Functional Additives as a Boost to Reproductive Performance in Marine Fish: A Review
Abstract
:1. Introduction
2. Importance of Nutrition in Brood Fish
3. Nutritional Requirements for Brood Fish
4. Functional Additives and Reproductive Performance
4.1. Proteins, Main Food Additives
4.2. Amino Acids as Functional Additives
4.3. Lipids and Fatty Acids as Functional Additives
4.4. Vitamins and Carotenoids as Functional Additives
4.5. Minerals as Functional Additives
4.6. Carbohydrates as Functional Additives
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teletchea, F.; Fontaine, P. Levels of domestication in fish: Implications for the sustainable future of aquaculture. Fish Fish. 2012, 15, 181–195. [Google Scholar] [CrossRef]
- Blekas, G. Food Additives: Classification, Uses and Regulation. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 731–736. [Google Scholar] [CrossRef]
- Izquierdo, M.S.; Fernández-Palacios, H.; Tacon, A.G.J. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 2001, 197, 25–42. [Google Scholar] [CrossRef]
- Sharma, S.; Gangwar, M. Role of Broodstock Nutrition on Fish Reproductive Performance. Aquaculture 2001, 197, 25-422018. [Google Scholar]
- Kazakov, R.V. The effect of the size of Atlantic salmon, Salmo salar L., eggs on embryos and alevins. J. Fish Biol. 1981, 19, 353–360. [Google Scholar] [CrossRef]
- Kjørsvik, E.; Mangor-Jensen, A.; Holmefjord, I. Egg Quality in Fishes. In Advances in Marine Biology; Blaxter, J.H.S., Southward, A.J., Eds.; Academic Press: Piscataway, NJ, USA, 1990; Volume 26, pp. 71–113. [Google Scholar] [CrossRef]
- Encina, L.; Granado-Lorencio, C. Seasonal changes in condition, nutrition, gonad maturation and energy content in barbel, Barbus sclateri, inhabiting a fluctuating river. Environ. Biol. Fishes 1997, 50, 75–84. [Google Scholar] [CrossRef]
- Leatherland, J.F. Field Observations on Reproductive and Developmental Dysfunction in Introduced and Native Salmonids from the Great Lakes. J. Great Lakes Res. 1993, 19, 737–751. [Google Scholar] [CrossRef]
- Smith, C.E.; Osborne, M.D.; Piper, R.G.; Dwyer, W.P. Effect of Diet Composition on Performance of Rainbow Trout Broodstock during a Three-Year Period. Progr. Fish Culturist 1979, 41, 185–188. [Google Scholar] [CrossRef]
- Fernández-Palacios, H.; Izquierdo, M.; Robaina, L.; Valencia, A.; Salhi, M.; Montero, D. The effect of dietary protein and lipid from squid and fish meals on egg quality of broodstock for gilthead seabream (Sparus aurata). Aquaculture 1997, 148, 233–246. [Google Scholar] [CrossRef]
- Peña, R. Criterios de Calidad de Huevos y Sus Implicaciones En El Cultivo de Peces Marinos. Avances en Nutrición Acuícola. 2015, pp. 402–434. Available online: https://nutricionacuicola.uanl.mx/index.php/acu/article/view/54 (accessed on 10 April 2022).
- Watanabe, T.; Kiron, V. Prospects in larval fish dietetics. Aquaculture 1994, 124, 223–251. [Google Scholar] [CrossRef]
- Hepher, B. Nutrition of Pond Fishes; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Fish and Shrimp; National Academic Press: Cambridge, MA, USA, 2011. [Google Scholar] [CrossRef]
- Hart, N.H. Fertilization in Teleost Fishes: Mechanisms of Sperm-Egg Interactions. In International Review of Cytology; Jeon, K.W., Friedlander, M., Eds.; Academic Press: Piscataway, NJ, USA, 1990; Volume 121, pp. 1–66. [Google Scholar] [CrossRef]
- Oliva-Teles, A. Nutrition and health of aquaculture fish. J. Fish Dis. 2012, 35, 83–108. [Google Scholar] [CrossRef]
- Luquet, P.; Watanabe, T. Interaction “nutrition-reproduction” in fish. Fish Physiol. Biochem. 1986, 2, 121–129. [Google Scholar] [CrossRef]
- Sarih, S.; Djellata, A.; Fernández-Palacios, H.; Ginés, R.; Fontanillas, R.; Rosenlund, G.; Izquierdo, M.; Roo, J. Adequate n-3 LC-PUFA levels in broodstock diets optimize reproductive performance in GnRH injected greater amberjack (Seriola dumerili) equaling to spontaneously spawning broodstock. Aquaculture 2020, 520, 735007. [Google Scholar] [CrossRef]
- Sarih, S.; Djellata, A.; Roo, J.; Hernández-Cruz, C.; Fontanillas, R.; Rosenlund, G.; Izquierdo, M.; Fernández-Palacios, H. Effects of increased protein, histidine and taurine dietary levels on egg quality of greater amberjack (Seriola dumerili, Risso, 1810). Aquaculture 2018, 499, 72–79. [Google Scholar] [CrossRef]
- Rodríguez-Barreto, D.; Jerez, S.; Cejas, J.R.; Martin, M.V.; Acosta, N.G.; Bolaños, A.; Lorenzo, A. Ovary and egg fatty acid composition of greater amberjack broodstock (Seriola dumerili) fed different dietary fatty acids profiles. Eur. J. Lipid Sci. Technol. 2014, 116, 584–595. [Google Scholar] [CrossRef]
- Roo, J.; Fernández-Palacios, H.; Schuchardt, D.; Hernández-Cruz, C.; Izquierdo, M. Influence of hormonal induction and broodstock feeding on longfin yellowtail Seriola rivoliana maturation, spawning quality and egg biochemical composition. Aquac. Nutr. 2014, 21, 614–624. [Google Scholar] [CrossRef]
- Matsunari, H.; Hamada, K.; Mushiake, K.; Takeuchi, T. Effects of taurine levels in broodstock diet on reproductive performance of yellowtail Seriola quinqueradiata. Fish. Sci. 2006, 72, 955–960. [Google Scholar] [CrossRef]
- Vassallo-Agius, R.; Watanabe, T.; Imaizumi, H.; Yamazaki, T. Spawning performance of yellowtail Seriola quinqueradiata fed dry pellets containing paprika and squid meal. Fish. Sci. 2002, 68, 230–232. [Google Scholar] [CrossRef]
- Verakunpiriya, V.; Watanabe, K.; Mushiake, K.; Kawano, K.; Kobayashi, T.; Hasegawa, I.; Kiron, V.; Satoh, S.; Watanabe, T. Effect of Krill Meal Supplementation in Soft-dry Pellets on Spawning and Quality of Egg of Yellowtail. Fish. Sci. 1997, 63, 433–439. [Google Scholar] [CrossRef]
- Verakunpiriya, V.; Mushiake, K.; Kawano, K.; Watanabe, T. Supplemental Effect of Astaxanthin in Broodstock Diets on the Quality of Yellowtail Eggs. Fish. Sci. 1997, 63, 816–823. [Google Scholar] [CrossRef]
- Verakunpiriya, V.; Watanabe, T.; Mushiake, K.; Kiron, V.; Satoh, S.; Takeuchi, T. Effect of Broodstock Diets on the Chemical Components of Milt and Eggs Produced by Yellowtail. Fish. Sci. 1996, 62, 610–619. [Google Scholar] [CrossRef]
- Izquierdo, M.S.; Turkmen, S.; Montero, D.; Zamorano, M.J.; Afonso, J.M.; Karalazos, V.; Fernández-Palacios, H. Nutritional programming through broodstock diets to improve utilization of very low fishmeal and fish oil diets in gilthead sea bream. Aquaculture 2015, 449, 18–26. [Google Scholar] [CrossRef]
