Numeric Simulation Demonstrates That the Upstream Movement of Invasive Bigheaded Carp Can Be Blocked at Sets of Mississippi River Locks-and-Dams Using a Combination of Optimized Spillway Gate Operations, Lock Deterrents, and Carp Removal
Abstract
:1. Introduction and Mini-Review
1.1. The Bigheaded Carp Problem
1.2. Mississippi River Locks-and-Dams
Lock-and-Dam | % Open-River | River km | Δ River km | # of Gates | Other Spillway? |
---|---|---|---|---|---|
1 | 0.0% | 1365 | 8 | 0 | Yes |
2 | 1.3% | 1312 | 53 | 19 | No |
3 | 15.6% | 1282 | 29 | 4 | Yes |
4 | 3.9% | 1212 | 71 | 28 | No |
5 | 1.7% | 1188 | 24 | 34 | No |
5A | 13.9% | 1172 | 15 | 10 | Yes |
6 | 9.7% | 1149 | 23 | 15 | Yes |
7 | 4.7% | 1131 | 19 | 16 | Yes |
8 | 3.9% | 1093 | 37 | 15 | Yes |
9 | 18.4% | 1043 | 50 | 13 | Yes |
10 | 19.7% | 990 | 53 | 12 | Yes |
11 | 1.8% | 938 | 51 | 16 | No |
12 | 13.9% | 896 | 42 | 10 | Yes |
13 | 5.5% | 841 | 55 | 13 | Yes |
14 | 0.5% | 794 | 47 | 17 | No |
15 | 1.3% | 777 | 17 | 11 | No |
16 | 16.8% | 736 | 41 | 19 | Yes |
17 | 31.9% | 703 | 33 | 11 | Yes |
18 | 12.1% | 661 | 43 | 17 | Yes |
19 | 0.0% | 586 | 75 | 119 | No |
20 | 33.9% | 552 | 34 | 43 | No |
21 | 21.3% | 523 | 29 | 13 | Yes |
22 | 16.5% | 485 | 38 | 13 | Yes |
24 | 17.6% | 440 | 45 | 15 | Yes |
25 | 20.5% | 388 | 51 | 17 | Yes |
26 | 19.7% | 323 | 65 | 9 | Yes |
1.3. Options to Control Carp Passage at Locks-and-Dams
1.4. Introduction to This Study
2. Methods
2.1. Model Framework
2.1.1. Environment
2.1.2. Fish Population and Size Structure
2.1.3. Fish Behavior—Upstream Movement and Route Selection
2.1.4. Fish Behavior—Passage Indices and Deterrence
Spillway Gate Passage
Lock Passage and Deterrents
Lock and/or Spillway Passage
2.1.5. Carp Removal
2.2. Model Simulation
3. Results
3.1. Effects of Managing Carp Using Consecutive LDs
3.2. Effects of Managing Carp by Modifying LD Spillway Gate Operations
3.3. Effects of Adding a Non-Physical Deterrent to One or Both Locks
3.4. Effects of Carp Removal in the Intermediate Pool
3.5. Overview of the Averaged Combined Effects of Multiple Management Options
4. Discussion
5. Summary
6. Management Recommendations and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ricciardi, A.; MacIsaac, H.J. Impacts of biological invasions on freshwater ecosystems. In Fifty Years of Invasion Ecology: The Legacy of Charles Elton; Richardson, D.M., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 211–224. [Google Scholar]
- Britton, J.R.; Gozlan, R.E.; Copp, G.H. Managing non-native fish in the environment. Fish Fish. 2011, 12, 256–274. [Google Scholar] [CrossRef]
- Sorensen, P.W.; Bajer, P.G. Case studies demonstrate that common carp can be sustainably reduced by exploiting source-sink dynamics in midwestern lakes. Fishes 2020, 5, 36. [Google Scholar] [CrossRef]
- Dunker, K.; Massengill, R.; Bradley, P.; Jacobson, C.; Swenson, N.; Wizik, A.; DeCino, R. A decade in review: Alaska’s adaptive management of an invasive apex predator. Fishes 2020, 5, 12. [Google Scholar] [CrossRef]
