A Review of Grass Carp and Related Species Literature on Diet, Behavior, Toxicology, and Physiology Focused on Informing Development of Controls for Invasive Grass Carp Populations in North America
Abstract
:1. Introduction
1.1. Grass Carp as a Non-Native Species
1.1.1. Occurrence and Spawning
1.1.2. Introduction to North America
1.1.3. Observed and Potential Effects
Effects on Vegetation
Effects on Fish and Other Animals
Family | Species | Location | Status | Change | Reference |
---|---|---|---|---|---|
Atherinopsidae | brook silverside (Labidesthes sicculus) | Texas, USA | Native | Decrease | [7,88] |
Atherinopsidae | inland silverside (Menidia beryllina) | Texas, USA | Invasive | Increase | [7,88] |
Catostomidae | lake chubsucker (Erimyzon sucetta) | Florida, USA | Native | Increase | [84] |
Centrarchidae | warmouth (Lepomis gulosus) | Florida, USA | Native | Decrease | [84] |
Centrarchidae | bluegill (Lepomis macrochirus) | Texas, USA | Native | Decrease | [7] |
Arkansas, USA | Native | None | [92] | ||
Missouri, USA | Native | Increase | [89] | ||
Florida, USA | Native | Increase | [84] | ||
North Carolina, USA | Native | Increase | [28] | ||
Centrarchidae | redear sunfish (Lepomis microlophus) | Arkansas, USA | Native | None | [92] |
Centrarchidae | Lepomis spp., (6 species) | Texas, USA | Native | Decrease | [7] |
Centrarchidae | largemouth bass (Micropterus salmoides) | Florida, USA | Native | Decrease | [84] |
Arkansas, USA | Native | None | [92] | ||
Centrarchidae | white crappie (Pomoxis annularis) | Texas, USA | Native | Decrease | [7] |
Clupeidae | threadfin shad (Dorosoma petenense) | Texas, USA | Native | Increase | [7] |
Cyprinidae | crucian carp (Carassius carassius) | Russia | Native | Decrease | [70] as cited by [1] |
Cyprinidae | common carp (Cyprinus carpio) | Texas, USA | Invasive | Increase | [7] |
Esocidae | pike (Esox spp.) | Russia | Native | Decrease | [70] as cited by [1] |
Esocidae | northern pike (Esox lucius) | Poland | Native | Decrease | J. Mastyński, J. Malecki, and M. Iwaszkiewicz, 1987 as cited in [105] |
Fundulidae | Fundulus spp. (3 species) | Texas, USA | Native | Decrease | [7] |
Ictaluridae | brown bullhead (Ameiurus nebulosus) | Texas, USA | Native | Increase | [7] |
Ictaluridae | channel catfish (Ictalurus punctatus) | Texas, USA | Native | Increase | [7] |
Leuciscidae | common bream (Abramis brama) | Poland | Native | Decrease | J. Mastyński, J. Malecki, and M. Iwaszkiewicz, 1987 as cited in [105] |
Leuciscidae | white bream (Blicca bjoerkna) | Poland | Native | Decrease | J. Mastyński, J. Malecki, and M. Iwaszkiewicz, 1987 as cited in [105] |
Leuciscidae | blacktail shiner (Cyprinella venusta) | Texas, USA | Native | Increase | [7] |
Leuciscidae | fathead minnow (Pimephales promelas) | Missouri, USA | Native | Increase | [89] |
Moronidae | white bass (Morone chrysops) | Texas, USA | Native | Increase | [7] |
Moronidae | yellow bass (Morone mississippiensis) | Texas, USA | Native | Increase | [7] |
Percidae | yellow perch (Perca flavescens) | North Carolina, USA | Native | Increase | [28] |
Percidae | European perch (Perca fluviatilis) | Poland | Native | Decrease | J. Mastyński, J. Malecki, and M. Iwaszkiewicz, 1987 as cited in [105] |
Russia | Native | Decrease | [70] as cited by [1] | ||
Percidae | pikeperch (Sander lucioperca) | Poland | Native | Decrease | J. Mastyński, J. Malecki, and M. Iwaszkiewicz, 1987 as cited in [105] |
Retropinnidae | New Zealand smelt (Retropinna retropinna) | New Zealand | Native | Decrease | [87] |
Multiple families | unspecified herbivorous fish species (74 species) | Pakistan | Unknown | Decrease | [86] |
Multiple families | various pond-dwelling species (7 species) | Florida, USA | Native | Decrease | [84] |
Effects on Plankton, Algae, and Water Quality
1.1.4. Status and Management Concerns
2. Methods Summary
3. Results: Review of Focal Areas
3.1. Diet and Behavior
3.1.1. In Situ Diet and Selectivity
Taxon | Consumption | Reference(s) |
---|---|---|
Acanthodiaptomus spp./sp. [copepod] | Consumed (1 ref.) | V.P. Mitrofanov, G.M. Dukravets, and A.F. Sidorova, 1992 as cited in [1] |
Aeshna affinis [dragonfly] | Avoided (1 ref.) | [154] |
Alonella spp./sp. [water flea] | Consumed (1 ref.; a), Readily (1 ref.; b) | (a) [1]; (b) M. Linchevskaya, 1966 as cited in [1] |
Amphipoda (order) [scud] | Consumed (1 ref.) | [176] |
Anax spp./sp. [dragonfly] | Avoided (1 ref.) | [154] |
Anisops spp./sp. ** [backswimmer] | Avoided (1 ref.) | [176] |
Arcella spp./sp. [amoeba] | Readily (1 ref.) | [25] |
Archichauliodes spp./sp. [fishfly] | Consumed (1 ref.) | [176] |
Baetis spp./sp. [dragonfly] | Readily (1 ref.) | [154] |
Berosus spp./sp. [water scavenger beetle] | Rarely † (1 ref.) | A.F. Mukhamedova, 1963 as cited in [1] |
Bosmina spp./sp. [water flea] | Consumed (1 ref.) | [153] |
Bosmina longirostris [water flea] | Consumed (1 ref.; a), Conditional (1 ref.; b), Readily (3 refs.; c-e) | (a) [152]; (b) [151]; (c) [1] citing [151]; (d) [25] citing [151]; (e) [154] |
Brachionus spp./sp. [rotifer] | Consumed (2 refs.; a-b) | (a) [1]; (b) [20]# |
Brachionus plicatilis [rotifer] | Readily (1 ref.) | M. Linchevskaya, 1966 as cited in [1] |
Brachionus quadridentatus [rotifer] | Readily (1 ref.) | M. Linchevskaya, 1966 as cited in [1] |
Ceriodaphnia spp./sp. [water flea] | Avoided (1 ref.; a), Rarely (1 ref.; b) | (a) [25] citing [151]; (b) [1] citing [151] |
Ceriodaphnia quadrangula [water flea] | Avoided (1 ref.) | [151] |
Chaetogaster spp./sp. [oligochaete worm] | Moderately (1 ref.) | [154] |
Chironomidae (family) [midge] | Consumed (3 refs.; a-c), Readily (1 ref.; d) | (a) B.G. Burdiyan and D.A. Razmashkin, 1972 as cited in [1]; (b) [1]; (c) [176]; (d) M. Linchevskaya, 1966 as cited in [1] |
Chironomus spp./sp. [midge] | Consumed (1 ref.; a), Readily (1 ref.; b) | (a) [20]#; (b) [154] |
Chydorus spp./sp. [water flea] | Avoided (1 ref.; a), Rarely (1 ref.; b) | (a) [25] citing [151]; (b) [1] citing [151] |
Chydorus sphaericus [water flea] | Avoided (1 ref.; a), Readily (1 ref.; b) | (a) [151]; (b) [154] |
Cladocera (order) [water flea] | Consumed (2 refs.; a-b) | (a) [152]; (b) [20]# |
Cloeon dipterum [mayfly] | Readily (1 ref.) | [154] |
Copepoda (order) [copepod] | Consumed (1 ref.; a) ‡, Rarely (1 ref.; b), Readily (1 ref.; c) ‡ | (a) [20]#; (b) [1] citing [151]; (c) M. Linchevskaya, 1966 as cited in [1] |
Culex spp./sp. [mosquito] | Moderately (1 ref.) | [154] |
Cyclops strenuus [copepod] | Avoided (1 ref.) | [151] |
Daphnia spp./sp. [water flea] | Consumed (1 ref.) | [152] |
Daphnia longispina [water flea] | Moderately (1 ref.; a), Readily (3 refs.; b-d) | (a) [154]; (b) [1] citing [151]; (c) [25] citing [151]; (d) [151] |
Deleatidium spp./sp. [mayfly] | Consumed (1 ref.) | [176] |
Diaphanosoma spp./sp. [water flea] | Consumed (1 ref.) | [1] |
Diaphanosoma brachyurum [water flea] | Readily (1 ref.) | [155] |
Diaptomus spp./sp. [water flea] | Avoided (2 refs.; a-b) | (a) [151]; (b) [155] |
Euplotes patella [ciliate] | Readily (1 ref.) | [154] |
Filinia spp./sp. [rotifer] | Consumed (1 ref.) | [177] |
Filinia passa [rotifer] | Consumed (1 ref.) | [152] |
Gammaridae (family) [river shrimp] | Consumed (1 ref.) | B.G. Burdiyan and D.A. Razmashkin, 1972 as cited in [1] |
Gammarus pulex [river shrimp] | Readily (1 ref.) | [178] |
Gyrinus spp./sp. [whirligig beetle] | Avoided (1 ref.) | [154] |
Hydropsyche spp./sp. [caddisfly] | Consumed (1 ref.) | [176] |
Infusoria (unclassified) [aquatic microorganisms] | Consumed (1 ref.; a), Readily (1 ref.; b) | (a) [179]; (b) [179] |
Keratella spp./sp. [rotifer] | Consumed (1 ref.) | [1] |
Keratella quadrata [rotifer] | Readily (1 ref.) | [154] |
Keratella valga [rotifer] | Readily (1 ref.) | M. D. Rozmanova, 1966 as cited in [25] |
Lecane spp./sp. [rotifer] | Consumed (1 ref.) | [153] |
Leuctra fusca [stonefly] | Readily (1 ref.) | [154] |
Libellula depressa [dragonfly] | Avoided (1 ref.) | [154] |
Limnodrilus hoffmeisteri [oligochaete worm] | Consumed (2 refs.; a-b) | (a) [180]; (b) [181] |
Limnephilus spp./sp. * [caddisfly] | Consumed (1 ref.) †† | B.G. Burdiyan and D.A. Razmashkin, 1972 as cited in [1] |
Mesocyclops spp./sp. [copepod] | Consumed (1 ref.) | [1] |
Mesocyclops leukarti [copepod] | Avoided (1 ref.) | [154] |
Moina spp./sp. [water flea] | Consumed (1 ref.) | [1] |
Moina rectirostris [water flea] | Readily (1 ref.) | M. D. Rozmanova, 1966 as cited in [25] |
Monostyla spp./sp. [rotifer] | Consumed (1 ref.) | [153] |
Naididae (family) * [oligochaete worm] | Consumed (1 ref.) | [152] |
Clitellata | Readily (1 ref.) | [176] |
Ostracoda (class) [seed shrimp] | Consumed (1 ref.) | [1] |
Plecoptera (order) [stonefly] | Moderately (1 ref.) | [176] |
Polyarthra vulgaris [rotifer] | Readily (1 ref.) | [154] |
Polyphemus pediculus * [onychopod] | Readily (3 refs.; a-c) | (a) [1] citing [151]; (b) [25] citing [151]; (c) [151] |
Potamopyrgus antipodum [New Zealand mud snail] | Consumed (1 ref.) | [176] |
Potamopyrgus antipodarum [freshwater snail] | Consumed (1 ref.) | [176] |
Protozoa (unclassified) | Consumed (2 refs.; a-b) | (a) [27]; (b) [20]# |
Rhantus suturalis [supertramp beetle] | Avoided (1 ref.) | [154] |
Oncorhynchus mykiss [rainbow trout] | Avoided (1 ref.; a) ‡‡, Consumed (1 ref.; b) ‡‡ | (a) [176]; (b) [176] |
Scapholeberis mucronata [water flea] | Readily (3 refs.; a-c) | (a) [1] citing [151]; (b) [25] citing [151]; (c) [151] |
Simocephalus spp./sp. [water flea] | Consumed (1 ref.; a), Moderately (1 ref.; b) | (a) [152]; (b) [154] |
Stylaria lacustris [oligochaete worm] | Moderately (1 ref.) | [154] |
Stylonychia mytilus [ciliate] | Readily (1 ref.) | [154] |
Telmatogetoninae (subfamily of Chironimidae) [midge] | Consumed (1 ref.; a), Rarely † (1 ref.; b) | (a) [152]; (b) A.F. Mukhamedova, 1963 as cited in [1] |
Tipula spp./sp. [crane fly] | Readily (1 ref.) | [154] |
Trichoptera (order) [caddisfly] | Consumed (1 ref.) | B.G. Burdiyan and D.A. Razmashkin, 1972 as cited in [1] |
Zooplankton (unclassified) | Consumed (2 refs.; a-b), Readily (1 ref.; c) | (a) [27]; (b) [164]; (c) B.G. Burdiyan and D.A. Razmashkin, 1972 as cited in [1] |
Taxon | Consumption | Reference(s) |
---|---|---|
Acorus calamus [sweet flag] | Consumed (1 ref.) | [20]# |
Algae (unclassified) | Readily (1 ref.) | [179] |
Alisma spp./sp. [water-plantain] | Consumed (1 ref.) | [20]# |
Alisma gramineum [narrowleaf water-plantain] | Readily (1 ref.) | M. Saadati, 1974 as cited in [164] |
Alisma plantago-aquatic [common water-plantain] | Consumed (2 refs.; a-b) | (a) [147] citing [182]; (b) [183] |
Alternanthera spp./sp. [joyweed] | Avoided (1 ref.) | [60]# |
Alternanthera philoxeroides [alligator weed] | Avoided (1 ref.; a), Rarely (1 ref.; b) | (a) [184]; (b) [17] citing [171] |
Anabaena spp./sp. | Consumed (1 ref.) | [1] |
Aphanizomenon flos-aquae | Consumed (1 ref.) | [169] |
Araceae (family) [duckweed] | Readily (1 ref.) | [147] citing [185] |
Azolla spp./sp. [mosquito ferns] | Consumed (2 refs.; a-b), Readily (2 refs.; c-d) | (a) [20]#; (b) [164]; (c) [186] citing [187]; (d) [173] |
Azolla filiculoides [Pacific mosquitofern] | Avoided (2 refs.; a-b), Readily (1 ref.; c) | (a) [184]; (b) [158]; (c) [156] |
Azolla pinnata [feathered mosquitofern] | Consumed (1 ref.; a), Readily (1 ref.; b) | (a) [147] citing [168]; (b) [185] |
Azolla rubra [red Azolla] | Rarely (1 ref.) | [159] |