- Scabini, V.; Fernández-Palacios, H.; Robaina, L.; Kalinowski, T.; Izquierdo, M. Reproductive performance of gilthead seabream (Sparus aurata L., 1758) fed two combined levels of carotenoids from paprika oleoresin and essential fatty acids. Aquac. Nutr. 2010, 17, 304–312. [Google Scholar] [CrossRef]
- Turkmen, S.; Zamorano, M.J.; Xu, H.; Fernández-Palacios, H.; Robaina, L.; Kaushik, S.; Izquierdo, M. Parental LC-PUFA biosynthesis capacity and nutritional intervention with Alpha-Linolenic Acid Affect performance of Sparus aurata progeny. J. Exp. Biol. 2020, 223, jeb.214999. [Google Scholar] [CrossRef] [PubMed]
- Vassallo-Agius, R.; Watanabe, T.; Imaizumi, H.; Yamazaki, T.; Satoh, S.; Kiron, V. Effects of dry pellets containing astaxanthin and squid meal on the spawning performance of striped jack Pseudocaranx dentex. Fish. Sci. 2001, 67, 667–674. [Google Scholar] [CrossRef]
- Asturiano, J.; Sorbera, L.; Carrillo, M.; Zanuy, S.; Ramos, J.; Navarro, J.; Bromage, N. Reproductive performance in male European sea bass (Dicentrarchus labrax, L.) fed two PUFA-enriched experimental diets: A comparison with males fed a wet diet. Aquaculture 2001, 194, 173–190. [Google Scholar] [CrossRef]
- Furuita, H.; Yamamoto, T.; Shima, T.; Suzuki, N.; Takeuchi, T. Effect of arachidonic acid levels in broodstock diet on larval and egg quality of Japanese flounder Paralichthys olivaceus. Aquaculture 2003, 220, 725–735. [Google Scholar] [CrossRef]
- Furuita, H.; Tanaka, H.; Yamamoto, T.; Suzuki, N.; Takeuchi, T. Supplemental effect of vitamin A in diet on the reproductive performance and egg quality of the Japanese flounder Paralichthys olivaceus (T & S). Aquac. Res. 2003, 34, 461–468. [Google Scholar] [CrossRef]
- Emata, A.C.; Borlongan, I.G. A practical broodstock diet for the mangrove red snapper, Lutjanus argentimaculatus. Aquaculture 2003, 225, 83–88. [Google Scholar] [CrossRef]
- Papanikos, N.; Phelps, R.P.; Davis, D.A.; Ferry, A.; Maus, D. Spontaneous Spawning of Captive Red Snapper, Lutjanus campechanus, and Dietary Lipid Effect on Reproductive Performance. J. World Aquac. Soc. 2008, 39, 324–338. [Google Scholar] [CrossRef]
- Abrehouch, A.; Ali, A.A.; Chebbaki, K.; Akharbach, H.; Idaomar, M. Effect of diet (fatty acid and protein) content during spawning season on fertility, eggs and larvae quality of common porgy (Pagrus pagrus, Linnaeus 1758). Agric. Biol. J. N. Am. 2010, 1, 175–184. [Google Scholar] [CrossRef]
- Watanabe, T.; Arakawa, T.; Kitajima, C.; Fujita, S. Effect of nutritional quality of broodstock diets on reproduction of red sea bream. Nippon Suisan Gakkaishi 1984, 50, 495–501. [Google Scholar] [CrossRef]
- Watanabe, T.; Koizumi, T.; Suzuki, H.; Satoh, S.; Takeuchi, T.; Yoshida, N.; Kitada, T.; Tsukashima, Y. Improvement of quality of red sea bream eggs by feeding broodstock on a diet containing cuttlefish meal or on raw krill shortly before spawning. Nippon Suisan Gakkaishi 1985, 51, 1511–1521. [Google Scholar] [CrossRef]
- Watanabe, T.; Lee, M.J.; Mizutani, J.; Yamada, T.; Satoh, S.; Takeuchi, T.; Yoshida, N.; Kitada, T.; Arakawa, T. Effective components in cuttlefish meal and raw krill for improvement of quality of red seabream Pagrus major eggs. Nippon Suisan Gakkaishi 1991, 57, 681–694. [Google Scholar] [CrossRef]
- Cerdá, J.; Carrillo, M.; Zanuy, S.; Ramos, J.; de la Higuera, M. Influence of nutritional composition of diet on sea bass, Dicentrarchus labrax L., reproductive performance and egg and larval quality. Aquaculture 1994, 128, 345–361. [Google Scholar] [CrossRef]
- Mushiake, K.; Kawano, K.; Verakunpiriya, W.; Watanabe, T.; Hasegawa, I. Egg Collection from Broodstocks of Yellowtail Fed Commercial Soft Dry Pellets. Nippon Suisan Gakkaishi 1995, 61, 540–546. [Google Scholar] [CrossRef]
- Watanabe, T.; Verakunpiriya, V.; Mushiake, K.; Kawano, K.; Hasegawa, I. The First Spawn-taking from Broodstock Yellowtail Cultured with Extruded Dry Pellets. Fish. Sci. 1996, 62, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Vassallo-Agius, R.; Mushiake, K.; Kawano, K.; Kiron, V.; Satoh, S. The First Spawn-taking from Striped Jack Broodstock Fed Soft-dry Pellets. Fish. Sci. 1998, 64, 39–43. [Google Scholar] [CrossRef]
- Zakeri, M.; Marammazi, J.G.; Kochanian, P.; Savari, A.; Yavari, V.; Haghi, M. Effects of protein and lipid concentrations in broodstock diets on growth, spawning performance and egg quality of yellowfin sea bream (Acanthopagrus latus). Aquaculture 2009, 295, 99–105. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Seiliez, I. Protein and amino acid nutrition and metabolism in fish: Current knowledge and future needs. Aquac. Res. 2010, 41, 322–332. [Google Scholar] [CrossRef]
- Andersen, S.M.; Waagbø, R.; Espe, M. Functional Amino Acids in Fish Nutrition, Health and Welfare. Front. Biosci. Elite 2016, 8, 143–169. [Google Scholar] [CrossRef]
- Salze, G.P.; Davis, D.A.; Stuart, K.; Drawbridge, M. Effect of dietary taurine in the performance of broodstock and larvae of California yellowtail Seriola dorsalis. Aquaculture 2019, 511, 734262. [Google Scholar] [CrossRef]
- Xu, H.; Turkmen, S.; Rimoldi, S.; Terova, G.; Zamorano, M.J.; Afonso, J.M.; Sarih, S.; Fernández-Palacios, H.; Izquierdo, M. Nutritional intervention through dietary vegetable proteins and lipids to gilthead sea bream (Sparus aurata) broodstock affects the offspring utilization of a low fishmeal/fish oil diet. Aquaculture 2019, 513, 734402. [Google Scholar] [CrossRef]
- Divakaran, S. Taurine: An Amino Acid Rich in Fish Meal. In Avances en Nutrición Acuícola VIII, Proceedings of the VIII Simposium Internacional Nutrición Acuícola, Nuevo León, México, 15–17 November 2006; Suarez, L.E.C., Marie, D.R., Salazar, M.T., Lopez, M.G.N., Cavazos, D.A.V., Ortega, A.C.P., Eds.; Universidad Autónoma de Nuevo León: Nuevo León, México, 2006; pp. 333–335. [Google Scholar]
- Takagi, S.; Murata, H.; Goto, T.; Ichiki, T.; Munasinghe, D.M.; Endo, M.; Matsumoto, T.; Sakurai, A.; Hatate, H.; Yoshida, T.; et al. The Green Liver Syndrome Is Caused by Taurine Deficiency in Yellowtail, Seriola quinqueradiata Fed Diets without Fishmeal. Aquac. Sci. 2005, 53, 279–290. [Google Scholar] [CrossRef]
- Kumar, P.; Prasad, Y.; Patra, A.; Ranjan, R.; Swarup, D.; Patra, R.; Pal, S. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus). Sci. Total Environ. 2009, 407, 5024–5030. [Google Scholar] [CrossRef]
- Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys. Acta 2011, 1811, 637–647. [Google Scholar] [CrossRef]
- Tocher, D.; Francis, D.; Coupland, K. n-3 Polyunsaturated Fatty Acid-Rich Vegetable Oils and Blends. Fish Oil Replace. Altern. Lipid Sources Aquac. Feed. 2010, 209, 244. [Google Scholar] [CrossRef]
- Storebakken, T. Nutrient Requirements and Feeding of Finfish for Aquaculture. Atlant. Salmon. 2002, 10, 79–102. [Google Scholar] [CrossRef]
- Taşbozan, O.; Gökçe, M.A. Fatty Acids in Fish; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Masumoto, T. Yellowtail, Seriola quinqueradiata. In Nutrient Requirements and Feeding of Finfish for Aquaculture; Webster, C.D., Lim, C., Eds.; CABI: Wallingford, UK, 2002; pp. 131–146. [Google Scholar] [CrossRef]
- Bowyer, J.; Qin, J.; Smullen, R.; Stone, D. Replacement of fish oil by poultry oil and canola oil in yellowtail kingfish (Seriola lalandi) at optimal and suboptimal temperatures. Aquaculture 2012, 356–357, 211–222. [Google Scholar] [CrossRef]
- Vassallo-Agius, R.; Mushiake, K.; Imaizumi, H.; Yamazaki, T.; Watanabe, T. Spawning and Quality of Eggs of Striped Jack Fed Raw Fish or Dry Pellets with 2% (Spirulina). Aquacult. Sci. 1999, 47, 415–422. [Google Scholar] [CrossRef]
- Stuart, K.; Johnson, R.; Armbruster, L.; Drawbridge, M. Arachidonic Acid in the Diet of Captive Yellowtail and Its Effects on Egg Quality. North Am. J. Aquac. 2018, 80, 97–106. [Google Scholar] [CrossRef]
- Ferosekhan, S.; Turkmen, S.; Pérez-García, C.; Xu, H.; Gómez, A.; Shamna, N.; Afonso, J.; Rosenlund, G.; Fontanillas, R.; Gracia, A.; et al. Influence of Genetic Selection for Growth and Broodstock Diet n-3 LC-PUFA Levels on Reproductive Performance of Gilthead Seabream, Sparus aurata. Animals 2021, 11, 519. [Google Scholar] [CrossRef]
- Furuita, H.; Tanaka, H.; Yamamoto, T.; Shiraishi, M.; Takeuchi, T. Effects of n−3 HUFA levels in broodstock diet on the reproductive performance and egg and larval quality of the Japanese flounder, Paralichthys olivaceus. Aquaculture 2000, 187, 387–398. [Google Scholar] [CrossRef]
- Mazorra, C.; Bruce, M.; Bell, J.G.; Davie, A.; Alorend, E.; Jordan, N.; Rees, J.; Papanikos, N.; Porter, M.; Bromage, N. Dietary lipid enhancement of broodstock reproductive performance and egg and larval quality in Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 2003, 227, 21–33. [Google Scholar] [CrossRef]
- Fernández-Palacios, H.; Izquierdo, M.S.; Robaina, L.; Valencia, A.; Salhi, M.; Vergara, J. Effect of n − 3 HUFA level in broodstock diets on egg quality of gilthead sea bream (Sparus aurata L.). Aquaculture 1995, 132, 325–337. [Google Scholar] [CrossRef]
- Rodriguez, C.; Cejas, J.; Martín, M.V.; Badia, P.; Samper, M.; Lorenzo, A. Influence of n-3 highly unsaturated fatty acid deficiency on the lipid composition of broodstock gilthead seabream (Sparus aurata L.) and on egg quality. Fish Physiol. Biochem. 1998, 18, 177–187. [Google Scholar] [CrossRef]
- Almansa, E.; Pérez, M.; Cejas, J.; Badía, P.; Villamandos, J.E.; Lorenzo, A. Influence of broodstock gilthead seabream (Sparus aurata L.) dietary fatty acids on egg quality and egg fatty acid composition throughout the spawning season. Aquaculture 1999, 170, 323–336. [Google Scholar] [CrossRef]
- Ferosekhan, S.; Xu, H.; Turkmen, S.; Gómez, A.; Afonso, J.M.; Fontanillas, R.; Rosenlund, G.; Kaushik, S.; Izquierdo, M. Reproductive performance of gilthead seabream (Sparus aurata) broodstock showing different expression of fatty acyl desaturase 2 and fed two dietary fatty acid profiles. Sci. Rep. 2020, 10, 147–155. [Google Scholar] [CrossRef]
- Xu, H.; Ferosekhan, S.; Turkmen, S.; Afonso, J.M.; Zamorano, M.J.; Izquierdo, M. High broodstock fads2 expression combined with nutritional programing through broodstock diet improves the use of low fishmeal and low fish oil diets in gilthead seabream (Sparus aurata) progeny. Aquaculture 2020, 535, 736321. [Google Scholar] [CrossRef]
- Bell, J.; Farndale, B.M.; Bruce, M.P.; Navas, J.M.; Carillo, M. Effects of broodstock dietary lipid on fatty acid compositions of eggs from sea bass (Dicentrarchus labrax). Aquaculture 1997, 149, 107–119. [Google Scholar] [CrossRef]
- Navas, J.M.; Mañanós, E.; Thrush, M.; Ramos, J.; Zanuy, S.; Carrillo, M.; Zohar, Y.; Bromage, N. Effect of dietary lipid composition on vitellogenin, 17β-estradiol and gonadotropin plasma levels and spawning performance in captive sea bass (Dicentrarchus labrax L.). Aquaculture 1998, 165, 65–79. [Google Scholar] [CrossRef]
- Bruce, M.; Oyen, F.; Bell, G.; Asturiano, J.F.; Farndale, B.; Carrillo, M.; Zanuy, S.; Ramos, J.; Bromage, N. Development of broodstock diets for the European Sea Bass (Dicentrarchus labrax) with special emphasis on the importance of n−3 and n−6 highly unsaturated fatty acid to reproductive performance. Aquaculture 1999, 177, 85–97. [Google Scholar] [CrossRef]
- Zakeri, M.; Kochanian, P.; Marammazi, J.G.; Yavari, V.; Savari, A.; Haghi, M. Effects of dietary n-3 HUFA concentrations on spawning performance and fatty acids composition of broodstock, eggs and larvae in yellowfin sea bream, Acanthopagrus latus. Aquaculture 2011, 310, 388–394. [Google Scholar] [CrossRef]
- Webster, C.D.; Lim, C. Nutrition and Fish Health; CRC Press: Boca Ration, NJ, USA, 2001. [Google Scholar]
- Harris, L.E. Effects of a broodfish diet fortified with canthaxanthin on female fecundity and egg color. Aquaculture 1984, 43, 179–183. [Google Scholar] [CrossRef]
- Craik, J. Egg quality and egg pigment content in salmonid fishes. Aquaculture 1985, 47, 61–88. [Google Scholar] [CrossRef]
- Blom, J.H.; Dabrowski, K. Reproductive Success of Female Rainbow Trout (Oncorhynchus Mykiss) in Response to Graded Dietary Ascorbyl Monophosphate Levels1. Biol. Reprod. 1995, 52, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, K.; Ciereszko, R.E.; Blom, J.H.; Ottobre, J.S. Relationship between vitamin C and plasma concentrations of testosterone in female rainbow trout, Oncorhynchus mykiss. Fish Physiol. Biochem. 1995, 14, 409–414. [Google Scholar] [CrossRef]
- Sandnes, K. Vitamin C in Fish Nutrition-A Review. Undefined. 1991. Available online: https://fdir.brage.unit.no/fdir-xmlui/bitstream/handle/11250/131530/se_vol04_01_1991_p3-32.pdf?sequence=3 (accessed on 25 May 2022).