- Yick, J.L.; Wisniewski, C.; Diggle, J.; Patil, J.G. Eradication of the invasive common carp, Cyprinus carpio from a Large Lake: Lessons and insights from the Tasmanian experience. Fishes 2021, 6, 6. [Google Scholar]
- Sorensen, P.W.; Bajer, P.J. The common carp. In Encyclopedia of Invasive Introduced Species; Simberloff, D., Rejmanek, M., Eds.; University of California Press: Berkeley, CA, USA, 2011; pp. 100–104. [Google Scholar]
- Sorensen, P.W.; Bergsetd, R. The sea lamprey. In Encyclopedia of Invasive Introduced Species; Simberloff, D., Rejmanek, M., Eds.; University of California Press: Berkeley, CA, USA, 2011; pp. 619–622. [Google Scholar]
- Siefkes, M.J.; Steeves, T.B.; Sullivan, W.P.; Twohey, M.B.; Li, W. Sea lamprey control: Past, present, and future. In Great Lakes Fisheries Policy and Management: A Binational Perspective, 2nd ed.; Taylor, W.W., Lynch, A.J., Leonard, N.J., Eds.; Michigan State University Press: East Lansing, MI, USA, 2013; pp. 651–704. [Google Scholar]
- Kolar, C.S.; Chapman, D.C.; Courtenay, W.R., Jr.; Housel, C.M.; Williams, J.D.; Jennings, D.P. Bigheaded Carps: A Biological Synopsis and Environmental Risk Assessment; Special Publication 33; American Fisheries Society: Bethesda, MD, USA, 2007. [Google Scholar]
- Reeves, A. Overrun: Dispatches from the Asian Carp Crisis; ECW Press: Toronto, ON, Canada, 2019. [Google Scholar]
- Irons, K.S.; Sass, G.G.; McClelland, M.A.; Stafford, J.D. Reduced condition factor of two native fish species coincident with invasion of non-native Asian carps in the Illinois River, USA is this evidence for competition and reduced fitness? Fish Biol. 2007, 71, 258–273. [Google Scholar] [CrossRef]
- Sampson, S.J.; Chick, J.H.; Pegg, M.A. Diet overlap among two Asian carp and three native fishes in backwater lakes on the Illinois and Mississippi rivers. Biol. Invasion 2009, 11, 483–496. [Google Scholar] [CrossRef]
- Chick, J.H.; Gibson-Reinemer, D.K.; Soeken-Gittinger, L.; Casper, A.F. Invasive silver carp is empirically linked to declines of native sport fish in the Upper Mississippi River System. J. Biol. Invasion 2020, 22, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Pendleton, R.M.; Schwinghamer, C.; Solomon, L.E.; Casper, A.F. Competition among river planktivores: Are native planktivores still fewer and skinner in response to the Silver carp invasion? Environ. Biol. Fish 2017, 100, 1213–1222. [Google Scholar] [CrossRef]
- George, A.E.; Garcia, T.; Chapman, D.C. Comparison of size, terminal fall velocity, and density of Bighead Carp, Silver Carp, and Grass Carp eggs for use in drift modeling. Trans. Am. Fish. Soc. 2017, 146, 834–843. [Google Scholar] [CrossRef]
- Parsons, G.R.; Stell, E.; Hoover, J.J. Estimating Burst Swim Speeds and Jumping Characteristics of Silver Carp (Hypophthalmichthys molitrix) Using Video Analyses and Principles of Projectile Physics; US Army Engineer Research and Development Center: Vicksburg, MI, USA, 2016. [Google Scholar]
- Asian Carp Regional Coordinating Committee (ACRCC). 2019 Asian Carp Action Plan. 2019. Available online: https://www.asiancarp.us/Documents/2019ActionPlan.pdf (accessed on 18 September 2020).