Bacillariophyceae (class) [diatoms] | Consumed ** (1 ref.) | B.G. Burdiyan and D.A. Razmashkin, 1972 as cited in [1] |
Bacopa caroliniana [blue water hyssop] | Avoided (1 ref.) | [184] |
Beta vulgaris [sugar beet] | Avoided (1 ref.) | [183] |
Bidens tripartita [three-lobed beggar-ticks] | Consumed (2 refs.; a-b) | (a) [147] citing [168]; (b) [20]# |
Brasenia spp./sp. [watershield] | Avoided (1 ref.) | [60]# |
Brasenia schreberi [watershield] | Consumed (1 ref.; a), Rarely (1 ref.; b), Readily (1 ref.; c) | (a) [184]; (b) [188]; (c) [17] citing [171] |
Butomus umbellatus [flowering rush] | Consumed (2 refs.; a-b) | (a) [147] citing [168]; (b) [20]# |
Cabomba spp./sp. [fanwort] | Avoided (1 ref.) | [60]# |
Cabomba caroliniana [Carolina watershield] | Consumed (1 ref.) | [147] citing [189] |
Calamagrostis epigejos [bush grass] | Consumed (2 refs.; a-b) | (a) [147] citing [190]; (b) [20]# |
Calla palustris [water arum] | Consumed (2 refs.; a-b) | (a) [147] citing [190]; (b) [20]# |
Callitriche spp./sp. [water-starworts] | Consumed (1 ref.; a), Readily (2 refs.; b-c) | (a) [17] citing [191]; (b) [183]; (c) [178] |
Callitriche stagnalis [pond water-starwort] | Consumed (1 ref.; a), Conditional (1 ref.; b) Readily (1 ref.; c) | (a) [17] citing [191]; (b) [159]; (c) [175] |
Callitriche palustris [vernal water-starwort] | Consumed (1 ref.) | [183] |
Carex spp./sp. [sedges] | Consumed (2 refs.; a-b) | (a) [183]; (b) [184] |
Carex lowei * [tufted sedge] | Avoided (1 ref.; a), Consumed (2 refs.; b-c) | (a) [168]; (b) [147] citing [190], [182]; (c) [20]# |
Carex nigra [black sedge] | Consumed (3 refs.; a-c), Rarely (2 refs.; d-e) | (a) [147] citing [190]; (b) [147] citing [182]; (c) [20]#; (d) [192] citing [193], [194], N. S. Stroganov, 1963, and V. Krupauer, 1967 (e) [195] |
Carex pseudocyperus [cyperus sedge] | Consumed (2 refs.; a-b), Rarely (2 refs.; c-d) | (a) [147] citing [190], [182]; (b) [20]#; (c) [192] citing [193], [194], N. S. Stroganov, 1963, and V. Krupauer, 1967; (d) [195] |
Catagrose aquatica [manna grass] | Consumed (1 ref.) | [183] |
Centella asiatica [coinwort] | Consumed (1 ref.) | [184] |
Ceratophyllum spp./sp. [hornwort] | Avoided (1 ref.; a) Readily (1 ref.; b) | (a) [60]#; (b) [196] |
Ceratophyllum demersum [coontail] | Avoided (3 refs.; a-c), Consumed (4 refs.; d-g), Rarely (5 refs.; h-l), Conditional (1 ref.; m), Moderately (1 ref.; n), Readily (8 refs.; o-v) | (a) [72]; (b) [156] citing [73]; (c) [158]; (d) [17] citing [191]; (e) [147] citing [182]; (f) [184]; (g) [20]#; (h) [159]; (i) [166]; (j) [197]; (k) [198]; (l) [199] (m) [188]; (n) [200]; (o)[185]; (p) [192] citing [193], [194], N. S. Stroganov, 1963, and V. Krupauer, 1967; (q) [195]; (r) [201]; (s) [17] citing [171] (t) [173]; (u) [156]; (v) [202] |
Chara spp./sp. [stonewort] | Avoided (1 ref.; a), Consumed (4 refs.; b-e), Rarely (1 ref.; f), Readily (13 refs.; g-s) | (a) [60]#; (b) [17] citing [191]; (c) V.P. Mitrofanov, G.M. Dukravets, Antsiferova et al. 1968, and A.F. Sidorova, 1992 as cited in [1]; (d) [184]; (e) [20]#; (f) [203] (g) [192] citing [193], [194], N. S. Stroganov, 1963, and V. Krupauer, 1967; (h) [195]; (i) M. Saadati, 1974 as cited in [164]; (j) [183]; (k) [204]; (l) [196]; (m) [173]; (n) [165]; (o) [146]; (p) [158]; (q) [71] citing [73]; (r) [177]; (s) [205] citing [173] |
Chara globularis [fragile stonewort] | Rarely (1 ref.) | [178] |
Chara vulgaris [common stonewort] | Consumed (1 ref.) | [147] citing [190] |
Characium spp./sp. [unicellular green algae] | Consumed (1 ref.) | [177] |
Charales (order) [stoneworts] | Readily (1 ref.) | [201] |
Chlamydomonas spp./sp. [unicellular green algae] | Consumed (1 ref.) | [177] |
Cladium spp./sp. [sawgrass] | Avoided (1 ref.; a), Rarely (1 ref.; b) | (a) [60]#; (b) [205] citing [206] |
Cladium jamaicense [sawgrass] | Rarely (1 ref.) | [17] citing [171] |
Cladophora spp./sp. [filamentous green algae] | Consumed (3 refs.; a-c), Readily (2 refs.; d-e) | (a) [1]; (b) [1]; (c) [20]#; (d) M. Saadati, 1974 as cited in [164]; (e) [146] |
Cladophoraceae (family) [filamentous green algae] | Consumed (1 ref.) | [183] |
Colocasia esculenta * [elephant ear] | Rarely (1 ref.; a) Consumed (1 ref.; b) | (a) [185] (b) [184] |
Commelina virginica [Virginia dayflower] | Consumed (1 ref.) | [184] |
Cosmarium spp./sp. | Readily (1 ref.) | M. Linchevskaya, 1966 as cited in [1] |
Echinodorus spp./sp. [burhead] | Avoided (1 ref.) | [60]# |
Egeria spp./sp. [waterweed] | Avoided (1 ref.) | [60]# |
Egeria densa [Brazilian waterweed] | Avoided (1 ref.; a), Consumed (3 refs.; b-d), Rarely (1 ref.; e), Conditional (1 ref.; f), Readily (3 refs.; g-i) | (a) [159]; (b) [17] citing [191]; (c) [184]; (d) [20]#; (e) [188]; (f)[197]; (g) [173]; (h) [72]; (i) [205] citing [173] |
Eichhornia spp./sp. [water-hyacinth] | Avoided (1 ref.) | [60]# |
Eichhornia crassipes [water-hyacinth] | Avoided (2 refs.; a-b), Consumed (3 refs.; c-e), Rarely (3 refs.; f-h), Moderately (2 refs.; i-j) | (a) [72]; (b) [146]; (c) [147] citing [190]; (d) [184]; (e) [20]#; (f) [186] citing [185]; (g) [173]; (h) [156] (i) [17] citing [171]; (j) [207] |
Eleocharis spp./sp. [spikerushes] | Avoided (1 ref.; a), Moderately (1 ref.; b) | (a) [60]#; (b) [17] citing [171] |
Eleocharis acicularis [needle spikerush] | Consumed (1 ref.) | [72] |
Eleocharis baldwinii [road grass] | Consumed (1 ref.) | [184] |
Eleocharis palustris [creeping spikerush] | Consumed (1 ref.) | [183] |
Eleocharis quadrangulata [square rush] | Consumed (1 ref.) | [184] |
Elodea spp./sp. * [waterweeds] | Readily (2 refs.; a-b) | (a) [1] citing N. S. Stroganov, 1963 (b) [27] |
Elodea canadensis [Canadian waterweed] | Consumed (5 refs.; a-e), Conditional (1 ref.; f), Readily (9 refs.; g-o) | (a) [208]; (b) [147] citing [168]; (c) [17] citing [191]; (d) [183]; (e) [20]#; (f) [144]; (g) [192] citing [193], [194], N. S. Stroganov, 1963, and V. Krupauer, 1967; (h) [195]; (i) [159]; (j) [204]; (k) [201]; (l) [165] (m) [188] (n) [209]; (o) [146] |
Elodea nuttallii [western waterweed] | Consumed (1 ref.; a), Rarely (1 ref.; b), Readily (1 ref.; c) | (a) [181]; (b) [178]; (c) [72] |
Equisetum spp./sp. [horsetail] | Consumed (2 refs.; a-b) | (a) [147] citing [210]; (b) [20]# |
Erthranthe guttatta * [monkeyflower] | Avoided (2 ref.; a-b) | (a) [159]; (b) [159] |
Eryngium aquaticum [bitter snakeroot] | Consumed (1 ref.) | [184] |
Ficus grossulariodies [fig tree] | Rarely (1 ref.) | [27] |
Filamentous algae (unclassified) | Avoided (1 ref.; a), Rarely (1 ref.; b), Readily (2 refs.; c-d) | (a) [201] citing N. S. Stroganov, 1963, R. Tsharyiev and D.S. Aliev 1966; (b) [205] citing [206]; (c) [201] citing [211], W. Prihodko and A. Nosal 1966; (d) [17] citing [171] |
Fimbristylis acuminata [pointed fimbristylis] | Conditional †† (1 ref) | [27] |
Fontinalis spp./sp. [fountain moss] | Consumed (2 refs.; a-b), Readily (1 ref.; c) | (a) [147] citing [190]; (b) [20]#; (c) [201] |
Fontinalis antipyretica [willow moss] | Consumed (1 ref.) | [20]# |
Fuirena umbellata [umbrella sedge] | Conditional †† (1 ref.) | [27] |
Galium palustre [marsh bedstraw] | Avoided (1 ref.) | [168] |
Glyceria fluitans [floating sweet-grass] | Consumed (3 refs.; a-c), Readily (2 refs.; d-e) | (a) [147] citing [182]; (b) [183]; (c) [20]#; (d) [168]; (e) [209] |
Gomphonema spp./sp. [diatoms] | Readily (1 ref.) | [155] |
Gomphosphaeria lacustris [colonial cyanobacteria] | Readily (1 ref.) | M. Linchevskaya, 1966 as cited in [1] |
Groenlandia densa [opposite-leaved pondweed] | Consumed (1 ref.; a), Readily (1 ref.; b) | (a) [183]; (b) [204] |
Halophila gaudichaudii [paddle weed] | Consumed (1 ref.) | [185] |
Hippus vulgaris [mare’s tail] | Rarely (1 ref.) | [204] |
Hottonia palustris [water violet] | Conditional (1 ref.) | [168] |
Hydrilla verticillata [hydrilla] | Consumed (5 refs.; a-e), Readily (13 refs.; f-r) | (a) [147] citing [182]; (b) [184]; (c) [60]#; (d) [9]; (e) [20]#; (f) [185]; (g) [27]; (h) [146] citing [212]; (i) [146] citing [17,213]; (j) [17] citing [171]; (k) [196]; (l) [173]; (m) [214]; (n) [72]; (o) [146]; (p) [158]; (q) [205] citing [173]; (r) [215] |
Hydrocharis morsus-ranae * [frogbit] | Consumed (2 refs.; a-b), Rarely (2 refs.; c-d) | (a) [147] citing [168]; (b) [20]#; (c) [192] citing [193], [194], and V. Krupauer, 1967; (d) [195] |
Hydrocotyle spp./sp. [water pennyworts] | Rarely (1 ref.) | [17] citing [171] |
Hydrocotyle umbellata [dollarweed] | Consumed (1 ref.) | [184] |
Hydrodictyon reticulatum [water net] | Avoided (1 ref.; a), Consumed (1 ref.; b) | (a) N. S. Stroganov, 1963 as cited in [201]; (b) [183] |
Isoetes kirkii [quillwort] | Consumed (1 ref.) | [17] citing [191] |
Juncaceae (family) [rushes] | Rarely (1 ref.) | [27] |
Juncus spp./sp. [rushes] | Consumed (1 ref.) | [183] |
Juncus articulatus [jointed rush] | Consumed (1 ref.) | [20]# |
Juncus effusus [common rush] | Consumed (2 refs.; a-b), Rarely (2 refs.; c-d), Conditional (1 ref.; e) | (a) [147] citing [190]; (b) [20]#; (c) [192] citing [193], [194], and V. Krupauer, 1967; (d) [195]; (e) [168] |
Juncus filiformis [thread rush] | Consumed (2 refs.; a-b) | (a) [147] citing [190]; (b) [20]# |
Lactuca sativa [lettuce] | Consumed (2 refs.; a-b), Readily (1 ref.; c) | (a) [147] citing [182]; (b) [20]#; (c) [168] |
Lagarosiphon spp./sp. [waterweed] | Avoided † (1 ref.; a), Readily (1 ref.; b) | (a) [17] citing [191]; (b) [27] |
Lagarosiphon major [curly waterweed] | Consumed (1 ref.; a), Conditional (1 ref.; b) | (a) [17] citing [191]; (b) [159] |
Landoltia spp./sp. [duckweed] | Readily (1 ref.) | [173] |
Leersia hexandra [southern cutgrass] | Consumed (1 ref.) | [184] |
Lemna spp./sp. [duckweed] | Avoided (1 ref.; a), Consumed (3 refs.; b-d), Readily (5 refs.; e-i) | (a) [60]#; (b) [17] citing [191]; (c) [183]; (d) [20]#; (e) [201]; (f) [196]; (g) [173]; (h) [156] citing [73], [72]; (i) [200] |
Lemna minor [common duckweed] | Avoided (1 ref.; a), Consumed (5 refs.; b-f), Readily (5 refs.; g-k) | (a) [209]; (b) [147] citing [190]; (c) [180]; (d) [181]; (e) [184]; (f) [20]#; (g) [192] citing [193], [194], and V. Krupauer, 1967; (h) [168]; (i) [195]; (j) [159]; (k) [158] |
Lemna trisulca [ivy-leaved duckweed] | Readily (3 refs.; a-c) | (a) [185]; (b) [192] citing [193], [194], and V. Krupauer, 1967; (c) [195] |
Lilaeopsis lacustris [microsword] | Consumed (1 ref.) | [17] citing [191] |
Limnobium spongia [American frogbit] | Consumed (1 ref.) | [184] |
Limnophila heterophylla [marshweed] | Consumed (1 ref.) | [186] citing [185] |
Limnophila sessiliflora [dwarf ambulia] | Consumed (1 ref.) | [184] |
Lolium spp./sp. [ryegrass] | Consumed (1 ref.) | [183] |
Ludwigia spp./sp. * | Avoided (1 ref.) | [60]# |
Ludwigia hexapetala [water primrose] | Consumed (1 ref.) | [184] |
Ludwigia octovalvis [Mexican primrose-willow] | Rarely (1 ref.) | [17] citing [171] |
Ludwigia palustris [water purslane] | Consumed (1 ref.) | [184] |
Ludwigia peploides [floating primrose-willow] | Avoided (1 ref.; a), Readily (1 ref.; b) | (a) [216] (b) [72] |
Luziola peruviana [Peruvian watergrass] | Consumed (1 ref.) | [217] |
Lyngbya wollei [cyanobacteria] | Avoided (1 ref.) | [218] |
Lysimachia vulgaris [garden loosestrife] | Consumed (2 refs.; a-b) | (a) [147] citing [190]; (b) [20]# |
Manihot esculenta [cassava] | Rarely (1 ref.) | [27] |
