Evaluation of Fresh Azolla pinnata as a Low-Cost Supplemental Feed for Thai Silver Barb Barbonymus gonionotus
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Cultivation of A. pinnata
4.2. Nutrient Composition Analysis of Feed
4.3. Feeding Experiment
4.4. Fish Rearing and Management
4.5. Growth and Nutritional Parameters Analysis
4.6. Calculation and Statistical Analysis
Ln initial weight (g)/(Period in days) ×100
Hepatosomatic index (HSI) = Liver weight (g)/Body weight (g) × 100
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Narejo, N.T.; Dars, B.A.; Achakzai, G.D. Preparation of low-cost fish feed for the culture of Labeo rohita (hamilton) in glass aquaria. Sindh Univ. Res. J. (Sci. Ser.) 2010, 42, 7–10. [Google Scholar]
- Hardy, R.W. Alternate protein sources for salmon and trout diets. Anim. Feed Sci. Technol. 1996, 59, 71–80. [Google Scholar] [CrossRef]
- Hardy, R.W. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquac. Res. 2010, 41, 770–776. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Covès, D.; Dutto, G.; Blanc, D. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 2004, 230, 391–404. [Google Scholar] [CrossRef]
- Goswami, U.; Goswami, S.C. Formulation of cheaper artificial feeds for shrimp culture: Preliminary biochemical, physical and biological evaluation. Aquaculture 1979, 16, 309–317. [Google Scholar] [CrossRef]
- Law, A.T. Digestibility of low-cost ingredients in pelleted feed by grass carp (Ctenopharyngodon idella C. et V.). Aquaculture 1986, 51, 97–103. [Google Scholar] [CrossRef]
- Wahab, M.A.; Azim, M.E.; Mahmud, A.A.; Kohinoor, A.H.M.; Haque, M.M. Optimisation of stocking density of Thai silver barb (Barbodes gonionotus Bleeker) in the duckweed-fed four species polyculture system. Bangladesh J. Fish. Res. 2001, 5, 13–21. [Google Scholar]
- Mahean Haque, S.; Wahab, M.A.; Wahid, M.I.; Haq, M.S. Impacts of Thai silver barb (Puntius gonionotus Bleeker) inclusion in the polyculture of carps. Bangladesh J. Fish. Res. 1998, 2, 15–22. [Google Scholar]
- Rothuis, A.J.; Duong, L.T.; Richter, C.J.J.; Ollevier, F. Polyculture of silver barb, Puntius gonionotus (Bleeker), Nile tilapia, Oreochromis niloticus (L.), and common carp, Cyprinus carpio L. in Vietnamese ricefields: Feeding ecology and impact on rice and ricefield environment. Aquac. Res. 1998, 29, 649–660. [Google Scholar] [CrossRef]
- Wahab, M.A.; Ahmed, Z.F.; Islam, M.A.; Haq, M.S.; Rahmatullah, S.M. Effects of introduction of common carp, Cyprinus carpio (L.), on the pond ecology and growth of fish in polyculture. Aquac. Res. 1995, 26, 619–628. [Google Scholar] [CrossRef]
- Prabina, B.J.; Kumar, K. Dried Azolla as a nutritionally rich cost effective and immuno-modulatory feed supplement for broilers. Asian J. Anim. Sci. 2010, 5, 20–22. [Google Scholar]
- Maity, J.; Patra, B.C. Effect of replacement of fishmeal by Azolla leaf meal on growth, food utilization, pancreatic protease activity and RNA/DNA ratio in the fingerlings of Labeo rohita (Ham.). Can. J. Pure Appl. Sci. 2008, 2, 323–333. [Google Scholar]
- Cherryl, D.M.; Prasad, R.M.V.; Rao, J.S.; Jayalaxmi, P.; Kumar, D.S. A study on the nutritive value of Azolla pinnata. Livest. Res. Int. 2014, 2, 13–15. [Google Scholar]
- Basak, B.; Pramanik, M.A.H.; Rahman, M.S.; Tarafdar, S.U.; Roy, B.C. Azolla (Azolla pinnata) as a Feed Ingredient in Broiler Ration. Int. J. Poult. Sci. 2002, 1, 29–34. [Google Scholar]