- Noatch, M.R.; Suski, C.D. Non-physical barriers to deter fish movements. Environ. Rev. 2012, 20, 71–82. [Google Scholar] [CrossRef]
- Vetter, B.J.; Cupp, A.R.; Fredricks, K.T.; Gaikowski, M.P.; Mensinger, A.F. Acoustical deterrence of silver carp (Hypophthalmichthys molitrix). Biol. Invasions 2015, 17, 3383–3392. [Google Scholar] [CrossRef]
- Dennis, C.E.; Sorensen, P.W. Common carp are initially repelled by a broadband outboard motor sound in a lock chamber but habituate rapidly. N. Am. J. Fish. Manag. 2020, 40, 1499–1519. [Google Scholar] [CrossRef]
- Hoover, J.J.; Zielinski, D.P.; Sorensen, P.W. Swimming performance of adult bighead carp Hypophthalmichthys nobilis (Richardson, 1845) and silver carp H. molitrix (Valenciennes, 1844). J. Appl. Ichthyol. 2017, 33, 54–62. [Google Scholar] [CrossRef]
- Knights, B.C.; Vallazza, J.M.; Zigler, S.J.; Dewey, M.R. Habitat and movement of lake sturgeon in the upper Mississippi River system, USA. Trans. Am. Fish. Soc. 2002, 131, 507–522. [Google Scholar] [CrossRef]
- Zigler, S.J.; Dewey, M.R.; Knights, B.C.; Runstrom, A.L.; Steingraeber, M.T. Movement and habitat use by radio-tagged paddlefish in the upper Mississippi River and tributaries. N. Am. J. Fish. Manag. 2003, 23, 189–205. [Google Scholar] [CrossRef]
- Zigler, S.J.; Dewey, M.R.; Knights, B.C.; Runstrom, A.L.; Steingraeber, M.T. Hydrologic and hydraulic factors affecting passage of paddlefish through dams in the upper Mississippi River. Trans. Am. Fish. Soc. 2004, 133, 160–172. [Google Scholar] [CrossRef]
- Lubejko, M.V.; Whitledge, G.W.; Coulter, A.A.; Brey, M.K.; Oliver, D.C.; Garvey, J.E. Evaluating upstream passage and timing of approach by adult bigheaded carps at a gated dam on the Illinois River. River Res. Appl. 2017, 33, 1268–1278. [Google Scholar] [CrossRef]
- Finger, J.S.; Riesgraf, A.T.; Zielinski, D.P.; Sorensen, P.W. Monitoring upstream fish passage through a Mississippi River lock and dam reveals species differences in lock chamber usage and supports a fish passage model which describes velocity-dependent passage through spillway gates. River Res. Appl. 2020, 36, 36–46. [Google Scholar] [CrossRef]
- Anderson, R.L.; Anderson, C.A.; Larson, J.H.; Knights, B.; Vallazza, J.; Jenkins, S.E.; Lamer, J.T. Influence of a high-head dam as a dispersal barrier to fish community structure of the Upper Mississippi River. River Res. Appl. 2020, 36, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Zielinski, D.P.; Voller, V.R.; Sorensen, P.W. A physiologically inspired agent-based approach to model upstream passage of invasive fish at a lock-and-dam. Ecol. Model. 2018, 382, 18–32. [Google Scholar] [CrossRef]
- Wilcox, D.B.; Stefanik, E.L.; Kelner, D.E.; Cornish, M.A.; Johnson, D.J.; Hodgins, I.J.; Johnson, B.L. Improving Fish Passage through Navigation Dams on the Upper Mississippi River System; ENV Report 54; USACE: St. Paul, MN, USA, 2004.
- Garcia, T.P.; Jackson, R.; Murphy, E.A.; Valocchi, A.J.; Garcia, M.H. Development of a fluvial egg drift simulator to evaluate the transport and dispersion of Asian carp eggs in rivers. Ecol. Model. 2013, 263, 211–222. [Google Scholar] [CrossRef]
- Tripp, S.; Brooks, R.; Herzog, D.; Garvey, J. Patterns of fish passage in the Upper Mississippi River. River Res. Appl. 2014, 30, 1056–1064. [Google Scholar] [CrossRef]
- Fritts, A.K.; Knights, B.C.; Stanton, J.C.; Milde, A.S.; Vallazza, J.M.; Brey, M.K.; Tripp, S.J.; Devine, T.E.; Sleeper, W.; Lamer, J.T.; et al. Lock operations influence upstream passages of invasive and native fishes at a Mississippi River high-head dam. Biol. Invasions 2020, 23, 1–24. [Google Scholar] [CrossRef]
- Whitty, J.; Riesgraf, A.; Zielinski, D.P.; Sorensen, P.W. Passage rates an routes of upstream migrating common carp as predicted by river flow and a fish passage model. In preparation.