- Hamre, K.; Lie, Ø. α-Tocopherol levels in different organs of Atlantic salmon (Salmo salar L.)—Effect of smoltification, dietary levels of n-3 polyunsaturated fatty acids and vitamin E. Comp. Biochem. Physiol. Part Physiol. 1995, 111, 547–554. [Google Scholar] [CrossRef]
- Volkoff, H.; London, S. Nutrition and Reproduction in Fish. In Encyclopedia of Reproduction, 2nd ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 743–748. [Google Scholar] [CrossRef]
- Chew, B.P. Antioxidant vitamins affect food animal immunity and health. J. Nutr. 1995, 125, 1804S–1808S. [Google Scholar] [CrossRef]
- Pu, J.; Bechtel, P.J.; Sathivel, S. Extraction of shrimp astaxanthin with flaxseed oil: Effects on lipid oxidation and astaxanthin degradation rates. Biosyst. Eng. 2010, 107, 364–371. [Google Scholar] [CrossRef]
- Thompson, I.; Fletcher, T.C.; Houlihan, D.F.; Secombes, C.J. The effect of dietary vitamin A on the immunocompetence of Atlantic salmon (Salmo salar L.). Fish Physiol. Biochem. 1994, 12, 513–523. [Google Scholar] [CrossRef]
- Paripatananont, T.; Tangtrongpairoj, J.; Sailasuta, A.; Chansue, N. Effect of Astaxanthin on the Pigmentation of Goldfish Carassius auratus. J. World Aquac. Soc. 1999, 30, 454–460. [Google Scholar] [CrossRef]
- Torrissen, O.J.; Christiansen, R. Requirements for carotenoids in fish diets. J. Appl. Ichthyol. 1995, 11, 225–230. [Google Scholar] [CrossRef]
- Choubert, G.; Blanc, J.M.; Poisson, H. Effects of dietary keto-carotenoids (canthaxanthin and astaxanthin) on the reproductive performance of female rainbow trout Oncorhynchus mykiss (Walbaum). Aquac. Nutr. 1998, 4, 249–254. [Google Scholar] [CrossRef]
- Binu, V. Nutritional Studies on Sebae Anemonefish, Amphiprion Sebae Bleeker 1853, with Special Reference To Protein and Lipid Requirements. Ph.D. Thesis, Central Institute of Fisheries Education, Mumbai, India, 2004. [Google Scholar]
- Watanabe, T.; Miki, W. Astaxanthin: An Effective Dietary Composition for Red Seabream (Pagrus major). In Colloques de l’INRA (France); INRA: Paris, France, 1993. [Google Scholar]
- Watanabe, T.; Itoh, A.; Satoh, S.; Kitajima, C.; Fujita, S. Nutritional studies in the seed production of fish-XVIII. Effect of dietary protein levels and feeding period before spawning on chemical components of eggs produced by Red Sea bream broodstock. Nippon Suisan Gakkaishi 1985, 51, 1501–1509. [Google Scholar] [CrossRef]
- Mangor-Jensen, A.; Holm, J.C.; Rosenlund, G.; Lie, Ø.; Sandnes, K. Effects of Dietary Vitamin C on Maturation and Egg Quality of Cod Gadus morhua L. J. World Aquac. Soc. 1994, 25, 30–40. [Google Scholar] [CrossRef]
- Emata, A.C.; Borlongan, I.G.; Damaso, J.P. Dietary vitamin C and E supplementation and reproduction of milkfish Chanos chanos Forsskal. Aquac. Res. 2000, 31, 557–564. [Google Scholar] [CrossRef]
- Furuita, H.; Tanaka, H.; Yamamoto, T.; Shiraishi, M.; Takeuchi, T. Effects of high dose of vitamin A on reproduction and egg quality of Japanese flounder Paralichthys olivaceus. Fish. Sci. 2001, 67, 606–613. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Liu, X.; Ma, J.; Wang, S.; Zhang, L. Dietary vitamin A, ascorbic acid and α-tocopherol affect the gonad development and reproductive performance of starry flounder Platichthys stellatus broodstock. Chin. J. Oceanol. Limnol. 2014, 32, 326–333. [Google Scholar] [CrossRef]
- Sawanboonchun, J.; Roy, W.J.; Robertson, D.A.; Bell, J.G. The impact of dietary supplementation with astaxanthin on egg quality in Atlantic cod broodstock (Gadus morhua, L.). Aquaculture 2008, 283, 97–101. [Google Scholar] [CrossRef]
- Hansen, J.; Puvanendran, V.; Bangera, R. Broodstock diet with water and astaxanthin improve condition and egg output of brood fish and larval survival in Atlantic cod, Gadus morhua L. Aquac. Res. 2014, 47, 819–829. [Google Scholar] [CrossRef]
- Watanabe, T.; Itoh, A.; Murakami, A.; Tsukashima, Y.; Kitajima, C.; Fujita, S. Effect of nutritional quality of diets given to broodstock on the verge of spawning on reproduction of red sea bream. Nippon Suisan Gakkaishi 1984, 50, 1023–1028. [Google Scholar] [CrossRef]
- Lall, S.P.; Kaushik, S.J. Nutrition and Metabolism of Minerals in Fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef]
- Davis, D.A.; Gatlin, D.M. Dietary mineral requirements of fish and marine crustaceans. Rev. Fish. Sci. 1996, 4, 75–99. [Google Scholar] [CrossRef]