- Anitha, K.C.; Rajeshwari, Y.B.; Prasanna, S.B.; Shilpa, S.J. Nutritive evaluation of Azolla as livestock feed. J. Exp. Biol. Agric. Sci. 2016, 4, 670–674. [Google Scholar]
- Pillai, P.K.; Premalatha, S.; Rajamony, S. AZOLLA-A sustainable feed substitute for livestock. LEISA India 2002, 4, 15–17. [Google Scholar]
- Cagauan, A.G.; Branckaert, R.D.; Van Hove, C. Integrating fish and azolla into rice-duck farming in Asia. Naga ICLARM Q. 2000, 23, 4–10. [Google Scholar]
- Cagauan, A.G.; Pullin, R.S.V. Azolla in aquaculture: Past, present and future. In Recent Advances in Aquaculture; Muir, J., Roberts, R.J., Eds.; Blackwell Science: Oxford, UK, 1994; pp. 104–130. [Google Scholar]
- Mohanty, S.N.; Dash, S.P. Evaluation of Azolla caroliniana for inclusion in carp diet. J. Aquac. Trop. 1995, 10, 343–354. [Google Scholar]
- Fiogbé, E.D.; Micha, J.C.; Van Hove, C. Use of a natural aquatic fern, Azolla microphylla, as a main component in food for the omnivorous–phytoplanktonophagous tilapia, Oreochromis niloticus L. J. Appl. Ichthyol. 2004, 20, 517–520. [Google Scholar] [CrossRef]
- Hossain, M.A.; Focken, U.; Becker, K. Nutritional evaluation of dhaincha (Sesbania aculeata) seeds as dietary protein source for tilapia Oreochromis niloticus. Aquac. Res. 2002, 33, 653–662. [Google Scholar] [CrossRef]
- Fasakin, E.A.; Balogun, A.M.; Fagbenro, O.A. Evaluation of Sun-Dried Water Fern, Azolla africana and Duckweed, Spirodela polyrrhiza in Practical Diets for Nile Tilapia, Oreochromis niloticus Fingerlings. J. Appl. Aquac. 2001, 11, 83–92. [Google Scholar] [CrossRef]
- Sudaryono, A. Use of Azolla (Azolla pinnata) meal as a substitute for defatted soybean meal in diets of juvenile black tiger shrimp (Penaeus monodon). J. Coast. Dev. 2006, 9, 145–154. [Google Scholar]
- Kohinoor, A.H.M.; Islam, M.S.; Begum, N.; Hussain, M.G. Production of Thai sharpunti (Puntius gonionotus Bleeker) in polyculture with carps using low-cost feed. Bangladesh J. Fish. Res. 1999, 3, 157–164. [Google Scholar]
- Azad Shah, A.K.M.; Hossain, M.A.; Afsana, K. Effect of different rice brans on the growth of Thai silver barb (Puntius gonionotus Bleeker) in seasonal ponds. Bangladesh J. Fish. Res. 1998, 2, 159–169. [Google Scholar]
- Krogdahl, Å.; Penn, M.; Thorsen, J.; Refstie, S.; Bakke, A.M. Important antinutrients in plant feedstuffs for aquaculture: An update on recent findings regarding responses in salmonids. Aquac. Res. 2010, 41, 333–344. [Google Scholar] [CrossRef]
- Fasakin, E.A. Nutrient quality of leaf protein concentrates produced from water fern (Azolla africana Desv) and duckweed (Spirodela polyrrhiza L. Schleiden). Biores. Technol. 1999, 69, 185–187. [Google Scholar] [CrossRef]
- Micha, J.C.; Antoine, T.; Wery, P.; Van Hove, C. Growth, ingestion capacity, comparative appetency and biochemical composition of Oreochromis niloticus and Tilapia rendalli fed with Azolla. In Proceedings of the Second International Symposium on Tilapia in Aquaculture, Department of Fisheries, Bangkok, Thailand, 16–20 March 1987; Pullin, R.S.V., Bhukaswan, T., Tonguthai, K., Maclean, J.L., Eds.; International Centre for Living Aquatic Resource Management: Manila, Philippines, 1998. [Google Scholar]