- Gilmanov, A.; Zielinski, D.; Voller, V.; Sorensen, P. The effect of modifying a CFD-AB approach on fish passage through a model hydraulic dam. Water 2019, 11, 1776. [Google Scholar] [CrossRef] [Green Version]
- Popper, A.N.; Carlson, T.J. Application of sound and other stimuli to control fish behavior. Trans. Am. Fish. Soc. 1998, 127, 673–707. [Google Scholar] [CrossRef]
- Suski, C.D. Development of carbon dioxide barriers to deter invasive fishes: Insights and lessons learned from bigheaded carp. Fishes 2020, 5, 25. [Google Scholar] [CrossRef]
- Zielinski, D.P.; Sorensen, P.W. Silver, bighead, and common carp orient to acoustic particle motion when avoiding a complex sound. PLoS ONE 2017, 12, e0180110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennis, C.E.; Zielinski, D.P.; Sorensen, P.W. A complex sound coupled with an air curtain blocks invasive carp passage without habituation in a laboratory flume. Biol. Invasions 2019, 21, 2837–2855. [Google Scholar] [CrossRef]
- Murchy, K.A.; Cupp, A.R.; Amberg, J.J.; Vetter, B.J.; Fredricks, K.T.; Gaikowski, M.P.; Mensinger, A.F. Potential implications of acoustic stimuli as a non-physical barrier to silver carp and bighead carp. Fish. Manag. Ecol. 2017, 24, 208–216. [Google Scholar] [CrossRef]
- Taylor., R.; Pegg, M.; Chick, J. Response of bighead carp to a bioacoustic behavioural fish guidance system. Fish. Manag. Ecol. 2005, 12, 283–286. [Google Scholar] [CrossRef]
- Zielinski, D.P.; Sorensen, P.W. Bubble curtain deflection screen diverts the movement of both Asian and common carp. N. Am. J. Fish. Manag. 2016, 36, 267–276. [Google Scholar] [CrossRef]
- Ruebush, B.; Sass, G.; Chick, J.; Stafford, J. In-situ tests of sound-bubble-strobe light barrier technologies to prevent range expansions of Asian carp. Aquat. Invasions 2012, 7, 37–48. [Google Scholar] [CrossRef]
- Bouska, W.W.; Glover, D.G.; Trushenski, J.T.; Secchi, S.; Garvey, J.E.; MacNamara, R.; Coulter, D.P.; Coulter, A.A.; Irons, K.; Wieland, A. Geographic-Scale harvest program to promote invasivorism of bigheaded carps. Fishes 2020, 5, 29. [Google Scholar] [CrossRef]
- Tsehaye, I.; Catalano, M.; Sass, G.; Glover, D.; Roth, B. Prospects for the fishery-induced collapse of invasive Asian carp in the Illinois River. Fisheries 2013, 38, 445–454. [Google Scholar] [CrossRef]
- Moy, P.B.; Polls, I.; Dettmers, J.M. The Chicago sanitary and ship canal aquatic nuisance species dispersal barrier. In Invasive Asian Carps in North America; Chapman, D.C., Hoff, M.H., Eds.; Symposium 74; American Fisheries Society: Bethesda, MD, USA, 2011; pp. 121–137. [Google Scholar]
- MacNamara, R.; Glover, D.; Garvey, J.; Bouska, W.; Irons, K. Bigheaded (Hypopthalmichthys spp.) at the edge of their invaded range: Using hydroacoustics to assess population parameters and the efficacy of harvest as a control strategy in a large North American river. Biol. Invasion 2016, 18, 3293–3307. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. Water Control Manual: Mississippi River Nine Foot Channel Navigation Project. Lock and Dam; USACE: St. Paul, MN, USA, 2003.