Merismopedia spp./sp. [colonial cyanobacteria] | Readily (1 ref.) | M. Linchevskaya, 1966 as cited in [1] |
Microcystis spp./sp. [colonial cyanobacteria] | Consumed (1 ref.) | [1] |
Microspora spp./sp. [filamentous green algae] | Consumed (1 ref.) | [177] |
Mougeotia spp./sp. [filamentous green algae] | Avoided (1 ref.) | [27] |
Murdannia keisak [marsh dewflower] | Consumed (1 ref.) | [184] |
Myriophyllum spp./sp. [watermilfoil] | Avoided (1 refs.; a), Consumed (2 refs.; b-c), Rarely (1 ref.; d), Readily (3 refs.; e-g) | (a) [60]#; (b) [186] citing [185]; (c) [20]#; (d) [165]; (e) [192] citing [193], [194], and V. Krupauer 1967; (f) [195]; (g) [196] |
Myriophyllum aquaticum [parrot feather watermilfoil] | Avoided (4 refs.; a-d), Consumed (1 ref.; e), Rarely (2 refs.; f-g) | (a) [17] citing [191]; (b) [156]; (c) [156]; (d) [184]; (e) [72]; (f) [173]; (g) [156] |
Myriophyllum quitense [waterwort watermilfoil] | Consumed (1 ref.) | [17] citing [191] |
Myriophyllum heterophyllum [broadleaf watermilfoil] | Avoided (1 ref.; a), Consumed (1 ref.; b) | (a) [184]; (b) [218] |
Myriophyllum laxum [loose watermilfoil] | Readily (1 ref.) | [17] citing [171] |
Myriophyllum pinnatum [cut-leaved watermilfoil] | Consumed (1 ref.) | [184] |
Myriophyllum propinquum [spiked watermilfoil] | Consumed (1 ref.; a), Rarely (1 ref.; b) | (a) [17] citing [191]; (b) [159] |
Myriophyllum spicatum [Eurasian watermilfoil] | Avoided (2 ref.; a-b), Consumed (7 refs.; c-i), Rarely (9 refs.; j-r), Conditional (2 refs.; s-t), Readily (3 refs.; u-w) | (a) [183]; (b) [158]; (c) [147] citing [190], [182]; (d) [183]; (e) [162]; (f) [72]; (g) Pavlov and others, 1994 as cited in [1]; (h) [219]; (i) [20]#; (j) [204]; (k) [17] citing [171]; (l) [173]; (m) [203]; (n) [205] citing [206]; (o) [178]; (p) [202]; (q) [215]; (r) [199]; (s) [188]; (t) [144]; (u) [201]; (v) [197]; (w) [156] |
Najas spp./sp. [water naiad] | Avoided (1 ref.; a), Readily (2 refs.; b-c) | (a) [60]#; (b) [196]; (c) [214] |
Najas flexilis [Slender naiad] | Readily (1 ref.) | [165] |
Najas fovelata | Consumed (1 ref.) | [20]# |
Najas graminea [ricefield water-nymph] | Rarely (1 ref.; a), Readily (1 ref.; b) | (a) [27]; (b) [146] citing [213] |
Najas guadalupensis [southern naiad] | Consumed (1 ref.; a), Readily (3 refs.; b-d) | (a) [20]#; (b) [173]; (c) [158]; (d) [205] citing [173] |
Najas gracillima | Readily (1 ref.) | |
Najas minor [brittle naiad] | Consumed (1 ref.; a), Readily (1 ref.; b) | (a) [184]; (b) [165] |
Nasturtium spp./sp. [watercress] | Rarely (1 ref.) | [173] |
Nasturtium officinale [watercress] | Consumed (1 ref.; a), Rarely (2 refs.; b-c), Moderately (2 refs.; d-e) | (a) [20]#; (b) [192] citing [193], [194], and V. Krupauer 1967; (c) [195]; (d) [159]; Ref. [175] |
Nechamandra alternifolia [nechamandra] | Avoided (1 ref.; a), Consumed (1 ref.; b) | (a) [185]; (b) [186] citing [185] |
Nelumbo spp./sp. [lotus] | Avoided (1 ref.) | [60]# |
Nelumbo lutea [American lotus] | Avoided (1 ref.) | [184] |
Nitella spp./sp. [stoneworts] | Avoided (1 ref.; a), Consumed (3 refs.; b-d) | (a) [146]; (b) [185]; (c) [17] citing [191]; (d) [20]# |
Nitella flexilis * [smooth stonewort] | Consumed (1 ref.; a), Rarely (1 ref.; b) | (a) [72]; (b) [27] |
Nitella hookeri [stonewort] | Readily (1 ref.) | [159] |
Nuphar spp./sp. [water-lilies] | Avoided (1 ref.; a), Rarely (1 red; b), Consumed (1 ref.; c) | (a) [60]#; (b) [205] citing [206]; (c) [20]# |
Nuphar lutea [yellow water-lily] | Consumed (1 ref.; a), Rarely (1 ref.; b) | (a) [20]#; (b) [173] |
Nymphaea spp./sp. [water-lilies] | Avoided (1 ref.; a), Consumed (1 ref.; b), Rarely (2 refs.; c-d) | (a) [60]#; (b) [20]#; (c) [186] citing [185]; (d) [173] |
Nymphaea odorata [fragrant water-lily | Consumed (1 ref.; a), Rarely (2 refs.; b-c) | (a) [184]; (b) [17] citing [171] (c) [205] citing [206] |
Nymphoides spp./sp. [floating heart] | Rarely (1 ref.) | [186] citing [185] |
Nymphoides aquatica [floating heart] | Consumed (1 ref.) | [184] |
Oedogonium spp./sp. [filamentous green algae] | Rarely (1 ref.; a), Readily (1 ref.; b) | (a) [177]; (b) [155] |
Orontium spp./sp. [golden club] | Avoided (1 ref.) | [60]# |
Oscillatoria spp./sp. [filamentous cyanobacteria] | Consumed (1 ref.) | [1] |
Ottelia spp./sp. [duck lettuce] | Consumed (1 ref.) | [186] citing [185] |
Panicum hemitomon [maidencane] | Consumed (1 ref.; a), Moderately (1 ref.; b) | (a) [184]; (b) [17] citing [171] |
[guinea grass] | Rarely (1 ref.) | [27] |
Panicum repens [torpedograss] | Consumed (2 refs.; a-b), Moderately (1 ref.; c), Readily (1 ref.; d) | (a) [184]; (b) [20]#; (c) [17] citing [171]; (d) [173] |
Paspalum spp./sp. [paspalum] | Moderately (1 ref.) | [159] |
Paspalum repens [water paspalum] | Consumed (1 ref.) | [184] |
Pediastrum spp./sp. [colonial green algae] | Readily (1 ref.) | M. Linchevskaya, 1966 as cited in [1] |
Pediastrum simplex [colonial green algae] | Readily (1 ref.) | [154] |
Peltandra virginica [green arrow-arum] | Consumed (1 ref.) | [184] |
Persicaria amphibia * [water knotweed] | Conditional (1 ref.) | [188] |
Persicaria decipiens * [slender knotweed] | Avoided (2 refs.; a-b) | (a) [159]; (b) [175] |
Persicaria hydropoperoides * [swamp smartweed] | Avoided (1 ref.) | [184] |
Phacotus lenticularis [unicellular green algae] | Readily (1 ref.) | M. Linchevskaya, 1966 as cited in [1] |
Phalaris arundinancea [reed canary grass] | Consumed (1 ref.) | [183] |
Phragmites spp./sp. [reed grasses] | Avoided (1 ref.; a), Consumed (1 refs.; b) | (a) [60]#; (b) [183] |
Phragmites australis * [common reed] | Avoided ‡ (1 ref.; a), Consumed (2 refs.; b-h), Rarely (2 refs.; i-j) | (a) [201] (b) [1]; (c) Pavlov and others, 1994 as cited in [1]; (d) [201] citing [220]; (e) [201] citing [193]; (f) [147] citing [168]; (g) [183]; (h) [20]#; (i) [192] citing [193], [194], and V. Krupauer 1967; (j) [195] |
Phytoplankton (unclassified) | Consumed (1 ref.; a), Readily (2 refs.; b-c) | (a) [20]#; (b) B.G. Burdiyan and D.A. Razmashkin, 1972 as cited in [1]; (c) [201] |
Pistia spp./sp. | Avoided (1 ref.) | [60]# |
Pistia stratiotes [water lettuce] | Consumed (2 refs.; a-b), Rarely (2 refs.; c-d), Moderately (1 ref.; e) | (a) [184]; (b) [20]#; (c) [186] citing [185]; (d) [173]; (e) [207] |
Pisum sativum [garden pea] | Readily (1 ref.) | [1] |
Pithophora spp./sp. [filamentous green algae] | Consumed (1 ref.), Readily (1 ref.) | (a) [185]; (b) [27] |
Pluchea camphorata [camphorweed] | Consumed (1 ref.) | [184] |
Poa palustris [fowl bluegrass] | Consumed (2 refs.; a-b) | (a) [147] citing [190]; (b) [20]# |
Polygonum spp./sp. | Avoided (1 ref.; a), Rarely (1 ref.; b) | (a) [60]#; (b) [27] |
Pontederia cordata [pickerelweed] | Consumed (1 ref.; a), Moderately (1 ref.; b) | (a) [184]; (b) [17] citing [171] |
Potamogeton spp./sp. [pondweed] | Avoided (1 ref.; a), Consumed (4 refs.; b-e), Readily (6 refs.; f-k) | (a) [60]#; (b) [1]; (b) [147] citing [190]; (d) [60]#; (e) [9]; (f) [17] citing [171]; (g) [196]; (h) [173]; (i) [214]; (j) [205] citing [173]; (k) [164] |
Potamogeton acutifolius [sharp-leaved pondweed] | Readily (1 ref.) | [1] |
Potamogeton amplifolius [big-leaved pondweed] | Consumed (1 ref.) | [20]# |
Potamogeton pusillus [small pondweed] | Readily (1 ref.) | [204] |
Potamogeton cheesemanii [floating pondweed] | Consumed (1 ref.; a), Readily (1 ref.; b) | (a) [17] citing [191]; (b) [175] |
Potamogeton crispus [curlyleaf pondweed] | Avoided (1 ref.; a), Consumed (4 refs.; b-e), Rarely (1 ref.; f), Conditional (1 ref.; g), Moderately (1 ref.; h), Readily (2 refs.; i-j) | (a) [158]; (b) [159]; (c) [183]; (d) [216]; (e) [20]#; (f) [165]; (g) [144]; (h) [159]; (i) [188]; (j) [72] |
Potamogeton foliosus [leafy pondweed] | Readily (1 ref.) | [165] |
Potamogeton illinoensis [Illinois pondweed] | Consumed (2 refs.; a-b), Readily (1 ref.; c) | (a) [184]; (b) [20]#; (c) [17] citing |
Potamogeton lucens [shining pondweed] | Consumed (2 refs.; a-b), Rarely (2 refs.; c-d) Conditional (1 ref; e) | (a) [183]; (b) [20]#; (c) [192] citing [193], [194], and V. Krupauer, 1967; (d) [195]; (e) [209] |
Potamogeton natans [broad-leaved pondweed] | Avoided (1 ref.; a), Consumed (2 refs.; b-c), Rarely (2 refs.; d-e), Conditional (1 ref.; f), Readily (2 refs.; g-h) | (a) [183]; (b) [183]; (c) [20]#; (d) [204]; (e) [188]; (f) [168]; (g) [192] citing [193], [194]; (h) [195] |
Potamogeton nodosus [longleaf pondweed] | Consumed (1 ref.; a), Conditional (1 ref.; b), Readily (1 ref.; c) | (a) [184]; (b) [162]; (c) [72] |
Potamogeton obtusifolius [blunt-leaved pondweed] | Consumed (1 ref.) | [20]# |
Potamogeton perfoliatus [clasping-leaved pondweed] | Avoided (1 ref.; a), Consumed (1 ref.; b) | (a) [158]; (b) [20]# |
Potamogeton praelongus [whitestem pondweed] | Consumed (1 ref.) | [20]# |
Potamogeton pusilllus [lesser pondweed] | Consumed (1 ref.) | [184] |
Potamogeton zosteriformis [flat-stem pondweed] | Consumed (1 ref.; a), Readily (1 ref.; b) | (a) [20]#; (b) [188] |
Potentilla anserina [common silverweed] | Readily (1 ref.) | [1] |
Ranunculus spp./sp. [buttercups] | Avoided (3 refs.; a-c) | (a) [183]; (b) [219]; (c) [60]# |
Ranunculus aquatilis [white water crowfoot] | Consumed †† (1 ref.) | [20]# |
Ranunculus aquatilis var. diffusus [threadleaf crowfoot] | Avoided (1 ref.; a) Rarely (1 ref.; b) Readily (1 ref.; c) | (a) [216]; (b) [204]; (c) [183] |
Ranunculus fluitans [river water crowfoot] | Consumed (2 refs.; a-b) | (a) [183]; (b) [20]# |
Sagittaria spp./sp. [arrowhead] | Avoided (1 ref.) | [60]# |
Sagittaria lancifolia [bulltongue arrowhead] | Moderately (1 ref.) | [17] citing [171] |
Sagittaria sagittifolia [arrowhead] | Consumed (2 refs.; a-b) | (a) [183]; (b) [20]# |
Salvinia spp./sp. [watermoss] | Avoided (1 ref.; a), Readily (1 ref.; b) | (a) [60]#; (b) [186] citing [187] |
Salvinia auriculata [eared watermoss] | Readily (1 ref.) | [207] |
Salvinia cucullata [Asian watermoss] | Consumed (1 ref.) | [185] |
Salvinia biloba [giant salvinia] | Consumed (1 ref.) | [17] citing [191] |
Salvinia minima [common salvinia] | Consumed (1 ref.; a), Moderately (1 ref.; b) | (a) [184]; (b) [17] citing [171] |
Scenedesmus spp./sp. [colonial green algae] | Readily (1 ref.) | M. Linchevskaya, 1966 as cited in [1] |
Scenedesmus bijugatus [colonial green algae] | Readily (1 ref.) | [154] |
Scenedesmus quadricauda [colonial green algae] | Readily (1 ref.) | [154] |
Schoenoplectus lacustris [lakeshore bulrush] | Consumed (2 refs.; a-b) | (a) [183]; (b) [201] |
Scirpus spp./sp. [clubrushes] | Avoided (1 ref.; a), Consumed (2 refs.; b-c) | (a) [60]#; (b) [147] citing [182]; (c) [20]# |
Scirpus sylvaticus [wood clubrush] | Consumed (1 ref.) | [20]# |
Scleria poiformis * | Conditional †† (1 ref.) | [27] |
Solanum tuberosum [potato] | Avoided (1 ref.) | [183] |
Sphagnum spp./sp. [peat mosses] | Consumed (2 refs.; a-b), Conditional (1 ref; c) | (a) [147] citing [190]; (b) [20]#; (c) [168] |
Spirodela spp./sp. [duckweed] | Consumed (1 ref.; a), Readily (2 refs.; b-c) | (a) [17] citing [191]; (b) [196]; (c) [173] |
Spirodela polyrrhiza [greater duckweed] | Consumed (3 refs.; a-c), Readily (1 ref.; d) | (a) [147] citing [168]; (b) [216]; (c) [20]#; (d) [185] |
Spirogyra spp./sp. [water silk] | Avoided (1 ref.; a), Consumed (2 refs.; b-c), Rarely (1 refs.; d), Readily (1 ref.; e) | (a) [27]; (b) [185]; (c) [20]#; (d) [216]; (e) [146] |
Stachys palustris [marsh woundwort] | Consumed (2 refs.; a-b) | (a) [147] citing [190]; (b) [20]# |