- Satoh, S.; Yamamoto, H.; Takeuchi, T.; Watanabe, T. Effects on Growth and Mineral Composition of Carp of Deletion of Trace Elements or Magnesium from Fish Meal Diet. Nippon Suisan Gakkaishi 1983, 49, 431–435. [Google Scholar] [CrossRef]
- Hossain, M.A.; Furuichi, M. Necessity of Dietary Calcium Supplement in Black Sea Bream. Fish. Sci. 1999, 65, 893–897. [Google Scholar] [CrossRef]
- Kousoulaki, K.; Fjelldal, P.G.; Aksnes, A.; Albrektsen, S. Growth and tissue mineralisation of Atlantic cod (Gadus Morhua) fed soluble P and Ca salts in the diet. Aquaculture 2010, 309, 181–192. [Google Scholar] [CrossRef]
- Davis, D.A.; Robinson, E.H. Dietary Phosphorus Requirement of Juvenile Red Drum Sciaenops ocellatus. J. World Aquac. Soc. 1987, 18, 129–136. [Google Scholar] [CrossRef]
- Oliva-Teles, A.; Pimentel-Rodrigues, A. Phosphorus requirement of European sea bass (Dicentrarchus labrax L.) juveniles. Aquac. Res. 2004, 35, 636–642. [Google Scholar] [CrossRef]
- Shimeno, S. Yellowtail, Seriola Quinqueradiata; CRC Press: Boca Raton, NJ, USA, 1991; pp. 181–192. [Google Scholar] [CrossRef]
- Lorentzen, M.; Maage, A.; Julshamn, K. Supplementing copper to a fish meal based diet fed to Atlantic salmon parr affects liver copper and selenium concentrations. Aquac. Nutr. 1998, 4, 67–72. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yone, Y. Requirement of red sea bream for dietary iron. II. Nippon Suisan Gakkaishi 1978, 44, 223–225. [Google Scholar] [CrossRef]
- Gatlin, D.M.; O'Connell, J.P.; Scarpa, J. Dietary zinc requirement of the red drum, Sciaenops ocellatus. Aquaculture 1991, 92, 259–265. [Google Scholar] [CrossRef]
- Woodall, A.N.; LaRoche, G. Nutrition of Salmonoid Fishes. Xi. Iodide Requirements Of Chinook Salmon. J. Nutr. 1964, 82, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Yone, Y. Requirement of red sea bream for dietary Mg. Nippon Suisan Gakkaishi 1979, 45, 57–60. [Google Scholar] [CrossRef]
- Hemre, G.-I.; Deng, D.-F. Carbohydrates. In Dietary Nutrients, Additives, and Fish Health; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 95–110. [Google Scholar] [CrossRef]
- Stone, D.A.J. Dietary Carbohydrate Utilization by Fish. Rev. Fish. Sci. 2003, 11, 337–369. [Google Scholar] [CrossRef]
- Wilson, R. Utilization of dietary carbohydrate by fish. Aquaculture 1994, 124, 67–80. [Google Scholar] [CrossRef]
- Shimeno, S.; Hosokawa, H.M.T. The Importance of Carbohydrate in the Diet of a Carnivorous Fish [Yellowtail and Carp]; Fisheries Department Symposium on Finfish Nutrition and Feed Technology: Hamburg, Germany, 1978. [Google Scholar]
- Furuichi, M.; Taira, H.; Yone, Y. Availability of carbohydrate in nutrition of yellowtail. Nippon Suisan Gakkaishi 1986, 52, 99–102. [Google Scholar] [CrossRef]
Species | CP % | CL % | Weight (Kg) * | Size (cm) ** | Reference |
---|---|---|---|---|---|
Seriola dumerili | 54–58.9 | 18.3–24.8 | 11.1–14 | - | [18,19,20] |
S. rivoliana | 69.3 | 21 | 10.321 | - | [21] |
S. quinqueradiata | 43.7–65 | 6.7–24.9 | 6.1–7.6 | 69.1–71.4 | [22,23,24,25,26] |
Sparus aurata | 48.9–56.3 | 14.7–19.1 | 1.2–2 | 37.1–41.2 | [27,28,29] |
Pseudocaranx dentex | 50.8 | 14 | 3.5 | - | [30] |
Dicentrarchus labrax | - | 22 | - | - | [31] |
Paralichthys olivaceus | 53.1–52.3 | 16–17.5 | 1.3–2.2 | - | [32,33] |
Lutjanus argentimaculatus | 39.4 | 8.6 | 3.24 | 58.9 | [34] |
Lutjanus campechanus | 83.5 | 2.4 | 3 | - | [35] |
Pagrus pagrus | 45 | 10 | 3.07 | - | [36] |
Species | Source | C (%) | V (%) | F (%) | H (%) | LO (%) | Reference |
---|---|---|---|---|---|---|---|
Pagrus major | White fish | 72 | - | - | 26.3 | 6.2 | [37] |
Casein | 51 | - | - | 0.9 | - | ||
Cuttlefish meal | 57 | - | - | 93 | 97 | ||
P. major | Fish meal | 67 | 37.5 | - | 56.9 | 14.3 | [38] |
Cuttlefish meal | 61 | 98.4 | - | 95 | 92 | ||
Raw krill | 100 | 86.2 | - | 93.4 | 75.8 | ||
P. major | Fish meal | 67 | 65.6 | - | 57.1 | 89.5 | [39] |
Defatted krill | 64 | 69.2 | - | 59.7 | 92.3 | ||
Cuttlefish meal | 61 | 99.3 | - | 84.5 | 97.8 | ||
Dicentrarchus labrax | Fish meal | 51.3 | 50.3 | 94.3 | 4.04 | 1.9 | [40] |
Fish meal | 32.6 | 34.7 | 85.8 | 0.04 | 0.16 | ||
Seriola quinqueradiata | Raw fish | - | 57.7 | 77.5 | 43.1 | 90.4 | [41] |
Wet pellet | - | 58.7 | 71.1 | 36 | 91.2 | ||
Dry pellet | - | 56.6 | 70 | 31.3 | 90.8 | ||
S. quinqueradiata | Raw fish | - | 35.7 | 3 | - | - | [42] |
Wet pellet | 75 | 39 | 33.8 | 17.7 | - | ||
Dry pellet | 65 | 59 | 56.9 | 46.9 | - | ||