- Seibert, J.R.; Phelps, Q.E.; Yallaly, K.L.; Tripp, S.; Solomon, L.; Stefanavage, T.; Herzog, D.P.; Taylor, M. Use of exploitation simulation models for silver carp (Hypophthalmichthys molitrix) populations in several Midwestern US rivers. Manag. Biol. Invasions 2015, 6, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Coulter, A.A.; Bailey, E.J.; Keller, D.; Goforth, R.R. Invasive silver carp movement patterns in the predominately free-flowing Wabash River (Indiana, USA). Biol. Invasions 2016, 18, 471–485. [Google Scholar] [CrossRef]
- DeGrandchamp, K.L.; Garvey, J.E.; Colombo, R.E. Movement and habitat selection by invasive Asian carps in a large river. Trans. Am. Fish. Soc. 2008, 137, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Rytwinski, T.; Taylor, J.J.; Donaldson, L.A.; Britton, J.R.; Browne, D.R.; Gresswell, R.E.; Lintermans, M.; Prior, K.A.; Pellatt, M.G.; Vis, C.; et al. The effectiveness of non-native fish removal techniques in freshwater ecosystems: A systematic review. Environ. Rev. 2019, 27, 71–94. [Google Scholar] [CrossRef]
- Larson, J.H.; Knights, B.C.; McCalla, S.G.; Monroe, E.; Tuttle-Lau, M.; Chapman, D.C.; Amberg, J. Evidence of Asian Carp spawning upstream of a key choke point in the Mississippi River. N. Am. J. Fish. Manag. 2017, 37, 903–919. [Google Scholar] [CrossRef]
- Stanley, G. Record 51 Carp Caught. Minneapolic Star Tribune. 13 March 2020. Available online: https://www.startribune.com/record-51-asian-carp-caught-in-minnesota-a-sign-the-fish-may-have-established-permanent-populations/568775572/ (accessed on 13 March 2020).
- U.S. Fish and Wildlife Service. Bio-Acoustic Fish Fence Now Operational at Lake Barkley. 2020. Available online: https://www.fws.gov/southeast/news/2019/11/bio-acoustic-fish-fence-now-operational-at-lake-barkley/ (accessed on 15 July 2020).
- Bajer, P.G.; Chizinski, C.J.; Sorensen, P.W. Using the Judas technique to locate and remove wintertime aggregations of invasive common carp. Fish. Manag. Ecol. 2011, 18, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Coulter, D.P.; Wang, P.; Coulter, A.A.; Van Susteren, G.E.; Eichmiller, J.J.; Garvey, J.E.; Sorensen, P.W. Nonlinear relationship between Silver Carp density and their eDNA concentration in a large river. PLoS ONE 2019, 14, e0218823. [Google Scholar] [CrossRef] [PubMed]
- Castro-Santos, T. Quantifying the combined effects of attempt rate and swimming capacity on passage through velocity barriers. Can. J. Fish. Aqua. Sci. 2004, 61, 1602–1615. [Google Scholar] [CrossRef]
- Erickson, R.A.; Eager, E.A.; Kocovsky, P.M.; Glover, D.C.; Kallis, J.L.; Long, K.R. A spatially discrete, integral projection model and its application to invasive carp. Ecol. Model. 2018, 387, 163–171. [Google Scholar] [CrossRef]
Variable | Notation | Value | Source(s) |
---|---|---|---|
2.1.1. Environment | |||
River discharge | Q | 50%, 20%, 5%, 1% exceedance flows | [47] |
2.1.2. Fish population and size structure | |||
Population | - | 50,000 per size class | N/A |
Size classes | - | ≤600, 700, 800, & 900 mm total length | [48] |
2.1.3. Fish behavior—Upstream movement and route selection | |||
Proportion of upstream movement | 87, 72, 52, 52, 45, 48, 13, 11 (+/−25%) | [49] | |
Lock route * | 7.3+/−7.1% | [33] | |