Stratiotes aloides [wateraloe] | Consumed (1 ref.; a), Rarely (1 ref.; b) | (a) [20]#; (b) [173] |
Stuckenia filiormis [slender-leaved pondweed] | Consumed (1 ref.; a), Readily (1 ref.; b) | (a) [20]#; (b) [1] |
Stuckenia pectinata [sago pondweed] | Avoided (1 ref.; a), Consumed (3 refs.; b-d), Conditional (1 ref.; e), Readily (11 refs.; f-p) | (a) [158]; (b) [185]; (c) [72]; (d) [20]#; (e) [162]; (f) [192] citing [193], [194]; (g) [195], and V. Krupauer, 1967; (h) [183]; (i) [204]; (j) [201]; (k) [165]; (l) [188]; (m) [203]; (n) [156] citing [73]; (o) [200]; (p) [178] |
Tamarix spp./sp. [salt cedar] | Consumed (1 ref.) | Pavlov and others, 1994 as cited in [1] |
Trapa spp./sp. [waterchestnut] | Consumed (1 ref.) | [186] citing [185] |
Trapa natans [waterchestnut] | Consumed (3 refs.; a-c) | (a) [147] citing [190]; (b) [183]; (c) [20]# |
Trifolium spp./sp. [clover] | Consumed (1 ref.) | [1] |
Trifolium pratense [red clover] | Readily (1 ref.) | [1] |
Trifolium repens [white clover] | Consumed (2 refs.; a-b) | (a) [147] citing [190]; (b) [20]# |
Triglochin striata [streaked arrow grass] | Consumed (1 ref.) | [17] citing [191] |
Typha spp./sp. [cattails] | Avoided (3 refs.; a-c), Consumed (3 refs.; d-f), Rarely (2 refs.; g-h), Moderately (1 ref.; i) | (a) [201]; (b) [146]; (c) [60]#; (d) [201] citing [220], [173]; (e) [183]; (f) [20]; (g) [173]; (h) [205] citing [206]; (i) [17] citing [171] |
Typha domingensis [southern cattail] | Consumed (1 ref.) | [20]# |
Typha angustifolia [narrow-leaved cattail] | Avoided (1 ref.; a), Consumed (3 refs.; b-d) | (a) [17] citing; (b) [147] citing [182]; (c) [183]; (d) [20]# |
Typha latifolia [broadleaf cattail] | Avoided (1 ref.; a), Consumed (3 refs.; b-d), Rarely (3 refs.; e-g) | (a) [168]; (b) [147] citing [190]; (c) [183]; (d) [20]#; (e) [192] citing [193], [194], and V. Krupauer, 1967; (f) [195]; (g) [209] |
Utricularia spp./sp. [bladderworts] | Readily (1 ref.) | [17] citing [171] |
Utricularia aurea [golden bladderwort] | Consumed (2 refs.; a-b) | (a) [147] citing [221], [222]; (b) [147] citing [221] |
Utricularia foliosa [leafy bladderwort] | Consumed (2 refs.; a-b) | (a) [147] 2 citing [221], [222]; (b) [147] citing [221] |
Utricularia stellaris | Consumed (1 ref.) | [186] citing [185] |
Utricularia vulgaris [common bladderwort] | Consumed (2 refs.; a-b), Conditional (1 ref.; c) | (a) [184]; (b) [20]#; (c) [188] |
Vallisneria spp./sp. [eel grass] | Avoided ‡‡ (2 ref.; a-b), Consumed (1 ref.; c), Readily (2 refs.; d-e) | (a) [17] citing [191]; (b) [60]#; (c) [20]#; (d) [196]; (e) [214] |
Vallisneria americana [American eel grass] | Consumed (1 ref.; a), Rarely (2 refs.; b-c), Readily (2 refs.; d-e) | (a) [184]; (b) [17] citing [171]; (c) [173]; (d) [188]; (e) [197] |
Vallisneria natans [eel grass] | Consumed (1 ref; a.), Readily (1 ref.; b) | (a) [17] citing [191]; (b) [215] |
Vallisneria spinulosa [eel grass] | Readily (1 ref.) | [202] |
Vallisneria spiralis [eel grass] | Consumed (2 refs.; a-b), Readily (1 ref.; c) | (a) [186] citing [185]; (b) [147] citing [168]; (c) [199] |
Vicia cracca [tufted vetch] | Readily (1 ref.) | [1] |
Vicia sativa [common vetch] | Readily (1 ref.) | [1] |
Wolffia spp./sp. [watermeal] | Readily (3 refs.; a-c) | (a) [185]; (b) [196]; (c) [173] |
Wolffia arrhizal [spotless watermeal] | Consumed (2 refs.; a-b) | (a) [147] citing [190]; (b) [20]# |
Wolfiella gladiata [sword-like bog-mat] | Consumed (1 ref.) | [184] |
Zizania latifolia [Manchurian wild rice] | Consumed (2 refs.; a-b) | (a) [147] citing [182]; (b) [20]# |
Zygnema spp./sp. [filamentous green algae] | Readily (1 ref.) | [209] |
3.1.2. Aquacultural Diet and Associated Production
Macronutrients
Dietary Amino Acids
Vitamins and Minerals
Other Dietary Supplements
Supplement | Average Size | Optimal Diet (g/kg Diet) * | Endpoint | Reference(s) |
---|---|---|---|---|
AMINO ACIDS | ||||
arginine | 278.8 g | 13.45 | Growth | [262] |
arginine | 6 g | 15.3 | Growth | [329] |
glutamine | 7.16 g | 3–6 | Growth | [330] |
histidine | 3.68 g | 12.1 | Growth | [331] |
leucine | 295.85 g | 13.0 | Growth Biochemistry | [266] |
lysine | 3.15 g | 20.6 | Growth | [332] |
lysine | 460 g | 9.53–10.6 | Biochemistry | [257] |
lysine | 165 g | 13.51 13.58 | Morbidity Growth | [333] |
methionine | 178–626 g | 9.56 | Growth | [334] |
methionine (methionine hydroxy analogue) | 259.70 g | 5.21 5.76 5.68–6.85 | Growth Morbidity Biochemistry | [335] |
taurine | 38.1–38.9 g 125–130 mm | 0.6 | Growth/Feed efficiency | [268] |
threonine | 441.9 g | 11.6 | Growth/Feed Efficiency | [336] |
tryptophan | 287 g | 3.97–4.14 | Gill Health | [337] |
VITAMINS | ||||
biotin | 117.11 g | 0.000245–0.000354 | Biochemistry, gene expression | [276] |
biotin (B7) | 117- 534 g | 0.00021 0.00023 0.00024–0.00025 | Growth Morbidity Biochemistry | [338] |
E | 266.39 g | 0.116–0.140 | Morbidity | [271] |
C | 264.37 g | 0.123 0.130–0.138 | Morbidity Biochemistry | [272] |
folic acid | 267.69 g | 0.00106 0.00207–0.00208 | Growth Biochemistry | [277] |
MINERALS | ||||
Ca | 4.52 g | 10.4 | Growth | [339] |
Cu | 282.0 g | 0.00478 0.00470–0.00495 | Growth Biochemistry | [340] |
Fe | 292.0 g | 0.0735 0.0690–0.728 | Growth Biochemistry | [341] |
Fe | 242.32 g | 0.0757 0.0870 0.0789–0.0832 | Growth Morbidity Biochemistry | [278] |
Fe | 242.0 g | 0.0834 0.0854–0.0867 | Morbidity Biochemistry | [279] |
K | 4.8 g | 4.65 5.98–7.27 | Growth Biochemistry | [288] |
Mg | 5.56 g | 0.687 | Growth | [342] |
Se | 11.2 g | 0.00083 | Growth | [343] |
Se | 226.48 g | 0.000546 0.000575 0.000598–0.000604 | Growth Morbidity Biochemistry | [283] |
Se | 71.57–73.21 g | 0.000562 | Growth | [344] |
Zn | 244.14 g | 0.0612 0.0614 0.0692–0.0695 | Growth Morbidity Biochemistry | [345] |
NUTRIENTS | ||||
choline | 266.5–787.1 g | 1.137 1.211 1.191–1.555 | Growth Meat Quality Biochemistry | [294,295] |
choline | 9.28–108.97 g | 1.548 | Morbidity | [346] |
choline | 9.29 g | 1.331 1.283 | Growth Feed Efficiency | [296] |
choline | 9.28–108.97 g | 1.364–1.574 | Immune function | |
choline | 142.2 g | 1.162–1.781 | Biochemistry | [297] |
SUPPLEMENTS | ||||
Br-DMPT | 216.49 g | 0.291–0.312 | Morbidity Immune function | [347] |
exogenous nucleotides | 200.0 g | 0.526–0.640 | Gill health | [348] |
glutathione | 5.10 g | 0.381 | Growth | [299] |
isalo scorpion cytotoxic peptide | 136.88 g | 1.52 2.00 | Growth Morbidity | [349] |
mannan oligosaccharides | 215.85 g | 0.429 0.499 0.536–0.562 | Growth Morbidity Biochemistry | [350] |
silymarin | 24.2 g | 0.0576 0.0575 | Growth Physiology | [351] |
xylooligo-saccharides | 167.46 g | 0.0518 0.0554–0.0579 | Growth Biochemistry | [352] |
Alternative Aquacultural Diets
Other Factors Related to Growth Rate
3.1.3. Control through Behavior
Daily and Seasonal Behavioral Patterns
Control and Exploitation of Feeding Response
Chemosensory Stimuli
Learning
Non-Physical Barriers and Related Deterrents
3.2. Control Based on Physiological Constraints, Toxicity, and Biology
3.2.1. Physiological Tolerances
Water Quality Constraints and Effects
Temperature Constraints and Effects
3.2.2. Pesticides
Rotenone
Antimycin A
Comparison among Pesticides
Effects of Pesticides on Non-Target Organisms
Pesticide Delivery Systems
3.2.3. Metals
Cadmium
Copper
Lead
Mercury
Other Metals and Mixtures
Metal | Form | Size | Species | Concentration (mg/L Active Ingredient) | Citation |
---|---|---|---|---|---|
Cadmium | CdCl2 | 6–8 g | Grass | 12.3 * | [644] |
Cadmium | Cd(NO3) | 1.84 g | Grass | 18.47 | [657] |
Cadmium | CdCl2 | 0.4 g | Common | 2.51 | [650] |
Copper | CuSO4 | 600 g | Grass | 1.2–1.7 | [682] |
Copper | CuSO4 | Juvenile | Grass | 0.09 | [657] |
Copper | CuSO4 | 0.4 g | Common | 0.2 | [650] |
Lead | - | Juvenile | Grass | 576 | [683] |
Mercury | HgCl2 | 1.84 g | Grass | 0.23 | [657] |
Mercury | - | Fry | Grass | 0.362 | [683] |
Mercury | HgCl2 | 45.37 g | Grass | 0.39 | [684] |
Mercury | HgCl2 | 20 g | Grass | 0.62 | [685] citing [686] |
Nickel | NiCl2 | 6.0 g | Silver | 57 | [674] |
Silver | polyvinylpyrrolidone-coated nanoparticles | 11.6 g | Common | 0.31 | [687] |
Zinc | ZnCl2 | 1.84 g | Grass | 31.37 | [657] |
Zinc | ZnCl2 | 20 g | Grass | 11.46 | [685] citing [686] |
Zinc | ZnSO4 | 0.4 g | Common | 7.05 | [650] |
Zinc | ZnSO4 | 6.0 g | Silver | 68 | [674] |
3.2.4. Other Toxicants
Biotoxins
Herbicides, Fungicides, and Pesticides
Source | Type | Average Size | Carp Species | Concentration (mg/L) | Citation |
---|---|---|---|---|---|
dimoxystrobin | fungicide | 40–50 g 180–200 mm | Common | 0.039 | [761] |
pyraclostrobin | fungicide | 40–50 g 180–200 mm | Common | 0.042 | [761] |
trifloxystrobin | fungicide | 40–50 g 180–200 mm | Common | 0.090 | [761] |
atrazine | herbicide | 33.63 g 141 mm | Grass | 80 | [762] |
pretilachlor | herbicide | 1–2 g | Grass | 1.43 | [763] |
azadirachtin (NeemAzal) | pesticide | 7.2 g 71 mm | Grass | 0.73 | [764] |
chlorpyrifos | pesticide | 8.2 g 98 cm | Grass | 0.00724 | [765] |
cypermethrin | pesticide | 7–7.5 g 60–70 mm | Mrigal | 0.00423 | [766] |
diafuran | pesticide | 11.7 g 104 mm | Grass | 2.71 | [767] |
dicofol | pesticide | unknown | Grass | 0.292 | [768] |
endosulfan | pesticide | 2.7–3.1 g 6.3–7.1 mm | Grass | 0.001711–0.00591 | [769] |
fenvalerate | pesticide | 19.05 g 130.1 mm | Grass | 0.0050–0.00625 | [756] |
malathion | pesticide | 30 g | Grass | 2.138 | [770] |
Nuvan | pesticide | 3–4 g 50–60 mm | Grass | 6.5 | [771] |
pesticide mixture with endosulfan | pesticide | fingerling | Grass | 0.00216–0.00749 | [758] |
quinalphos | pesticide | 4 g 45 mm | Common | 0.00275 | [772] |
Pharmaceuticals, Miscellaneous Toxicants, and Radiation
Source | Type | Average Size | Carp Species | Concentration * (mg/L) | Citation |
---|---|---|---|---|---|
acetaminophen | Pharmaceutical | eggs | Common | 0.00129 | [803] |
arsenate | 10.5 g 82 mm | Catla | 43.78 | [804] | |
bleaching power | Fishery drug | 2.18 g 56 mm | Grass | 2.75 | [805] |
chlorine dioxide | Fishery drug | 2.18 g 56 mm | Grass | 6.34 | [805] |
mix copper sulfate and iron sulfate | Fishery drug | 2.18 g 56 mm | Grass | 0.11 | [805] |
dibromo dimethyl hydantoin | Fishery drug | 2.18 g 56 mm | Grass | 14.1 | [805] |
monochoramine | Disinfectant | 5.07–8.06 g 72–85 mm | Common | 1.0 to 1.5 | [806] |
praziquantel | Pharmaceutical | 9.1 g | Grass | 60.6 | [774] |
trichlorfon | Fishery drug | 2.18 g 56 mm | Grass | 8.48 | [805] |
triclosan | Pharmaceutical | 14 g 73 mm | Rohu | 0.39 | [807] |
3.2.5. Reproductive and Genetic Controls
Triploids
Hybrids
Other Genetic Reproductive Controls
Physical Sterilization
3.2.6. Biological Control
Predators
Infectious Disease
3.3. Gut Physiology and Related Control Pathways
3.3.1. Digestive Tract Structure and Function
3.3.2. Digestive Enzymes
3.3.3. Intestinal Microbiome
3.3.4. Effects of Dietary Nutrient Levels on Intestines
3.3.5. Effects of Dietary Additives, Vaccines, and Toxins on Intestines
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bogutskaya, N.; Jones, L.; Mandrak, N.; Cudmore, B. Annotated Bibliography of Grass Carp (Ctenopharyngodon idella) from Russian-Language Literature; Research Document; DFO Can. Sci. Advis. Sec. Res. Doc. 2016/094: Ottawa, ON, 2017; p. 44. Available online: https://publications.gc.ca/collections/collection_2017/mpo-dfo/Fs70-5-2016-094-eng.pdf (accessed on 23 October 2023).