- Abou, Y.; Fiogbé, E.D.; Beckers, Y.; Micha, J.C. Approximate compositional values and tissue fatty acid profiles of Nile Tilapia (Oreochromis niloticus L.) fed Azolla-diets in earthen ponds. Food Nutr. Sci. 2011, 2, 964–973. [Google Scholar] [CrossRef]
- Badwy, T.M.; Ibrahim, E.M.; Zeinhom, M.M. Partial replacement of fish meal with dried microalga (Chlorella spp and Scendesmus spp.) in Nile tilapia (Oreochromis niloticus) diets. In Proceedings of the Eighth International Symposium on Tilapia in Aquaculture, Cairo, Egypt, 12–14 October 2008. [Google Scholar]
- Ahmad, M.; Qureshi, T.A.; Singh, A.B.; Manohar, S.; Borana, K.; Chalko, S.R. Effect of dietary protein, lipid and carbohydrate contents on the carcass composition of Cyprinus carpio communis fingerlings. Int. J. Fish. Aquac. 2012, 4, 30–40. [Google Scholar]
- Ali, M.Z.; Jauncey, K. Optimal dietary carbohydrate to lipid ratio in African catfish Clarias gariepinus (Burchell 1822). Aquac. Int. 2004, 12, 169–180. [Google Scholar] [CrossRef]
- Enyidi, U.D.; Pirhonen, J.; Kettunen, J.; Vielma, J. Effect of feed protein:lipid ratio on growth parameters of African Catfish Clarias gariepinus after fish meal substitution in the diet with bambaranut (Voandzeia subterranea) meal and soybean (Glycine max) meal. Fishes 2017, 2, 1. [Google Scholar] [CrossRef]
- Bagenal, T.B.; Tesch, A.T. Conditions and Growth Patterns in Fresh Water Habitats; Blackwell Scientific Publications: Oxford, UK, 1978. [Google Scholar]
- Fagade, S.O. Observation of the biology of two species of Tilapia from the Lagos lagoon Nigeria. Bull. Inst. Fond. Afr. Noire (Ser. A) 1979, 41, 627–653. [Google Scholar]
- Ayoade, A.A. Length-weight relationship and diet of African carp Labeo ogunensis (Boulenger, 1910) in Asejire Lake Southwestern Nigeria. J. Fish. Aquat. Sci. 2011, 6, 472–478. [Google Scholar] [CrossRef]
- Mostakim, M.; Islam, M.S.; Rahman, M.K.; Rahmatullah, S.M. Size related feeding patterns and electivity indices of silver barb (Barbodes gonionotus Bleeker) from a pond, Bangladesh. Bangladesh J. Fish. Res. 2001, 5, 105–114. [Google Scholar]
- Wu, Y.V.; Rosati, R.; Sessa, D.J.; Brown, P. Utilization of corn gluten feed by Nile Tilapia. Prog. Fish-Cult. 1995, 57, 305–309. [Google Scholar] [CrossRef]
- El-Sayed, A.F.M. Long-term evaluation of cotton seed meal as a protein source for Nile tilapia, Oreochromis niloticus (Linn.). Aquaculture 1990, 84, 315–320. [Google Scholar] [CrossRef]
- Cunniff, P. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Washington, DC, USA, 1995; ISBN 978-0-935584-54-7. [Google Scholar]
- Islam, M.M.; Rahman, M.H.; Rahman, M.M. Training Manual on Improved Carp/Carp-Shing Poly Culture in Pond and Dyke Cropping; Collis, W.J., Hossain, M.M., Miah, M.M.A., Sarker, A.K., Islam, M.M., Roy, S., Saha, G.C., Jahura, I., Eds.; Director World Fish Center: Dhaka, Bangladesh, 2011. [Google Scholar]
- Ighwela, K.A.; Ahmad, A.B.; Abol-Munafi, A.B. The selection of viscerosomatic and hepatosomatic indices for the measurement and analysis of Oreochromis niloticus condition fed with varying dietary maltose levels. Int. J. Fauna Biol. Stud. 2014, 1, 18–20. [Google Scholar]
Composition (%) | Floating Commercial Fish Feed (CFF) | A. pinnata |
---|---|---|
Moisture | 11.50 ± 0.20 a | 67 ± 1.44 b |
Crude Protein | 35.0 ± 0.46 a | 27.0 ± 0.39 b |