Spillway routes * | 27+/−16% | [33] | |
2.1.4. Fish behavior—Passage indices and deterrence | |||
Lock passage index * | 5+/−5% | [31,33] | |
Spillway passage index | ƒ(size, operation, discharge) | [28] | |
Attempts | 1, 2, 5 | [25] | |
Deterrence from lock | 0, 25, 50, 75, 100% | [38,40,42] | |
2.1.5. Carp removal | |||
Removal | 0, 5, 10, 40% | [17] |
Total Body Length (mm) | % Frequency in the UMR * | % Frequency in the Wabash River |
---|---|---|
≤600 | 90 | 8 |
700 | 6 | 38 |
800 | 3 | 51 |
900 | 1 | 3 |
No. of Simulations | Exceedance Discharge (%) | Spillway Operation | Deterrence (%) | Targeted Removal (%) | Attempts | Size Distribution |
---|---|---|---|---|---|---|
4 | (1, 5, 25, 50) | Current | 0 | 0 | 2 | UMR |
80 | (1, 5, 25, 50) | Optimized | (0, 25, 50, 75, 100) | (0, 5, 10, 40) | 2 | UMR |
8 | (1, 5, 25, 50) | Optimized | 0 | 0 | (1, 5) | UMR |
12 | (1, 5, 25, 50) | Optimized | 0 | 0 | (1, 2, 5) | Wabasha |
Case | Proportion Passed | % Reduction |
---|---|---|
Base gate operations | ||
1 LD | 0.200 | NA |
2 LD | 0.030 | 85 |
Modified gate operations | ||
1 LD | 0.185 | 8 |
2 LD | 0.025 | 88 |
Modified gate operations + deterrents | ||
1 LD + 25% Det | 0.151 | 24 |
1 LD + 50% Det | 0.121 | 40 |
1 LD + 75% Det | 0.088 | 56 |
1 LD + 100% Det | 0.054 | 73 |
2 LD + 25% Det | 0.018 | 91 |
2 LD + 50% Det | 0.013 | 94 |
2 LD + 75% Det | 0.009 | 96 |
2 LD + 100% Det | 0.006 | 97 |
Modified gate operations + removal at intermediate pool | ||
2 LD + 5% removal | 0.022 | 89 |
2 LD + 10% removal | 0.021 | 90 |
2 LD + 40% removal | 0.014 | 93 |
Modified gate operations + deterrents + removal at intermediate pool | ||
2 LD + 25% Det + 5% removal | 0.017 | 92 |
2 LD + 50% Det + 5% removal | 0.012 | 94 |
2 LD + 75% Det + 5% removal | 0.008 | 96 |
2 LD + 100% Det + 5% removal | 0.006 | 97 |
2 LD + 25% Det + 10% removal | 0.015 | 92 |
2 LD + 50% Det + 10% removal | 0.011 | 95 |
2 LD + 75% Det + 10% removal | 0.008 | 96 |
2 LD + 100% Det + 10% removal | 0.006 | 97 |
2 LD + 25% Det + 40% removal | 0.010 | 95 |
2 LD + 50% Det + 40% removal | 0.007 | 96 |
2 LD + 75% Det + 40% removal | 0.006 | 97 |
2 LD + 100% Det + 40% removal | 0.004 | 98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielinski, D.P.; Sorensen, P.W. Numeric Simulation Demonstrates That the Upstream Movement of Invasive Bigheaded Carp Can Be Blocked at Sets of Mississippi River Locks-and-Dams Using a Combination of Optimized Spillway Gate Operations, Lock Deterrents, and Carp Removal. Fishes 2021, 6, 10. https://doi.org/10.3390/fishes6020010
Zielinski DP, Sorensen PW. Numeric Simulation Demonstrates That the Upstream Movement of Invasive Bigheaded Carp Can Be Blocked at Sets of Mississippi River Locks-and-Dams Using a Combination of Optimized Spillway Gate Operations, Lock Deterrents, and Carp Removal. Fishes. 2021; 6(2):10. https://doi.org/10.3390/fishes6020010
Chicago/Turabian StyleZielinski, Daniel Patrick, and Peter W. Sorensen. 2021. "Numeric Simulation Demonstrates That the Upstream Movement of Invasive Bigheaded Carp Can Be Blocked at Sets of Mississippi River Locks-and-Dams Using a Combination of Optimized Spillway Gate Operations, Lock Deterrents, and Carp Removal" Fishes 6, no. 2: 10. https://doi.org/10.3390/fishes6020010