- Zhao, Y.; Zhang, L.; Wang, C.; Xie, C. Biology and Ecology of Grass Carp in China: A Review and Synthesis. N. Am. J. Fish. Manag. 2020, 40, 1379–1399. [Google Scholar] [CrossRef]
- Duan, X.; Liu, S.; Huang, M.; Qiu, S.; Li, Z.; Wang, K.; Chen, D. Changes in Abundance of Larvae of the Four Domestic Chinese Carps in the Middle Reach of the Yangtze River, China, before and after Closing of the Three Gorges Dam. Environ. Biol. Fishes 2009, 86, 13–22. [Google Scholar] [CrossRef]
- Xue, X.; Sun, Y. Effects of the Three Gorges Reservoir Impoundment on the Hydrological Conditions for Potamodromous Fish Spawning. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Colle, D.E.; Shireman, J.V.; Rottmann, R.W. Food Selection by Grass Carp Fingerlings in a Vegetated Pond. Trans. Am. Fish. Soc. 1978, 107, 149–152. [Google Scholar] [CrossRef]
- Mitzner, L. Evaluation of Biological Control of Nuisance Aquatic Vegetation by Grass Carp. Trans. Am. Fish. Soc. 1978, 107, 135–145. [Google Scholar] [CrossRef]
- Bettoli, P.W.; Maceina, M.J.; Noble, R.L.; Betsill, R.K. Response of a Reservoir Fish Community to Aquatic Vegetation Removal. N. Am. J. Fish. Manag. 1993, 13, 110–124. [Google Scholar] [CrossRef]
- Pipalova, I. A Review of Grass Carp Use for Aquatic Weed Control and Its Impact on Water Bodies. J. Aquat. Plant Manag. 2006, 44, 1–12. [Google Scholar]
- Jones, L.A.; Mandrak, N.E.; Cudmore, B. Updated (2003–2015) Biological Synopsis of Grass Carp (Ctenopharyngodon idella). DFO Can. Sci. Advis. Sec. Res. Doc. 2016/102; Ottawa, ON, 2017. 2017, p. 63. Available online: https://epe.lac-bac.gc.ca/100/201/301/weekly_acquisitions_list-ef/2017/17-07/publications.gc.ca/collections/collection_2017/mpo-dfo/Fs70-5-2016-102-eng.pdf (accessed on 20 October 2023).
- Chapman, D.C. Early Development of Four Cyprinids Native to the Yangtze River, China; U.S. Geological Survey; Data Series 239; Reston, VA, USA, 2006; p. 51. [CrossRef]
- Ling, C.; Tao, C.S.; Chao, L.C.; Cheong, C.F.; Tsuchiya, M. Biology and Artificial Propagation of Farm Fishes and Grass Carp and Silver Carp: Production of Fry; International Development Research Center Manuscript Reports - MR15; International Development Research Centre: Ottawa, ON, Canada, 1980; Available online: https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/19124/IDL-19124.pdf (accessed on 27 October 2023).
- Edwards, P. Use of Terrestrial Vegetation and Aquatic Macrophytes in Aquaculture. In Proceedings of the Conference on Detrital Systems for Aquaculture: Detritus and Microbial Ecology in Aquaculture; Bellaigo, Como, Italy, 26–31 August 1985, International Center for Living Aquatic Resources Management: Manila, Phillipines, 1987; pp. 311–335. [Google Scholar]
- Fedorenko, A.Y.; Fraser, A.J. Review of Grass Carp Biology. Interagency Committee on Transplants and Introductions of Fish and Aquatic Invertebrates in British Columbia; Fisheries and Marine Service Tech. Rep. No. 786. 1978. Available online: https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/52357.pdf (accessed on 27 October 2023).
- Greenfield, D.W. An Evaluation of the Advisability of the Release of the Grass Carp, Ctenopharyngodon idella, into the Natural Waters of the United States. Trans. Ill. State Acad. Sci. 1973, 66, 47–53. Available online: https://www.nativefishlab.net/library/textpdf/19236.pdf (accessed on 27 October 2023).
- Hickling, C. IV—On the Biology of a Herbivorous Fish, the White Amur or Grass Carp, Ctenopharyngodon idella Val. Proc. R. Soc. Edinb. Sect. B Biol. Sci. 1967, 70, 62–81. [Google Scholar] [CrossRef]
- Jenkins, J.A.; Draugelis-Dale, R.O.; Glennon, R.P.; Kelly, A.M.; Brown, B.L.; Morrison, J.R. An Accurate Method for Measuring Triploidy of Larval Fish Spawns. N. Am. J. Aquac. 2017, 79, 224–237. [Google Scholar] [CrossRef]
- Leslie, A.; Cassani, J.; Wattendorf, R. An Introduction to Grass Carp Biology and History in the United States. In Managing Aquatic Vegetation with Grass Carp: A Guide for Water Resource Managers; Cassani, J., Ed.; American Fisheries Society, Introduced Fish Section: Bethesda, Maryland, 1996; Volume VIII, p. 196. ISBN 1-888569-02-6. [Google Scholar]
- Linder, G.; Little, E.; Johnson, L.; Vishy, C.; Peacock, B.; Goeddecke, H. Risk and Consequence Analysis Focused on Biota Transfers Potentially Associated with Surface Water Diversions Between the Missouri River and Red River Basins: Appendices. U.S. Geological Survey, 2005. Available online: https://www.usbr.gov/gp/dkao/biota_transfer/ (accessed on 27 October 2023).
- Michewicz, J.E.; Sutton, D.; Blackburn, R. The White Amur for Aquatic Weed Control. Weed Sci. 1972, 106–110. [Google Scholar] [CrossRef]
- Bonham, V. Ctenopharyngodon idella (Grass Carp). CABI Compendium. Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.16772#sec-39 (accessed on 26 September 2023).
- Scarnecchia, D. An Assessment of the Environment Impact of Introducing Grass Carp into Montana; Report Prepared for the Montana Department of Fish, Wildlife and Parks by the University of Idaho; Moscow, Idaho. 2000. Available online: https://www.uidaho.edu/-/media/UIdaho-Responsive/Files/cnr/faculty-publications/Scarnecchia/2014-Montana-Grass-carp-environmental-assessment.pdf?la=en&hash=22396522CF4A8C8B4DEB638C3AD5534F37B443B5 (accessed on 20 October 2023).
- Schofield, P.J. Foreign Nonindigenous Carps and Minnows (Cyprinidae) in the United States: A Guide to Their Identification, Distribution, and Biology: Scientific Investigations Report 2005-5041; U.S. Geological Survey: St. Petersburg, FL, USA, 2005. [Google Scholar] [CrossRef]
- U.S. Fish and Wildlife Service. Asian Carp Key to Identification, Revised - 9 January 2002. U.S. Fish and Wildlife Service La Crosse Fishery Resource Office; Onalaska, WI, USA. 2002. Available online: https://digitalcommons.unl.edu/natlinvasive/7 (accessed on 27 October 2023).
- Cudmore, B.; Mandrak, N.E. Biological Synopsis of Grass Carp (Ctenopharyngodon idella); Canadian Manuscript Report of Fisheries and Aquatic Sciences: Burlington, ON, Canada, 2004; Volume 2705, Available online: https://controlinvasivecarpmn.com/wp-content/uploads/2022/02/Cudmore-and-Mandrak-2004-Biological_Synopsis_of_Grass_Carp_Ctenopharyngodon-2.pdf (accessed on 27 October 2023).
- Opuszynski, K.; Shireman, J.V. Herbivorous Fishes: Culture and Use for Weed Management; CRC Press, Taylor & Francis Group: Boca Raton, FL, 1995; ISBN 970-0-367-21844-7. [Google Scholar]
- Caves, S.; Baumann, J.R.; Stich, D.S. Density-Dependent Changes in Grass Carp Growth and Mortality in Long-Term Aquatic Plant Management. N. Am. J. Fish. Manag. 2020, 41, 355–365. [Google Scholar] [CrossRef]
- Prowse, G. Experimental Criteria for Studying Grass Carp Feeding in Relation to Weed Control. Progress. Fish-Cult. 1971, 33, 128–131. [Google Scholar] [CrossRef]
- Garner, A.B. High-Density Grass Carp Stocking Effects on a Reservoir Invasive Plant, Water Quality, and Native Fishes. Master’s Thesis, North Carolina State University: Raleigh, NC, USA, 2008. [Google Scholar]
- Forester, J.S.; Avault, J.W., Jr. Effects of Grass Carp on Freshwater Red Swamp Crawfish in Ponds. Trans. Am. Fish. Soc. 1978, 107, 156–160. [Google Scholar] [CrossRef]
- Van Schayck, C. The Effect of Several Methods of Aquatic Plant Control on Two Bilharzia-Bearing Snail Species. Aquat. Bot. 1986, 24, 303–309. [Google Scholar] [CrossRef]
- Bonar, S.A.; Bolding, B.; Divens, M. Effects of Triploid Grass Carp on Aquatic Plants, Water Quality, and Public Satisfaction in Washington State. N. Am. J. Fish. Manag. 2002, 22, 96–105. [Google Scholar] [CrossRef]
- Terrell, J.W.; Terrell, T.T. Macrophyte Control and Food Habits of the Grass Carp in Georgia Ponds. SIL Proc. 1922-2010 1975, 19, 2515–2520. [Google Scholar] [CrossRef]
- Jia, W.-F.; Zhang, S.-H.; Yang, Y.-F.; Yi, Y.-J. A Laboratory Investigation of the Transport Mechanism of Floating Fish Eggs: A Case Study of Asian Carps. Aquaculture 2020, 519, 734–855. [Google Scholar] [CrossRef]
- Parkos III, J.J.; Butler, S.E.; King, G.D.; Porreca, A.P.; Coulter, D.P.; MacNamara, R.; Wahl, D.H. Spatiotemporal Variation in the Magnitude of Reproduction by Invasive, Pelagically Spawning Carps in the Illinois Waterway. N. Am. J. Fish. Manag. 2021, 43, 112–125. [Google Scholar] [CrossRef]
- Zimpfer, S.; Bryan, C.; Pennington, C. Factors Associated with the Dynamics of Grass Carp Larvae in the Lower Mississippi River Valley. In Proceedings of the 10th Annual Larval Fish Conference, Miami, FL, USA, 18–23 May 1986. [Google Scholar]
- Costa-Pierce, B. Review of the Spawning Requirements and Feeding Ecology of Silver Carp (Hypophthalmichthys-molitrix) and Reevaluation of Its Use in Fisheries and Aquaculture. Rev. Aquat. Sci. 1992, 6, 257–273. [Google Scholar]
- Camacho, C.; Sullivan, C.; Weber, M.; Pierce, C. Invasive Carp Reproduction Phenology in Tributaries of the Upper Mississippi River. N. Am. J. Fish. Manag. 2020, 1–20. [Google Scholar] [CrossRef]
- Stanley, J.G.; Miley, W.W.; Sutton, D.L. Reproductive Requirements and Likelihood for Naturalization of Escaped Grass Carp in the United States. Trans. Am. Fish. Soc. 1978, 107, 119–128. [Google Scholar] [CrossRef]
- Glasser, F.; Mikolajczyk, T.; Jalabert, B.; Baroiller, J.-F.; Breton, B. Temperature Effects along the Reproductive Axis during Spawning Induction of Grass Carp (Ctenopharyngodon idella). Gen. Comp. Endocrinol. 2004, 136, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yin, X.-A.; Qiu, X.; Qin, J.; Yang, W.; Zhang, J. Coupled Influence of Flow Velocity and Water Temperature on Grass Carp Swimming Behaviour and Gonad Development. Hydrol. Process. 2021, 35, e14052. [Google Scholar] [CrossRef]
- Rotchell, J.; Ostrander, G. Molecular Markers of Endocrine Disruption in Aquatic Organisms. J. Toxicol. Environ. Health Part B 2003, 6, 453–496. [Google Scholar] [CrossRef]
- Arcand-Hoy, L.D.; Benson, W.H. Fish Reproduction: An Ecologically Relevant Indicator of Endocrine Disruption. Environ. Toxicol. Chem. Int. J. 1998, 17, 49–57. [Google Scholar] [CrossRef]
- Pelzman, R.J. The Grass Carp; Inland Fisheries Administrative Report No. 71-14; The Resources Agency of California Department of Fish and Game: Sacramento, CA, USA, 1971; Available online: http://www.nativefishlab.net/library/textpdf/11260.pdf (accessed on 20 October 2023).