Crude Lipid | 3.0 ± 0.27 a | 2.65 ± 0.10 a |
Ash | 10.0 ± 0.22 a | 17.37± 0.73 b |
Minerals (%) | ||
Ca | 0.10 ± 0.015 a | 0.71 ± 0.038 b |
Mg | 0.053 ± 0.01 a | 0.060 ± 0.004 a |
K | 0.18 ± 0.02 a | 0.16 ± 0.03 a |
P | 0.70 ± 0.055 a | 0.20 ± 0.047 b |
S | 0.17 ± 0.03 a | 0.13 ± 0.028 a |
Na | 0.081 ± 0.005 a | 0.083 ± 0.004 a |
Minerals (ppm) | ||
Fe | 0.07 ± 0.003 a | 0.77 ± 0.026 b |
Zn | 88 ± 0.45 a | 280 ± 1.5 b |
Cu | 17 ± 0.32 a | 28 ± 0.60 b |
Mn | 54 ± 0.17 a | 576 ± 1.10 b |
Treatments | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|
IAW (g) | 3.90 ± 0.13 | 3.90 ± 0.11 | 3.90 ± 0.29 | 3.90 ± 0.09 | 3.90 ± 0.08 |
FAW (g) | 30.93 ± 0.4 a | 30.68 ± 0.4 a | 24.55 ± 0.45 b | 19.81 ± 0.25 c | 15.20 ± 0.39 d |
AWG (g) | 27.03 ± 0.16 a | 26.78 ± 0.10 a | 20.65 ± 0.19 b | 15.91 ± 0.46 c | 11.30 ± 0.34 d |
SGR (% day−1) | 3.70 ± 0.14 a | 3.68 ± 0.16 a | 3.28 ± 0.11 b | 2.90 ± 0.08 c | 2.43 ± 0.18 d |
SR (%) | 99.33 ± 1.15 a | 98.67 ± 1 a | 99.33 ± 0.58 a | 98 ± 1 a | 99.33 ± 0.58 a |
NPR (ton ha−1 year−1) | 9.88 ± 0.65 a | 9.73 ± 0.40 a | 7.84 ± 0.21 b | 6.24 ± 0.36 c | 4.85 ± 0.79 d |
CF | 2.35 ± 0.035 a | 2.29 ± 0.032 a | 2.12 ± 0.13 a | 1.90 ± 0.40 a | 1.59 ± 0.095 b |
HSI | 1.41 ± 0.03 a | 1.32 ± 0.04 a | 1.74 ± 0.06 b | 2.03 ± 0.04 c | 2.44 ± 0.09 d |
FCR | 0.88 ± 0.09 a | 0.93 ± 0.17 a | 1.15 ± 0.12 b | 1.66 ± 0.15 c | 2.64 ± 0.06 d |
PER | 2.98 ± 0.03 a | 2.94 ± 0.02 a | 2.26 ± 0.08 b | 1.75 ± 0.07 c | 1.24 ± 0.02 d |
Composition (%) | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|
Moisture | 74.25 ± 1.11 a | 74.44 ± 0.83 a | 76.31 ± 0.39 b | 77.57 ± 1.34 c | 80.88 ± 0.19 d |
Protein | 16.56 ± 0.09 a | 16.75 ± 0.06 a | 16.26 ± 0.07 a | 16.37 ± 0.11 a | 15.65 ± 0.1 b |
Lipid | 5.34 ± 0.52 a | 5.02 ± 0.15 a | 3.86 ± 0.14 b | 2.19 ± 0.04 c | 0.73 ± 0.03 d |
Ash | 3.00 ± 0.09 a | 3.00 ± 0.24 a | 2.81 ± 0.12 a | 3.00 ± 0.11 a | 2.74 ± 0.20 a |
Treatments | Protein % (Dry Matter) | Protein (g/day) | Feed Quantity (g in Wet Weight/day) | |||
---|---|---|---|---|---|---|
CFF | A. pinnata | CFF | A. pinnata | CFF | A. pinnata | |
T1 (Control) | 100 | 0 | 5.46 | 0 | 17.63 | 0 |
T2 | 75 | 25 | 4.10 | 1.36 | 13.23 | 15.27 |
T3 | 50 | 50 | 2.73 | 2.73 | 8.81 | 30.64 |
T4 | 25 | 75 | 1.36 | 4.10 | 4.40 | 46.03 |
T5 | 0 | 100 | 0 | 5.46 | 0 | 61.27 |
Average Fish Weight (g) | Daily Ratio (% of Body Weight) |
---|---|
1–5 | 10 |
5–10 | 5 |
10–30 | 4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, M.; Rahim, F.I.; Hossain, M.A. Evaluation of Fresh Azolla pinnata as a Low-Cost Supplemental Feed for Thai Silver Barb Barbonymus gonionotus. Fishes 2018, 3, 15. https://doi.org/10.3390/fishes3010015
Das M, Rahim FI, Hossain MA. Evaluation of Fresh Azolla pinnata as a Low-Cost Supplemental Feed for Thai Silver Barb Barbonymus gonionotus. Fishes. 2018; 3(1):15. https://doi.org/10.3390/fishes3010015
Chicago/Turabian StyleDas, Mousumi, Ferdous Ibn Rahim, and Md. Amzad Hossain. 2018. "Evaluation of Fresh Azolla pinnata as a Low-Cost Supplemental Feed for Thai Silver Barb Barbonymus gonionotus" Fishes 3, no. 1: 15. https://doi.org/10.3390/fishes3010015
APA StyleDas, M., Rahim, F. I., & Hossain, M. A. (2018). Evaluation of Fresh Azolla pinnata as a Low-Cost Supplemental Feed for Thai Silver Barb Barbonymus gonionotus. Fishes, 3(1), 15. https://doi.org/10.3390/fishes3010015