Pseudocaranx dentex | Dry pellet | - | 71 | 55.6 | 45.9 | - | [43] |
Raw fish mix | - | 83 | 66.2 | 60.3 | - | ||
Lutjanus argentimaculatus | Flour mix | 78.9 | - | 76.9 | 74. | 71.2 | [34] |
Raw fish | - | - | 72.6 | 70.4 | 69.3 | ||
Acanthopagrus latus | Pellet | 40 | 58.7 | 82.3 | 47.5 | - | [44] |
Pellet | 50 | 57.7 | 76.9 | 40.3 | - | ||
Pellet | - | 60.9 | 77.2 | 48.5 | - | ||
Pagrus pagrus | Sardine–pellet | 95 | 85 | - | 48. | - | [36] |
Bogue–squid | 83 | 86 | - | 67.5 | - | ||
S. rivoliana | Squid–mussel | 59.8 | - | 99.5 | 72 | 74.3 | [21] |
Mackerel | 62.8 | - | 99.7 | 92.4 | 83.7 | ||
Squid meal | 64.9 | - | 99.8 | 89.1 | 56.5 | ||
S. dumerili | Squid and fish meal | 58.3 | 90 | 56.21 | 87.6 | - | [19] |
Stage of Life | ||||
---|---|---|---|---|
Amino Acids | Larvae-Alevine | Juvenile | Adult | Average |
% of Diet | ||||
Arginine | 1.7 | 1.7 | 1.5 | 1.6 ± 0.11 |
Histidine | 0.8 | 0.76 | 0.6 | 0.72 ± 0.10 |
Leucine | 2.3 | 2.1 | 2 | 2.1 ± 0.15 |
Isoleucine | 1.3 | 1.2 | 1.5 | 1.3 ± 0.15 |
Lysine | 2.5 | 2.3 | 2 | 2.2 ± 0.25 |
Methionine + Tyrosine | 1.2 | 1.2 | 1.5 | 1.3 ± 0.17 |
Methionine + Cysteine | 2.7 | 2.4 | 2 | 2.3 ± 0.35 |
Threonine | 1.5 | 1.5 | 1.3 | 1.4 ± 0.11 |
Tryptophan | 0.3 | 0.3 | 0.4 | 0.3 ± 0.05 |
Valine | 1.7 | 1.67 | 1.5 | 1.6 ± 0.10 |
Amino Acids | Seriola dumerili [19] | Seriola dorsalis [47] | Sparus aurata [48] | ||||
---|---|---|---|---|---|---|---|
Essential Amino Acids (EAA) | A1 | A2 | A3 | B1 | B2 | C1 | C2 |
Arginine | 2.6 | 2.7 | 2.9 | 2.3 | 2.2 | 3.4 | 3 |
Histidine | 1.5 | 1 | 1.0 | 0.9 | 0.9 | 1.3 | 1.2 |
Isoleucine | 1.8 | 1.9 | 2.1 | 1.7 | 1.6 | 2.1 | 2.1 |
Leucine | 3.4 | 3.5 | 3.8 | 3.1 | 3.03 | 3.2 | 3.9 |
Lysine | 2.9 | 3 | 3.2 | 2.5 | 2.5 | 2.9 | 2.3 |
Methionine | 1.2 | 1.2 | 1.3 | - | - | 1.1 | 0.9 |
Phenylalanine | 1.9 | 2 | 2.1 | 1.8 | 1.8 | 2.4 | 2.5 |
Threonine | 1.8 | 1.9 | 2 | 1.5 | 1.5 | 1.9 | 1.7 |
Tryptophan | - | - | - | 0.4 | 0.4 | 0.6 | 0.6 |
Valine | 2 | 2.1 | 2.2 | 2 | 1.9 | 2.5 | 2.4 |
Non-essential amino acids (NEAA) | |||||||
Cysteine | 0.5 | 0.5 | 0.6 | 0.5 | 0.4 | 0.6 | 0.6 |
Tyrosine | 1.3 | 1.4 | 1.4 | 1.3 | 1.3 | 1.8 | 1.8 |
Alanine | 2.4 | 2.5 | 2.7 | 2 | 2.2 | - | - |
Aspartic acid | 3.9 | 4.0 | 4.2 | 3.1 | 3 | - | - |
Glutamic acid | 8.9 | 9.2 | 10. | 7.5 | 7.3 | - | - |
Glycine | 2.8 | 2.9 | 3.1 | 2.6 | 2.5 | - | - |
Proline | 2.9 | 2.9 | 3.1 | 2.8 | 2.7 | - | - |
Serine | 2.1 | 2.2 | 2.3 | 1.6 | 1.6 | - | - |
Taurine | 0.3 | 1.1 | 0.3 | 0.2 | 2.6 | - | - |
Total EAA | 19.4 | 19.6 | 20.9 | 16. | 16.1 | 21.4 | 20.6 |
Total NEAA | 25.4 | 27 | 28.1 | 22.2 | 24.0 | 2.4 | 2.4 |
Species | Source | C (%) | V (%) | H (%) | S (%) | Reference |
---|---|---|---|---|---|---|
Seriola dumerili | Histidine | 1.5 | 97 | 96.1 | 50 | [19] |
Taurine | 1.1 | 81.9 | 77.9 | 31. | ||
Protein | 56 | 90 | 87.6 | 46.85 | ||
S. dorsalis | Taurine | 2.6 | 57.4 | 62 | - | [47] |
Taurine | 0 | 30 | 61.7 | - | ||
S. quinqueradiata | Taurine | 0 | - | - | - | [22] |
Taurine | 0.5 | 14 | 6.1 | - | ||
Taurine | 1 | 81.7 | 33 | - |
Species | ∑Saturated | ∑Monounsaturated | ∑n3-HUFA | Reference |
---|---|---|---|---|
Seriola quinqueradiata | 30.3–30.6 | 30.5–34.3 | 4.5–25 | [23,24,25,42] |
Pseudocaranx dentex | 26.9 | 34.5 | 3.8–22.7 | [30,58] |
S. dumerili | 29.2–31.4 | 24–32.9 | 29 | [18,20] |
S. dorsalis | 30.6 | 29.6 | 25.6 | [59] |
Sparus aurata | 21.7–33.4 | 31.9–33.7 | 20.4 | [10,60] |
Paralichthys olivaceus | 39.7 | 34.7 | 2.36 | [61] |
Acanthopagrus latus | 23.9 | 16.9 | 37.7 | [44] |
Pagrus pagrus | 27.8 | 29.1 | 33.64 | [36] |
Hippoglossus hippoglossus | 25.3 | 34.2 | - | [62] |
Species | Source | C (%) | ∑Sat | ∑MUFA | n-3 HUFA | ∑PUFA | V (%) | H (%) | S (%) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Sparus aurata | Sardine oil | 0 | 2.6 | 2.8 | 1.4 | - | 70.8 | 96.9 | 47.5 | [63] |
Sardine oil | 2.31 | 2.8 | 2.5 | 1.7 | - | 74.8 | 96.4 | 46.9 | ||
Sardine oil | 4.57 | 3.1 | 3.1 | 1.7 | - | 77.1 | 94.8 | 36.4 | ||
Sardine oil | 8.35 | 3.02 | 2.7 | 1.9 | - | 78.5 | 96.8 | 37.3 | ||
S. aurata | Sardine oil | 2.31 | 33.4 | 33.7 | 20.4 | - | 75.1 | 96.6 | 24 | [10] |
Squid meal | 61.7 | 34.3 | 33.8 | 21 | - | 76.8 | 96 | 24.3 | ||
Squid oil | 8.5 | 23.7 | 31.8 | 22.5 | - | 80.8 | 91 | 19.1 | ||
Sardine oil | 7.2 | 20.7 | 55.9 | 13.1 | - | 78.6 | 95.2 | 24.9 | ||
Oil free | 0 | 32.7 | 32.8 | 18.4 | - | 76.3 | 91.6 | 20.1 | ||
S. aurata | Cod liver oil | 6.5 | 25 | - | 17.7 | - | 90 | 42 | - | [64] |