- Tang, Y.-A. Reproduction of the Chinese Carps, Ctenopharyngodon idellus and Hypophthalmichthys molitrix in a Reservoir in Taiwan. Jpn. J. Ichthyol. 1960, 8, 1–2. [Google Scholar] [CrossRef]
- Tang, Y. Report of the Investigation on Spawning of Chinese Carps in Ah Kung Tien Reservoir. Bull Taiwan Fish Res Inst 1963, 8, 1–30. [Google Scholar]
- Alikunhi, K.; Sukumaran, K.; Parameswaran, S. Induced Spawning of the Chinese Carps Ctenopharyngodon idellus (C. & V.) and Hypopthalmichthys moltrix (C. & V.) in Ponds at Cuttack, India. Curr. Sci. 1962, 32, 103–106. [Google Scholar]
- Kocovsky, P.M.; Chapman, D.C.; McKenna, J.E. Thermal and Hydrologic Suitability of Lake Erie and Its Major Tributaries for Spawning of Asian Carps. J. Gt. Lakes Res. 2012, 38, 159–166. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Li, J.; Li, Y. Grass Carp Larval Density Synchronised with River Discharge Fluctuations in the Subtropical Pearl River, China. Ecohydrology 2021, 15, e2355. [Google Scholar] [CrossRef]
- Nico, L.G.; Fuller, P.L.; Schofield, P.J.; Neilson, M.E.; Benson, A.J.; Li, J. Ctenopharyngodon idella (Valenciennes in Cuvier and Valenciennes, 1844). Revision Date: 1/15/2020. Available online: https://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=514 (accessed on 26 September 2023).
- Guillory, V.; Gasaway, R.D. Zoogeography of the Grass Carp in the United States. Trans. Am. Fish. Soc. 1978, 107, 105–112. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Kelly, A.M. The Public Sector Role in the Establishment of Grass Carp in the United States. Fisheries 2006, 31, 113–121. [Google Scholar] [CrossRef]
- Pflieger, W.L. Distribution and Status of the Grass Carp (Ctenopharyngodon idella) in Missouri Streams. In Community and Evolutionary Ecology of North American Stream Fishes; Matthews, W., Heins, D.C., Eds.; University of Oklahoma Press: Norman, Oklahoma, 1978; Volume 107, pp. 113–118. [Google Scholar]
- Conner, J.V.; Gallagher, R.P.; Chatry, M.F. Larval Evidence for Natural Reproduction of the Grass Carp (Ctenopharyngodon idella) in the Lower Mississippi River. In Proceedings of the Fourth Annual Larval Fish Conference, Oxford, MI, USA, 27–28 February 1980; pp. 1–19. [Google Scholar]
- Pflieger, W.; Grace, T. Changes in the Fish Fauna of the Lower Missouri River, 1940–1983. In Community and Evolutionary Ecology of North American Stream Fishes.; Matthews, W.J., Heins, D.C., Eds.; University of Oklahoma Press: Norman, OK, USA, 1987; pp. 166–177. ISBN 978-0-8061-2073-7. [Google Scholar]
- Malone, J. Triploid White Amur. Fisheries 1984, 9, 36. [Google Scholar] [CrossRef]
- MICRA The Use of Grass Carp (Ctenopharyngodon idella) in the United States: Production, Triploid Certification, Shipping, Regulation, and Stocking Recommendations for Reducing Spread throughout the United States; Report to the US Fish and Wildlife Service: Washington, DC, USA, 2015.
- Pherigo, E. (Ed.) Missouri River Basin Asian Carp Control Strategy Framework. Asian Carp Tech. Comm. Mo. River Nat. Resour. Comm. 2017, 26. Available online: https://invasivecarp.us/Documents/MRBFramework.pdf (accessed on 27 October 2023).
- Rasmussen, J. Regulations as a Tool in Asian Carp Management. In Proceedings of the American Fisheries Society Symposium 74: Invasive Asian Carps in North America, Peoria, IL, USA, 22–23 August 2006; American Fisheries Society: Bethesda, MD, USA, 2011; pp. 175–189. [Google Scholar] [CrossRef]
- Taylor, N.; Courtenay, W.R., Jr.; McCann, J.A. Known Impacts of Exotic Fishes in the Continental United States. In Distribution, Biology, and Management of Exotic Fishes; The John Hopkins University Press: Baltimore, ML, USA, 1984; pp. 322–327. ISBN 978-0-8018-3037-2. [Google Scholar]
- Dibble, E.D.; Kovalenko, K. Ecological Impact of Grass Carp: A Review of the Available Data. J. Aquat. Plant Manag. 2009, 47, 1–15. [Google Scholar]
- Wittmann, M.E.; Jerde, C.L.; Howeth, J.G.; Maher, S.P.; Deines, A.M.; Jenkins, J.A.; Whitledge, G.W.; Burbank, S.R.; Chadderton, W.L.; Mahon, A.R. Grass Carp in the Great Lakes Region: Establishment Potential, Expert Perceptions, and Re-Evaluation of Experimental Evidence of Ecological Impact. Can. J. Fish. Aquat. Sci. 2014, 71, 992–999. [Google Scholar] [CrossRef]
- Gophen, M. Biomanipulation: Retrospective and Future Development. Hydrobiologia 1990, 200, 1–11. [Google Scholar] [CrossRef]
- Balázs, A.; Erdős, L. Botanical Survey of Southern Transdanubian Oxbow Lakes and the Changes of the Last 10 Years. Nat. Somogyiensis 2011, 41–50. [Google Scholar] [CrossRef]
- Ortmann-Ajkai, A.; Csicsek, G.; Hollós, R.; Magyaros, V.; Wágner, L.; Lóczy, D. Twenty-Years’ Changes of Wetland Vegetation: Effects of Floodplain-Level Threats. Wetlands 2018, 38, 591–604. [Google Scholar] [CrossRef]
- Shireman, J.; Maceina, M. The Utilization of Grass Carp, Ctenopharyngodon idella Val., for Hydrilla Control in Lake Baldwin, Florida. J. Fish Biol. 1981, 19, 629–636. [Google Scholar] [CrossRef]
- Leslie, A.J.; Nall, L.E.; Van Dyke, J.M. Effects of Vegetation Control by Grass Carp on Selected Water-Quality Variables in Four Florida Lakes. Trans. Am. Fish. Soc. 1983, 112, 777–787. [Google Scholar] [CrossRef]
- Richard, D.I.; Small, J.W., Jr.; Osborne, J.A. Phytoplankton Responses to Reduction and Elimination of Submerged Vegetation by Herbicides and Grass Carp in Four Florida Lakes. Aquat. Bot. 1984, 20, 307–319. [Google Scholar] [CrossRef]
- Zapletal, T.; Andreas, M. Biomanipulating Effect of Grass Carp (Ctenopharyngodon idella Val.) in Artificial Water Channels. In Proceedings of the MendelNet 2016; Faculty of AgriSciences Mendel University in Brno: Brno, Czech Republic, 2016; pp. 364–367. Available online: https://mendelnet.cz/pdfs/mnt/2016/01/66.pdf (accessed on 8 November 2023).
- Kirkagac, M.; Demir, N. The Effects of Grass Carp on Aquatic Plants, Plankton and Benthos in Ponds. J. Aquat. Plant Manag. 2004, 42, 32–39. [Google Scholar]
- Vinogradov, V.; Zolotova, Z. The Influence of the Grass Carp on Aquatic Ecosystems. Hydrobiol J 1974, 10, 72–78. [Google Scholar]
- Krupska, J.; Pe\lechaty, M.; Pukacz, A.; Ossowski, P. Effects of Grass Carp Introduction on Macrophyte Communities in a Shallow Lake. Oceanol. Hydrobiol. Stud. 2012, 41, 35–40. [Google Scholar] [CrossRef]
- Pine, R.; Anderson, L. Others Plant Preferences of Triploid Grass Carp. J. Aquat. Plant Manag. 1991, 29, 80–82. [Google Scholar]
- Cassani, J.; Caton, W. Feeding Behaviour of Yearling and Older Hybrid Grass Carp. J. Fish Biol. 1983, 22, 35–41. [Google Scholar] [CrossRef]
- Osborne, J.A.; Sassic, N.M. Biological Control of Hydrilla verticillata Royle with Grass Carp (Ctenopharyngodon idella Val.). J. Aquat. Plant Manag. 1979, 17, 45–48. [Google Scholar]
- Santha, C.; Martyn, R.; Neill, W.; Strawn, K. Others Control of Submersed Weeds by Grass Carp in Waterlily Production Ponds. J. Aquat. Plant Manag. 1994, 32, 29–33. [Google Scholar]
- Kilgen, R.H. Growth of Channel Catfish and Striped Bass in Small Ponds Stocked with Grass Carp and Water Hyacinths. Trans. Am. Fish. Soc. 1978, 107, 176–180. [Google Scholar] [CrossRef]
- Mitchell, C.P. Control of Water Weeds by Grass Carp in Two Small Lakes. N. Z. J. Mar. Freshw. Res. 1980, 14, 381–390. [Google Scholar] [CrossRef]
- Tanner, C.C.; Wells, R.D.; Mitchell, C.P. Re-Establishment of Native Macrophytes in Lake Parkinson Following Weed Control by Grass Carp. N. Z. J. Mar. Freshw. Res. 1990, 24, 181–186. [Google Scholar] [CrossRef]
- Dick, G.O.; Smith, D.H.; Schad, A.N.; Owens, C.S. Native Aquatic Vegetation Establishment in the Presence of Triploid Grass Carp. Lake Reserv. Manag. 2016, 32, 225–233. [Google Scholar] [CrossRef]
- Prejs, A. Herbivory by Temperate Freshwater Fishes and Its Consequences. Environ. Biol. Fishes 1984, 10, 281–296. [Google Scholar] [CrossRef]
- Matthews, W.J. Effects of Fish in Ecosystems. In Patterns in Freshwater Fish Ecology; Springer: Boston, MA, USA, 1998; pp. 565–616. [Google Scholar] [CrossRef]
- Herdendorf, C.E. The Ecology of the Coastal Marshes of Western Lake Erie: A Community Profile; Biological Report 85(7.9); U.S. Fish and Wildlife Service: Washington DC, USA, 1987; 177p. Available online: https://repository.library.noaa.gov/view/noaa/42938 (accessed on 27 October 2023).
- Robinson, K.F.; Alsip, P.J.; Drake, A.R.; Kao, Y.-C.; Koops, M.A.; Mason, D.M.; Rutherford, E.S.; Zhang, H. Reviewing Uncertainty in Bioenergetics and Food Web Models to Project Invasion Impacts: Four Major Chinese Carps in the Great Lakes. J. Gt. Lakes Res. 2021, 47, 83–95. [Google Scholar] [CrossRef]
- Ware, F.; Gasaway, R. Effects of Grass Carp on Native Fish Populations in Two Florida Lakes. In Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies, 1 March 1976; Southeastern Association of Fish and Wildlife Agencies: Jackson, MS, USA, 1978; pp. 324–335. Available online: https://seafwa.org/sites/default/files/journal-articles/WARE-324.pdf (accessed on 8 November 2023).
- McKnight, S.K.; Hepp, G.R. Potential Effect of Grass Carp Herbivory on Waterfowl Foods. J. Wildl. Manag. 1995, 59, 720–727. [Google Scholar] [CrossRef]
- Khan, A.; Ali, Z.; Shelly, S.; Ahmad, Z.; Mirza, M. Aliens; a Catastrophe for Native Fresh Water Fish Diversity in Pakistan. J. Anim. Plant Sci. 2011, 21, 435–440. [Google Scholar]
- Mitchell, C. Effects of Introduced Grass Carp on Populations of Two Species of Small Native Fishes in a Small Lake. N. Z. J. Mar. Freshw. Res. 1986, 20, 219–230. [Google Scholar] [CrossRef]
- Bettoli, P.W.; Morris, J.E.; Noble, R.L. Changes in the Abundance of Two Atherinid Species after Aquatic Vegetation Removal. Trans. Am. Fish. Soc. 1991, 120, 90–97. [Google Scholar] [CrossRef]
- Rottmann, R.W. Limnological and Ecological Effects of Grass Carp in Ponds. PhD Thesis, University of Missouri: Columbia, MO, USA, 1976. [Google Scholar]
- Michewicz, J.E.; Sutton, D.; Blackburn, R. Water Quality of Small Enclosures Stocked with White Amur. Hyacinth Control J 1972, 10, 22–25. [Google Scholar]
- Maceina, M.J.; Cichra, M.F.; Betsill, R.K.; Bettoli, P.W. Limnological Changes in a Large Reservoir Following Vegetation Removal by Grass Carp. J. Freshw. Ecol. 1992, 7, 81–95. [Google Scholar] [CrossRef]
- Bailey, W.M. A Comparison of Fish Populations before and after Extensive Grass Carp Stocking. Trans. Am. Fish. Soc. 1978, 107, 181–206. [Google Scholar] [CrossRef]
- Tompkins, D.; Poulin, R. Parasites and Biological Invasions. In Biological Invasions in New Zealand; Allen, R., Lee, W.G., Eds.; Springer: New York, NY, USA, 2006; pp. 67–84. [Google Scholar]
- Kucher, H.; Stock, T.; Das, M.K. Parasites of Prussian Carp (Carassius gibelio): An Invasive Species in Alberta, Canada. Can. J. Zool. 2019, 97, 849–853. [Google Scholar] [CrossRef]
- Rasmussen, J.L. River Crossings, Mississippi Interstate Cooperative Resource Association (MICRA). 2005, pp. 1–5. Available online: http://www.micrarivers.org/micra-documents/ (accessed on 20 October 2023).
- Heckmann, R.A.; Deacon, J.E.; Greger, P.D. Parasites of the Woundfin Minnow, Plagopterus argentissimus, and Other Endemic Fishes from the Virgin River, Utah. Gt. Basin Nat. 1986, 46, 662–676. [Google Scholar]
- Kuchta, R.; Choudhury, A.; Scholz, T. Asian Fish Tapeworm: The Most Successful Invasive Parasite in Freshwaters. Trends Parasitol. 2018, 34, 511–523. [Google Scholar] [CrossRef]
- Marcogliese, D.J.; Gendron, A.D.; Forest, J.J.; Li, W.; Boyce, K.; El-Shehabi, F.; Drake, D.A.R.; Mandrak, N.; Sherry, J.; McLaughlin, J.D. Range Expansion and Molecular Confirmation of the Asian Fish Tapeworm in the Lower Great Lakes and St. Lawrence River with Notes on Infections in Baitfish. J. Gt. Lakes Res. 2016, 42, 819–828. [Google Scholar] [CrossRef]
- Walker, P.G. Observations of Parasites of the Fishes of Colorado: A Summary of Case Findings and Unique Observations; Special Report 55; Colorado Parks and Wildlife: Fort Collins, CO, USA, 2020; p. 21. Available online: http://hermes.cde.state.co.us/drupal/islandora/object/co:34766/datastream/OBJ/view (accessed on 20 October 2023).
