 | 0.46 ± 0.150 | 0.441 | - | - | |
NO3−-N (mg/L) | 14 | 1.23 ± 0.106 | 1.63 ± 0.735 | 1.47 ± 0.255 | 1.39 ± 0.346 | 0.818 | - | - |
28 | 9.86 ± 0.502 c | 14.85 ± 0.670 a | 14.56 ± 0.437 ab | 13.29 ± 0.307 b | <0.001 | 10.1698 + 0.1677 x − 0.0014 x2 | 0.852 | |
42 | 9.56 ± 0.269 b | 13.38 ± 2.337 ab | 14.33 ± 0.766 a | 12.11 ± 0.946 ab | 0.036 | 9.53389 + 0.1621 x − 0.0014 x2 | 0.603 | |
70 | 11.09 ± 2.022 | 13.60 ± 2.088 | 14.39 ± 2.640 | 14.28 ± 1.616 | 0.392 | - | - | |
Hardness (mg/L) | 14 | 98.8 ± 2.13 | 102.3 ± 7.23 | 103.6 ± 6.13 | 105.7 ± 6.13 | 0.675 | - | - |
28 | 126.9 ± 4.96 | 131.4 ± 2.65 | 132.1 ± 7.04 | 135.7 ± 3.23 | 0.320 | - | - | |
42 | 121.4 ± 1.42 | 126.0 ± 1.53 | 125.7 ± 4.18 | 129.4 ± 1.74 | 0.066 | - | - | |
70 | 94.3 ± 0.04 | 97.0 ± 1.15 | 91.6 ± 12.3 | 97.6 ± 13.4 | 0.676 | - | - | |
TP (mg/L) | 14 | 1.06 ± 0.233 ab | 1.25 ± 0.046 ab | 1.40 ± 0.064 a | 0.88 ± 0.210 b | 0.017 | 1.0175 + 0.0153 x − 1.6377 e−4 x2 | 0.560 |
28 | 0.57 ± 0.113 c | 1.00 ± 0.102 b | 1.62 ± 0.086 a | 1.64 ± 0.068 a | <0.001 | 0.5140 + 0.0212 x − 9.5750 e−5 x2 | 0.912 | |
42 | 0.72 ± 0.007 d | 1.12 ± 0.085 c | 1.84 ± 0.072 b | 2.11 ± 0.093 a | <0.001 | 0.6589 + 0.0184 x − 3.5350 e−5 x2 | 0.949 | |
70 | 0.66 ± 0.050 c | 1.27 ± 0.156 b | 1.87 ± 0.106 a | 1.88 ± 0.280 a | <0.001 | 0.6228 + 0.0251 x − 1.1009 e−4 x2 | 0.952 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.-B.; Wu, D.; Gao, L.; Rong, S.; Xu, G.-H.; Liang, X.-F. Evaluation of Seaweed Meal and Konjac Glucomannan Mixture as Feed Ingredients in Largemouth Bass Micropterus salmoides. Fishes 2025, 10, 345. https://doi.org/10.3390/fishes10070345
Cheng Y-B, Wu D, Gao L, Rong S, Xu G-H, Liang X-F. Evaluation of Seaweed Meal and Konjac Glucomannan Mixture as Feed Ingredients in Largemouth Bass Micropterus salmoides. Fishes. 2025; 10(7):345. https://doi.org/10.3390/fishes10070345
Chicago/Turabian StyleCheng, Yan-Bo, Dan Wu, Liang Gao, Shun Rong, Guo-Huan Xu, and Xu-Fang Liang. 2025. "Evaluation of Seaweed Meal and Konjac Glucomannan Mixture as Feed Ingredients in Largemouth Bass Micropterus salmoides" Fishes 10, no. 7: 345. https://doi.org/10.3390/fishes10070345
APA StyleCheng, Y.-B., Wu, D., Gao, L., Rong, S., Xu, G.-H., & Liang, X.-F. (2025). Evaluation of Seaweed Meal and Konjac Glucomannan Mixture as Feed Ingredients in Largemouth Bass Micropterus salmoides. Fishes, 10(7), 345. https://doi.org/10.3390/fishes10070345