Olive and flaxseed oil | 7, 4.2 | 18.9 | - | 11.5 | - | 40 | 30 | - | ||
S. aurata | Cod liver oil | 6.5 | 33.3 | - | - | - | - | - | - | [65] |
Olive and flaxseed oil | 7, 4.2 | 21.9 | - | - | - | - | - | - | ||
S. aurata | n-3 HUFA | 2.4 | 28.9 | 32 | 29.5 | 63.9 | 86.4 | 92.9 | 83.8 | [28] |
n-3 HUFA | 3.8 | 30.7 | 22.8 | 36.8 | 64.05 | 89.6 | 96.2 | 85.1 | ||
n-3 HUFA | 2.7 | 29.1 | 30.9 | 31.5 | 65.4 | 83.5 | 95 | 86.2 | ||
n-3 HUFA | 4 | 31.5 | 22.94 | 35.4 | 62.8 | 95.3 | 97.2 | 84.6 | ||
S. aurata | Fish oil | - | 18.1 | 25.6 | 43.9 | - | 78.6 | 96 | 81.7 | [66] |
Rapeseed oil | - | 17.3 | 34.55 | 31.1 | - | 66.5 | 90.2 | 76.2 | ||
Fish oil | - | 29.3 | 28.6 | 27.6 | - | 65.3 | 89.5 | 75.6 | ||
Rapeseed oil | - | 23.3 | 32.7 | 22.8 | - | 62.2 | 90.6 | 71.9 | ||
S. aurata | Fish oil | 8 | - | - | - | - | 92.6 | - | - | [29] |
Vegetable oil | 5.6 | - | - | - | - | 89.9 | - | - | ||
S. aurata | Fish oil | 9.9 | 25.3 | 31.8 | - | 29.6 | 81.3 | 92.2 | 93.6 | [60] |
Vegetable oil | 9.9 | 18.7 | 35.4 | - | 25.8 | 54.3 | 91.1 | 87.2 | ||
S. aurata | Fish oil | 9.8 | - | - | - | 59.63 | 49.6 | 38.2 | [48] | |
Fish oil | 10.9 | - | - | - | 53.9 | 50.2 | 38.9 | |||
Vegetable oil | 8.2 | - | - | - | 53.6 | 49.3 | 39 | |||
Dicentrarchus labrax | Fish and corn oil | 1.3 | 28.7 | 19.1 | - | 48.7 | 45.2 | 28.7 | - | [68] |
Trash fish | 4.8 | 31.1 | 15.9 | - | 48.7 | 25.8 | 8.1 | - | ||
D. labrax | Fish oil | - | 19.5 | 37.5 | - | 38.3 | 40 | 9 | 18 | [70] |
Tuna orbital oil | - | 18.5 | 31.9 | - | 45 | 62 | 29 | 60 | ||
D. labrax | Trash fish | 20 | - | - | - | - | 45.22 | 28.7 | - | [69] |
Fish oil | 10 | - | - | - | - | 2.59 | 0.45 | - | ||
Fish oil | 22 | - | - | - | - | 10.68 | 3.55 | - | ||
D. labrax | Fish oil | 22 | - | - | - | - | - | - | 13.9 | [31] |
Tuna orbital oil | 21 | - | - | - | - | - | - | 20.9 | ||
Acanthopagrus latus | Fish and sunflower oil | 15 | - | - | - | - | 58.9 | 50.6 | 90.9 | [44] |
Fish and sunflower oil | 20 | - | - | - | - | 59.5 | 43.8 | 62.1 | ||
Fish and sunflower oil | 25 | - | - | - | - | 58 | 41.9 | 58 | ||
A. latus | Fish oil | 10 | 29.3 | 28.6 | 39.3 | - | 60.2 | 59.8 | 89. | [71] |
Sunflower oil | 10 | 34.6 | 36.3 | 22.7 | - | 58.4 | 39.1 | 64.5 | ||
Fish and sunflower oil | 5,5 | 34.3 | 33.2 | 27.8 | - | 57.7 | 43.5 | 59.12 | ||
Seriola dumerili | Fish oil | 13 | 25.6 | 24.5 | - | 47.36 | - | - | - | [20] |
Fish oil, rapeseed oil, and Algaritum DHA70 | 2.1, 8.2, 1.7 | 25 | 25.9 | - | 44.23 | - | - | - | ||
S. dumerili | Flaxseed oil, palm oil, and fish oil | 4.5,5.9, 0.6 | 26.8 | 24.8 | - | 24.6 | 86. | 80.6 | 33.3 | [18] |
Flaxseed oil, palm oil, and fish oil | 3, 3.9, 4 | 27.7 | 23.3 | - | 24.93 | 84.9 | 80.9 | 29.3 | ||
Flaxseed oil, palm oil, and fish oil | 1.5,2, 7.4 | 27.5 | 23.3 | - | 24 | 84.9 | 83.2 | 35 | ||
Fish oil | 10.9 | 27.5 | 22.4 | - | 23.5 | 84.5 | 78 | 32.8 | ||
S. dorsalis | Mortierella alpina oil | 1.4 | 22.2 | 30.5 | - | 45.1 | 33.7 | 52.4 | - | [59] |
Mortierella alpina oil | 4.7 | 21.6 | 28.9 | - | 43.1 | 72.1 | 25.6 | - | ||
Paralichthys olivaceus | Palm olein | 10 | 29.1 | 22.6 | 10.1 | - | 62.2 | 76.8 | 67.8 | [61] |
Haddock visceral oil and palm olein | 2, 8 | 32.4 | 19.4 | 11.5 | - | 46 | 53.1 | 76.9 | ||
Pollock visceral oil, | 10 | 30.7 | 24.1 | 16.55 | - | 67.3 | 89.2 | 94.1 | ||
P. olivaceus | SUNTGA 40S, and ethyl oleate | 0, 6 | 24.3 | 44.5 | 14.9 | - | 42.1 | 50.6 | 47.7 | [32] |
SUNTGA 40S and ethyl oleate | 1.2, 4.8 | 26.2 | 40.7 | 15.9 | - | 44.5 | 79.4 | 79.3 | ||
SUNTGA 40S and ethyl oleate | 2.4, 3.6 | 27 | 39.3 | 15.2 | - | 33.5 | 27.2 | 0 | ||
Lutjanus campechanus | Brevoortia | 3.6 | 36.7 | 27.9 | - | 36.4 | - | 88.2 | 70 | [35] |
DHA Gold and ARASCO | 2.4, 1.2 | 39.8 | 37.8 | - | 22.4 | - | - | - |
Species | Vitamin A (IU·g−1) | Vitamin E (µg·g−1) | Carotenes | Reference |
---|---|---|---|---|
Seriola quinqueradiata | 21.4–26 | 0.21–471.8 | 0.3–3 (g·kg−1) | [23,24,25,26,42] |
Sparus aurata | - | - | 60 (mg·kg−1) | [28] |
Pseudocaranx dentex | 15.5–16.5 | 177–327 | 0.04–3.6 (g·kg−1) | [30,43,58] |
Pagrus major | - | - | 4 (g·kg−1) | [88] |
Species | Vitamin | Quantity | V (%) | H (%) | NL (%) | Reference |
---|---|---|---|---|---|---|
Pagrus major | α-tocopherol | 50 mg·100 g−1 | 65.6 | 57.1 | 89.5 | [39] |
α-tocopherol | 200 mg·100 g−1 | 95.1 | 77.8 | 97.1 | ||
Gadus morhua | Ca-ascorbate-2-monophosphate | 0 mg·kg−1 | - | - | - | [89] |