- Maceina, M.J.; Bettoli, P.W.; Klussmann, W.G.; Betsill, R.K.; Noble, R.L. Effect of Aquatic Macrophyte Removal on Recruitment and Growth of Black Crappies and White Crappies in Lake Conroe, Texas. N. Am. J. Fish. Manag. 1991, 11, 556–563. [Google Scholar] [CrossRef]
- Bettoli, P.W.; Maceina, M.J.; Noble, R.L.; Betsill, R.K. Piscivory in Largemouth Bass as a Function of Aquatic Vegetation Abundance. N. Am. J. Fish. Manag. 1992, 12, 509–516. [Google Scholar] [CrossRef]
- El-Deeb, F.A.; Ismail, N.M. Consecutive Effects of Biological and Chemical Control Methods of Snails under Laboratory and Semi-Field Conditions in Egypt. Egypt J Nat Toxins 2007, 4, 65–86. [Google Scholar]
- Huber, V.; Geist, J. Glochidial Development of the Freshwater Swan Mussel (Anodonta cygnea, Linnaeus 1758) on Native and Invasive Fish Species. Biol. Conserv. 2017, 209, 230–238. [Google Scholar] [CrossRef]
- Hardin, S.; Land, R.; Spelman, M.; Morse, G. Food Items of Grass Carp, American Coots, and Ring-Necked Ducks from a Central Florida Lake. In Proceedings of the Annual Conference of Southeastern Association of Fish and Wildlife Agencies, 1 March 1984; Southeastern Association of Fish and Wildlife Agencies: Jackson, MS, USA, 1984; pp. 313–318. Available online: https://seafwa.org/sites/default/files/journal-articles/HARDIN-313-318.pdf (accessed on 8 November 2023).
- Grabowska, J.; Kotusz, J.; Witkowski, A. Alien Invasive Fish Species in Polish Waters: An Overview. J. Vertebr. Biol. 2010, 59, 73–85. [Google Scholar] [CrossRef]
- Venter, H. AJA &. Schoonbee The Use of Triploid Grass Carp, Ctenopharyngodon idella (Val.), in the Control of Submerged Aquatic Weeds in the Florida Lake, Roodepoort, Transvaal. Water Sa 1991, 17, 321–326. [Google Scholar]
- Leslie, A.J.; Kobylinski, G.J. Benthic Macroinvertebrate Response to Aquatic Vegetation Removal by Grass Carp in North-Florida Reservoir. Fla. Sci. 1985, 48, 220–231. [Google Scholar]
- Petridis, D. Utilization of Grass Carp Faeces by the Isopod Asellus aquaticus (L.) in the Laboratory. Hydrobiologia 1990, 194, 47–56. [Google Scholar] [CrossRef]
- Holbrook, D.L.; Schad, A.N.; Dick, G.O.; Dodd, L.L.; Kennedy, J.H. Invasive Bivalve Establishment as a Secondary Effect of Eradication-Focused Nuisance Aquatic Plant Management. Lake Reserv. Manag. 2020, 36, 423–431. [Google Scholar] [CrossRef]
- Killgore, K.J.; Kirk, J.P.; Foltz, J.W. Response of Littoral Fishes in Upper Lake Marion, South Carolina Following Hydrilla Control by Triploid Grass Carp. J. Aquat. Plant Manag. 1998, 36, 82–87. [Google Scholar]
- Buck, D.H.; Baur, R.J. Water Quality Control and Management of Animal Wastes through Culture with Selected Fishes; University of Illinois Water Resources Center: Urbana, IL, USA, 1980; Available online: http://hdl.handle.net/2142/90366 (accessed on 24 October 2023).
- Terrell, J.W.; Fox, A.C. Food Habits, Growth and Catchability of Grass Carp in the Absence of Aquatic Vegetation; Georgia Cooperative Fishery Unit, School of Forest Resources, University of Georgia: Athens, GA, USA, 1974. Available online: https://seafwa.org/sites/default/files/journal-articles/TERRELL-251.pdf (accessed on 27 October 2023).
- Richard, D.I.; Small, J.W.; Osborne, J.A. Response of Zooplankton to the Reduction and Elimination of Submerged Vegetation by Grass Carp and Herbicide in Four Florida Lakes. Hydrobiologia 1985, 123, 97–108. [Google Scholar] [CrossRef]
- Hestand, R.; Carter, C. Comparative Effects of Grass Carp and Selected Herbicides on Macrophyte and Phytoplankton Communities. J Aquat Plant Manage 1978, 16, 43–50. [Google Scholar]
- Branford, S.N. Grass Carp and Incidental Invaders from Aquaculture: A Study of Impacts on Zooplankton Communities and Invader Origins. Master’s Thesis, University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Alverson, A.J.; Chafin, T.K.; Jones, K.A.; Manoylov, K.M.; Johnson, H.; Julius, M.L.; Nakov, T.; Ruck, E.C.; Theriot, E.C.; Yeager, K.M.; et al. Microbial Biogeography through the Lens of Exotic Species: The Recent Introduction and Spread of the Freshwater Diatom Discostella asterocostata in the United States. Biol. Invasions 2021, 23, 2191–2204. [Google Scholar] [CrossRef]
- Hartoto, D.I.; Sumantadinata, A. Water Hyacinth Control Using Grass Carp (Ctenopharyngodon idella) and Its Related Limnological Changes in Lake Kerinci, Indonesia. In Proceedings of the National Workshop on the Management and Utilization of Lakes and Reservoirs (Semiloka Nasional Pengelolaan dan Pemanfaatan Danau dan Waduk), Bandung, Indonesia, 7 November 2000. [Google Scholar]
- Xie, P.; Liu, J. Practical Success of Biomanipulation Using Filter-Feeding Fish to Control Cyanobacteria Blooms: A Synthesis of Decades of Research and Application in a Subtropical Hypereutrophic Lake. Sci. World J. 2001, 1, 337–356. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, B.J.; Richter, A.; Porras, A.; Davis, S.L. Drought and Management Effects on Biophysicochemistry in a Rapidly-Flushed Reservoir. Lake Reserv. Manag. 2018, 34, 182–198. [Google Scholar] [CrossRef]
- Lembi, C.A.; Ritenour, B.G.; Iverson, E.M.; Forss, E.C. The Effects of Vegetation Removal by Grass Carp on Water Chemistry and Phytoplankton in Indiana Ponds. Trans. Am. Fish. Soc. 1978, 1se07, 161–171. [Google Scholar] [CrossRef]
- Alldred, M.; Baines, S.B. Effects of Wetland Plants on Denitrification Rates: A Meta-Analysis. Ecol. Appl. 2016, 26, 676–685. [Google Scholar] [CrossRef]
- Milardi, M.; Soana, E.; Chapman, D.; Fano, E.A.; Castaldelli, G. Could a Freshwater Fish Be at the Root of Dystrophic Crises in a Coastal Lagoon? Sci. Total Environ. 2020, 711, 135093. [Google Scholar] [CrossRef]
- June-Wells, M.; Simpkins, T.; Coleman, A.M.; Henley, W.; Jacobs, R.; Aarrestad, P.; Buck, G.; Stevens, C.; Benson, G. Seventeen Years of Grass Carp: An Examination of Vegetation Management and Collateral Impacts in Ball Pond, New Fairfield, Connecticut. Lake Reserv. Manag. 2017, 33, 84–100. [Google Scholar] [CrossRef]
- U.S. Fish and Wildlife Service. Grass Carp (Diploid) (Ctenopharyngodon idella var. diploid): Ecological Risk Screening Summary; U.S. Fish and Wildlife Service: Washington DC, USA, 2020. Available online: https://www.fws.gov/sites/default/files/documents/Ecological-Risk-Screening-Summary-Grass-Carp.pdf (accessed on 27 October 2023).
- Howeth, J.G.; Gantz, C.A.; Angermeier, P.L.; Frimpong, E.A.; Hoff, M.H.; Keller, R.P.; Mandrak, N.E.; Marchetti, M.P.; Olden, J.D.; Romagosa, C.M.; et al. Predicting Invasiveness of Species in Trade: Climate Match, Trophic Guild and Fecundity Influence Establishment and Impact of Non-Native Freshwater Fishes. Divers. Distrib. 2016, 22, 148–160. [Google Scholar] [CrossRef]
- Brown, D. Associates Asian Carp Management and Control Workshop. In Proceedings of the National Invasive Species Council Materials, St. Louis, MO, USA, 19 April 2000; Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1007&context=natlinvasive (accessed on 8 November 2023).
- Hayder, S. Socio-Economic Risk Assessment of the Presence of Grass Carp in the Great Lakes Basin, Fisheries and Oceans Canada. 2019. Available online: https://publications.gc.ca/site/archivee-archived.html?url=https://publications.gc.ca/collections/collection_2021/mpo-dfo/Fs45-16-2019-eng.pdf (accessed on 27 October 2023).
- van der Veer, G.; Nentwig, W. Environmental and Economic Impact Assessment of Alien and Invasive Fish Species in Europe Using the Generic Impact Scoring System. Ecol. Freshw. Fish 2015, 24, 646–656. [Google Scholar] [CrossRef]
- Oliveira Junior, E.S.; Temmink, R.J.; Buhler, B.F.; Souza, R.M.; Resende, N.; Spanings, T.; Muniz, C.C.; Lamers, L.P.; Kosten, S. Benthivorous Fish Bioturbation Reduces Methane Emissions, but Increases Total Greenhouse Gas Emissions. Freshw. Biol. 2019, 64, 197–207. [Google Scholar] [CrossRef]
- Herborg, L.-M.; Mandrak, N.E.; Cudmore, B.C.; MacIsaac, H.J. Comparative Distribution and Invasion Risk of Snakehead (Channidae) and Asian Carp (Cyprinidae) Species in North America. Can. J. Fish. Aquat. Sci. 2007, 64, 1723–1735. [Google Scholar] [CrossRef]
- Wittmann, M.E.; Annis, G.; Kramer, A.M.; Mason, L.; Riseng, C.; Rutherford, E.S.; Chadderton, W.L.; Beletsky, D.; Drake, J.M.; Lodge, D.M. Refining Species Distribution Model Outputs Using Landscape-Scale Habitat Data: Forecasting Grass Carp and Hydrilla Establishment in the Great Lakes Region. J. Gt. Lakes Res. 2017, 43, 298–307. [Google Scholar] [CrossRef]
- Aitkin, J.K.; Lohr, S.; Heimowitz, P.; Hill, M. Columbia River Basin Asian Carps Risk Evaluation; U.S. Fish and Wildlife Service: Portland, OR, USA, 2008. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4001aa057d3b11db7d6e5bca2ab8ac710d905332 (accessed on 27 October 2023).
- Weberg, M.A.; Murphy, B.R.; Copeland, J.R.; Rypel, A.L. Movement, Habitat Use, and Survival of Juvenile Grass Carp in an Appalachian Reservoir. Environ. Biol. Fishes 2020, 103, 495–507. [Google Scholar] [CrossRef]
- Gaikowski, M.; Kočovskỳ, P.M. Introduction to a Special Section: Integrated Pest Management—Extending a Terrestrial Paradigm to Aquatic Environments. N. Am. J. Fish. Manag. 2021, 41, 261–263. [Google Scholar] [CrossRef]
- Chapman, D.C.; Benson, A.J.; Embke, H.S.; King, N.R.; Kočovskỳ, P.M.; Lewis, T.D.; Mandrak, N.E. Status of the Major Aquaculture Carps of China in the Laurentian Great Lakes Basin. J. Gt. Lakes Res. 2021, 47, 3–13. [Google Scholar] [CrossRef]
- Embke, H.S.; Kocovsky, P.M.; Richter, C.A.; Pritt, J.J.; Mayer, C.M.; Qian, S.S. First Direct Confirmation of Grass Carp Spawning in a Great Lakes Tributary. J. Gt. Lakes Res. 2016, 42, 899–903. [Google Scholar] [CrossRef]
- U.S. Geological Survey Communications and Publishing Newly Hatched Invasive Grass Carp Found in Maumee River, Ohio. U.S. Geological Survey State New Release. Toledo, OH, USA, 2019. Available online: https://www.usgs.gov/news/state-news-release/newly-hatched-invasive-grass-carp-found-maumee-river-ohio (accessed on 16 October 2023).
- Jones, L.A.; Drake, A.R.; Mandrak, N.; Jerde, C.L. Modelling Survival and Establishment of Grass Carp, Ctenopharyngodon idella, in the Great Lakes Basin; Fisheries and Oceans Canada, Ecosystems and Oceans Science: Ottawa, ON, Canada, 2017; Available online: https://publications.gc.ca/collections/collection_2017/mpo-dfo/Fs70-5-2016-101-eng.pdf (accessed on 24 October 2023).
- Harris, C.; Brenden, T.O.; Vandergoot, C.S.; Faust, M.D.; Herbst, S.J.; Krueger, C.C. Tributary Use and Large-Scale Movements of Grass Carp in Lake Erie. J. Gt. Lakes Res. 2020, 47, 48–58. [Google Scholar] [CrossRef]
- DuFour, M.R.; Robinson, K.F.; Jones, M.L.; Herbst, S.J. A Matrix Population Model to Aid Agency Response to Grass Carp (Ctenopharyngodon idella) in the Great Lakes Basin-Lake Erie. J. Gt. Lakes Res. 2021, 47, 69–82. [Google Scholar] [CrossRef]
- Kinter, B.T.; Jenkins, J.A.; Tyson, J.T. Assessing the Risk of Diploid Grass Carp Ctenopharyngodon idella in the Certified Triploid Supply Chain in Ohio. J. Gt. Lakes Res. 2018, 44, 1093–1099. [Google Scholar] [CrossRef]
- ODNR Division of Wildlife. Lake Erie Grass Carp Response Strategy: 2019-2023; Department of Natural Resources, Division of Wildlife: Columbus, OH, USA, 2019. Available online: https://ohiodnr.gov/static/documents/wildlife/fish-management/Lake_Erie_Grass_Carp_Response_Strategy.pdf (accessed on 27 October 2023).
- Cudmore, B.C.; Jones, L.A.; Mandrak, N.E.; Dettmers, J.M.; Chapman, D.C.; Kolar, C.S.; Conover, G. Ecological Risk Assessment of Grass Carp (Ctenopharyngodon idella) for the Great Lakes Basin; Canadian Science Advisory Secretariat: Ottawa, ON, Canada, 2017; Available online: https://www.publications.gc.ca/collections/collection_2017/mpo-dfo/Fs70-5-2016-118-eng.pdf (accessed on 24 October 2023).