Ca-ascorbate-2-monophosphate | 50 mg·kg−1 | - | - | - | ||
Ca-ascorbate-2-monophosphate | 2 mg·kg−1 | - | - | - | ||
Chano chanos | Vitamin E | 0.05% | 55.5 | 51.6 | 16.1 | [90] |
Vitamin C | 0.10% | 50 | 42.8 | 0 | ||
Vitamins C and E | 0.1%, 0.05% | 50 | 56.5 | 13 | ||
Vitamins C and E | 0% | 32.2 | 34.7 | 8.7 | ||
Platichthys stellatus | Retinyl palmitate | 0% | 86 | 80.4 | 68.7 | [91] |
Retinyl palmitate | 0.30% | 88.9 | 89.8 | 75.6 | ||
Paralichthys olivaceus | Vitamin A | 0.77 mg·kg−1 | 76 | 79.5 | 52.8 | [33] |
Vitamin A | 16.9 mg·kg−1 | 87.8 | 77.6 | 69.4 | ||
P. stellatus | Retinyl acetate | 8000 IU·kg−1 | - | - | - | [92] |
α-tocopherol acetate | 250 mg·kg−1 | - | - | - | ||
L-ascorbyl-2-phosphate | 500 mg·kg−1 | - | - | - |
Species | Source | C (%) | Carotenes | V (%) | H (%) | L (%) | Reference |
---|---|---|---|---|---|---|---|
Pagrus major | Oils extract | 10 | 3.2 mg·100 g−1 | 18.2 | 27.3 | 24 | [95] |
Krill | - | 108 mg·100 g−1 | 82.7 | 90 | 91.2 | ||
Seriola quinqueradiata | Fish | - | - | 35.7 | - | - | [42] |
Pellet | - | 30 g·kg−1 | 39 | 17.7 | - | ||
Krill | 10 | 3% | 59.2 | 46.9 | - | ||
S. quinqueradiata | Fish | - | 0.04 g·100 g−1 | - | - | - | [26] |
Squid | 10 | 86.7 mg·100 g−1 | - | - | - | ||
Krill | 10 | 2.59 mg·100 g−1 | - | - | - | ||
S. quinqueradiata | Krill | 0 | 0.63 mg·100 g−1 | 57.6 | 51.3 | 50 | [24] |
Krill | 20 | 2.16 mg·100 g−1 | 47.9 | 29.8 | 32.7 | ||
Krill | 30 | 3.53 mg·100 g−1 | 52.4 | 10.8 | 11.9 | ||
S. quinqueradiata | Astaxanthin | 0 | 2.4 ppm | 31.4 | 21.2 | 19.4 | [25] |
Astaxanthin | 20 | 17.3 ppm | 51.6 | 40 | 36.9 | ||
Astaxanthin | 30 | 32.9 ppm | 52.6 | 45.2 | 42.6 | ||
Astaxanthin | 40 | 39.6 ppm | 21.2 | 13.7 | 12.5 | ||
Pseudocaranx dentex | Spirulina | 2 | 46.1 mg·kg−1 | 28.9 | 23.2 | 60.7 | [58] |
Squid and shrimp | - | 6.4 mg·kg−1 | 52.6 | 46.6 | 81.9 | ||
S. quinqueradiata | Squid and shrimp | - | 30 ppm | 92.6 | 73.1 | - | [30] |
Squid meal | 31 | 16.4 ppm | 94.7 | 77.9 | - | ||
P. dentex | Astaxanthin | 30 ppm | 36.6 ppm | 85.4 | 64.4 | - | [23] |
Paprika | 2 | 38.1 ppm | 93.9 | 94.9 | - | ||
Squid meal and paprika | 28, 2 | 35.9 ppm | 92.7 | 92.3 | - | ||
Gadus morhua | Astaxanthin | - | 100 ppm | 92 | - | 75 | [94] |
Astaxanthin | - | 50 ppm | 88 | - | 84 | ||
Astaxanthin | - | 50 ppm | 59 | - | 75 | ||
G. morhua | Carophyll Pink | - | - | 31.5 | 11 | - | [93] |
Astaxanthin | - | 73.7 mg·kg−1 | 33 | 13.5 | - | - |
Species | Mineral | Requirement (mg) | Reference |
---|---|---|---|
Acanthopagrus schlegeli | Calcium | Non-essential | [99] |
Gadus morhua | Calcium | Non-essential | [100] |
Dicentrarchus labrax | Phosphorus | 8600 | [101] |
Seriola quinqueradiata | Phosphorus | 6500 | [102] |
S. quinqueradiata | Phosphorus | 6700 | [103] |
Pagrus major | Potassium | Non-essential | [97] |
G. morhua | Potassium | Essential | [100] |
P. major | Sodium | Non-essential | [97] |
Salmo salar | Copper | 5–10 | [104] |
P. major | Iron | 15 | [105] |
Sciaenops ocellatus | Zinc | Non-essential | [106] |
Oncorhynchus tshawytscha | Iodine | 0.6–1.1 mg | [107] |
G. morhua | Magnesium | Non-essential | [100] |
P. major | Magnesium | 12 | [108] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez de-Dios, M.A.; Tovar-Ramírez, D.; Maldonado García, D.; Galaviz-Espinoza, M.A.; Spanopoulos Zarco, M.; Maldonado-García, M.C. Functional Additives as a Boost to Reproductive Performance in Marine Fish: A Review. Fishes 2022, 7, 262. https://doi.org/10.3390/fishes7050262
Hernandez de-Dios MA, Tovar-Ramírez D, Maldonado García D, Galaviz-Espinoza MA, Spanopoulos Zarco M, Maldonado-García MC. Functional Additives as a Boost to Reproductive Performance in Marine Fish: A Review. Fishes. 2022; 7(5):262. https://doi.org/10.3390/fishes7050262
Chicago/Turabian StyleHernandez de-Dios, Marco A., Dariel Tovar-Ramírez, Deneb Maldonado García, Mario A. Galaviz-Espinoza, Milton Spanopoulos Zarco, and Minerva C. Maldonado-García. 2022. "Functional Additives as a Boost to Reproductive Performance in Marine Fish: A Review" Fishes 7, no. 5: 262. https://doi.org/10.3390/fishes7050262
APA StyleHernandez de-Dios, M. A., Tovar-Ramírez, D., Maldonado García, D., Galaviz-Espinoza, M. A., Spanopoulos Zarco, M., & Maldonado-García, M. C. (2022). Functional Additives as a Boost to Reproductive Performance in Marine Fish: A Review. Fishes, 7(5), 262. https://doi.org/10.3390/fishes7050262