- Pine, R.; Anderson, L.; Hung, S. Control of Aquatic Plants in Static and Flowing Water by Yearling Triploid Grass Carp. J. Aquat. Plant Manag. 1990, 28, 36–40. [Google Scholar]
- Nekoubin, H.; Sudagar, M. Effect of Different Types of Plants (Lemna Sp., Azolla filiculoides and Alfalfa) and Artificial Diet (With Two Protein Levels) on Growth Performance, Survival Rate, Biochemical Parameters and Body Composition of Grass Carp (Ctenopharyngodon idella). J. Aquac. Res. Dev. 2013, 4. [Google Scholar]
- Petr, T. Interactions Between Fish and Aquatic Macrophytes in Inland Waters: A Review; 396; FAO: Rome, 2000; ISBN 978-92-5-104453-7. Available online: https://www.fao.org/3/X7580E/X7580E00.htm (accessed on 27 October 2023).
- Mandal, R.; Datta, A.; Sarangi, N.; Mukhopadhyay, P. Diversity of Aquatic Macrophytes as Food and Feed Components to Herbivorous Fish- a Review. Indian J. Fish. 2010, 57, 65–73. [Google Scholar]
- Rottmann, R. Management of Weedy Lakes and Ponds with Grass Carp. Fisheries 1977, 2, 8–14. [Google Scholar] [CrossRef]
- Dabrowski, K.; Bardega, R. Mouth Size and Predicted Food Size Preferences of Larvae of Three Cyprinid Fish Species. Aquaculture 1984, 40, 41–46. [Google Scholar] [CrossRef]
- Terziyski, D.I.; Kalchev, R.K.; Vasileva, P.L.; Piskov, I.A.; Iliev, I.Z. Fish Abundance Differences and Relations to Plankton Primary Production in Two Variants of Pond Stocking with Common Carp (Cyprinus carpio L.), Grass Carp (Ctenopharyngodon idella Val.) and Bighead Carp (Aristichthys nobilis Rich.) Larvae. AACl Bioflux 2009, 2, 251–260. [Google Scholar]
- Sobolev, Y.A. Food Interrelationships of Young Grass Carp, Silver Carp and Carp Reared Jointly in Ponds in Belorussia. J. Ichthyol. 1970, 10, 528–533. [Google Scholar]
- Marciak, Z.; Bogdan, E. Food Requirements of Juvenile Stages of Grass Carp Ctenopharyngodon idella Val., Silver Carp Hypophthalmichthys molitrix Val., and Bullhead Carp Aristichthys nobilis Rich. EMS Spec. Publ. 1979, 4, 139–148. [Google Scholar]
- Kirkagaç, M.U. The Gut Contents of Grass Carp, Ctenopharyngodon idella, during Nursing in an Earthen Pond. Isr. J. Aquac. Bamidgeh 2003, 55, 139–143. [Google Scholar]
- Bllaca, M.; Bocari, A.; Spaho, V. Assessment of Natural Feeding in Larvae, Free Living Fry and Fingerlings of Silver Carp (Hypopthalmichthys molitrix Valenc. in Cuvier and Valenc., 1844) and Grass Carp (Ctenopharyngodon idella Valenc. in Cuvier and Valenc., 1844). Albanian J. Agric. Sci. 2013, 12. [Google Scholar]
- Watkins, C.E.; Shireman, J.V.; Rottmann, R.W.; Colle, D.E. Food Habits of Fingerling Grass Carp. Progress. Fish-Cult. 1981, 43, 95–97. [Google Scholar] [CrossRef]
- Catarino, L.; Ferreira, M.; Moreira, I. Preferences of Grass Carp for Macrophytes in Iberian Drainage Channels. J. Aquat. Plant Manag. 1997, 35, 79–83. [Google Scholar]
- Opuszyński, K. Use of Phytophagous Fish to Control Aquatic Plants. Aquaculture 1972, 1, 61–74. [Google Scholar] [CrossRef]
- Filizadeh, Y.; Ahmadi, H.; Zolfinejad, K. The Feeding Preferences of Grass Carp (Ctenopharyngodon idella Val.) for Ten Aquatic Plants. In Proceedings of the Fourth International Iran and Russia Conference, ShahreKord, Iran, 8–10 September 2004; pp. 1447–1451. [Google Scholar]
- Edwards, D.J. Weed Preference and Growth of Young Grass Carp in New Zealand. N. Z. J. Mar. Freshw. Res. 1974, 8, 341–350. [Google Scholar] [CrossRef]
- Blackburn, R.D.; Sutton, D.L. Growth of the White Amur (Ctenopharyngodon idella Val.) on Selected Species of Aquatic Plants. In Proceedings of the 3rd EWRC International Symposium on Aquatic Weeds; 1971; pp. 87–93. Available online: http://internationalaquaticplantsgroup.com/previous.html (accessed on 27 October 2023).
- Riechert, C.; Trede, R. Preliminary Experiments on Utilization of Water Hyacinth by Grass Carp. Weed Res. 1977, 17, 357–360. [Google Scholar] [CrossRef]
- Pine, R.T.; Anderson, L.W.; Hung, S.S. Effects of Static versus Flowing Water on Aquatic Plant Preferences of Triploid Grass Carp. Trans. Am. Fish. Soc. 1989, 118, 336–344. [Google Scholar] [CrossRef]
- Bonar, S.; Sehgal, H.; Pauley, G.B.; Thomas, G. Relationship between the Chemical Composition of Aquatic Macrophytes and Their Consumption by Grass Carp, Ctenopharyngodon idella. J. Fish Biol. 1990, 36, 149–157. [Google Scholar] [CrossRef]
- Coad, B.W. Review of the East Asian Minnows of Iran (Family Xenocyprididae). Iran. J. Ichthyol. 2020, 7, 1–67. [Google Scholar] [CrossRef]
- Wiley, M.; Pescitelli, S.; Wike, L. The Relationship between Feeding Preferences and Consumption Rates in Grass Carp and Grass Carp x Bighead Carp Hybrids. J. Fish Biol. 1986, 29, 507–514. [Google Scholar] [CrossRef]
- Wiley, M.J.; Wike, L.D. Energy Balances of Diploid, Triploid, and Hybrid Grass Carp. Trans. Am. Fish. Soc. 1986, 115, 853–863. [Google Scholar] [CrossRef]
- Hickling, C.F. On the Feeding Process in the White Amur, Ctenopharyngodon idella. J. Zool. 1966, 148, 408–419. [Google Scholar] [CrossRef]
- Fischer, Z. Food Selection in Grass Carp (Ctenopharyngodon idella Val.) under Experimental Conditions. Pol Arch Hydrobiol 1968, 15, 1–8. [Google Scholar]
- Sutton, D.L. Grass Carp (Ctenopharyngodon idella Val.) in North America. Aquat. Bot. 1977, 3, 157–164. [Google Scholar] [CrossRef]
- Osborne, J.A.; Sassic, N.M. The Size of Grass Carp as a Factor in the Control of Hydrilla. Aquat. Bot. 1981, 11, 129–136. [Google Scholar] [CrossRef]
- van Dyke, J.M.; Leslie, A., Jr.; Nall, J. The Effects of the Grass Carp on the Aquatic Macrophytes of Four Florida Lakes. J. Aquat. Plant Manag. 1984, 22, 87–95. [Google Scholar]
- Leslie, A.J., Jr.; Dyke, J.M.V.; Hestand III, R.S.; Thompson, B.Z. Management of Aquatic Plants in Multi-Use Lakes with Grass Carp (Ctenopharyngodon idella). Lake Reserv. Manag. 1987, 3, 266–276. [Google Scholar] [CrossRef]
- Sutton, D.L.; Vandiver, V.V.; Hill, J. Grass Carp: A Fish for Biological Management of Hydrilla and Other Aquatic Weeds in Florida; Bulletin 867; University of Florida: Gainesville, FL, USA, 1986, revised; 2012; Available online: http://www.sarasota.wateratlas.usf.edu/upload/documents/Triploid-Grass-Carp-for-Biological-Mgmt-of-Aquatic-Weeds.pdf (accessed on 25 October 2023).
- El-Deeb, F.A.; Ismail, N.M. Feeding Ecology and Food Composition of the Black Carp Mylopharyngodon piceus and the Grass Carp Ctenopharyngodon idella Inhabiting the Fish Pond of Al-Abbassa Fish Hatchery with Emphasis given to Vector Snails. J. Egypt. Soc. Parasitol. 2004, 34, 643–657. [Google Scholar]
- Edwards, D.J.; Moore, E. Control of Water Weeds by Grass Carp in a Drainage Ditch in New Zealand. N. Z. J. Mar. Freshw. Res. 1975, 9, 283–292. [Google Scholar] [CrossRef]
- Edwards, D.J. Aquarium Studies on the Consumption of Small Animals by O–Group Grass Carp, Ctenopharyngodon idella (Val.). J. Fish Biol. 1973, 5, 599–605. [Google Scholar] [CrossRef]
- Mahboob, S. Studies on the Natural Food of Major, Common and Some Chinese Carps as Influenced by Fertilization in Composite Culture Practices. Thalass. Salentina 2011, 33, 53–67. [Google Scholar] [CrossRef]
- Dorenbosch, M.; Bakker, E.S. Herbivory in Omnivorous Fishes: Effect of Plant Secondary Metabolites and Prey Stoichiometry. Freshw. Biol. 2011, 56, 1783–1797. [Google Scholar] [CrossRef]
- Korniyenko, G.S. The Role of Infusoria in the Food of the Larvae of Phytophagous Fishes. Food Fishes of the Lower Reaches of the Southern Bug, Author’s Abstract of Thesis, Dnepropetrovsk. 1971. Available online: https://cir.nii.ac.jp/crid/1571980074375177472 (accessed on 27 October 2023).
- Cui, Y.; Liu, X.; Wang, S.; Chen, S. Growth and Energy Budget in Young Grass Carp, Ctenopharyngodon idella Val., Fed Plant and Animal Diets. J. Fish Biol. 1992, 41, 231–238. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, S.; Wang, S.; Liu, X. Laboratory Observations on the Circadian Feeding Patterns in the Grass Carp (Ctenopharyngodon idella Val.) Fed Three Different Diets. Aquaculture 1993, 113, 57–64. [Google Scholar] [CrossRef]
- Van Dyke, J.; Sutton, D. Digestion of Duckweed (Lemna spp.) by the Grass Carp (Ctenopharyngodon idella). J. Fish Biol. 1977, 11, 273–278. [Google Scholar] [CrossRef]
- Sutton, D.L.; Miley, W.W.; Stanley, J.G. Report to the Florida Department of Natural Resources on the Project: Onsight Inspection of the Grass Carp in the USSR and Other European Countries; OCLC #50530791; University of Florida: Fort Lauderdale, FL, USA, 1977; p. 48. [Google Scholar]
- Parker, J.D.; Hay, M.E. Biotic Resistance to Plant Invasions? Native Herbivores Prefer Non-Native Plants. Ecol. Lett. 2005, 8, 959–967. [Google Scholar] [CrossRef]
- Singh, S.; Sukumaran, K.; Pillai, K.; Chakrabarti, P. Observations on the Efficacy of Grass Carp in Controlling and Utilizing Aquatic Weeds in Ponds in India. In Proceedings of the Indo-Pacific Fisheries Council, Honolulu, HI, USA, 3 October 1966; FAO Regional Office for Asia and the Far East: Bangkok, Thailand, 1966; pp. 220–235. [Google Scholar]
- Khan, H.; Jhingran, V. Synopsis of Biological Data on Rohu, Labeo rohita (Hamilton, 1822); FAO Fisheries Synopsis; Food and Agriculture Organization of the United Nations: Rome, Italy, 1975; Available online: https://www.fao.org/fishery/en/publications/query/Labeo%20barbatus3 (accessed on 25 October 2023).
- Jhingran, V. Synopsis of Biological Data on Catla, Catla catla (Hamilton, 1822); FAO Fisheries Synopsis; Food and Agriculture Organization of the United Nations: Rome, Italy, 1968; Available online: https://www.fao.org/fishery/en/publications/35065 (accessed on 25 October 2023).
- Bowers, K.; Pauley, G.; Thomas, G. Feeding Preference on Pacific Northwest Aquatic Plant Species by Diploid and Triploid Grass Carp (Ctenopharyngodon idella). In Proceedings of the 21st Annual Meeting, Aquatic Plant Control Research Group. Misc. Pap. A-87-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS. 1987, pp. 133–140. Available online: https://apps.dtic.mil/sti/tr/pdf/ADA201942.pdf (accessed on 27 October 2023).
- Cassani, J. Feeding Behaviour of Underyearling Hybrids of the Grass Carp, Ctenopharyngodon idella♀ and the Bighead, Hypophthalmicthys nobilis♂ on Selected Species of Aquatic Plants. J. Fish Biol. 1981, 18, 127–133. [Google Scholar] [CrossRef]
- Fischer, Z. The Elements of Energy Balance in Grass Carp (Ctenopharyngodon idella Val.). Part IV. Consumption Rate of Grass Carp Fed on Different Types of Food. Pol Arch Hydrobiol 1973, 20, 309–318. [Google Scholar]
- Chapman, V.J.; Coffey, B.T. Experiments with Grass Carp in Controlling Exotic Macrophytes in New Zealand. Hydrobiologia 1971, 12, 313–323. [Google Scholar]
- Cross, D. Aquatic Weed Control Using Grass Carp. J. Fish Biol. 1969, 1, 27–30. [Google Scholar] [CrossRef]
- Verigin, B.; Viet, N.; Dong, N. Data on the Food Selectivity and Daily Ration of White Amur. In Problemy Rybokhoziaistvennogo Ispolzovaniia Ratitelnoiadnykn Ryb v Vodoemakh SSSR; USSR: Ashkabad, Turkmenistan, 1963; pp. 93–96. [Google Scholar]
- Penzes, B.; Tolg, I. Etude de La Croissance et de l’alimentation de La Grass-Carp (Ctenopharyngodon idella) En Hongrie. Bull. Fr. Piscic. 1966, 70–76. [Google Scholar] [CrossRef]
- Sneed, K.E. The White Amur: A Controversial Biological Control. Am. Fish Farmer 1971, 2, 6–9. [Google Scholar]
- Jhingran, V.; Pullin, R. A Hatchery Manual for Common Chinese and Indian Major Carps.; Asian Development Bank: Manila, Philippines, 1985; ISBN 971-10-2217-6. [Google Scholar]
- Bonar, S.A.; Thomas, G.; Th1Esfeld, S.L.; Pauley, G.B.; Stables, T.B. Effect of Triploid Grass Carp on the Aquatic Macrophyte Community of Devils Lake, Oregon. N. Am. J. Fish. Manag. 1993, 13, 757–765. [Google Scholar] [CrossRef]
- Sun, J.; Wang, L.; Ma, L.; Huang, T.; Zheng, W.; Min, F.; Zhang, Y.; Wu, Z.; He, F. Determinants of Submerged Macrophytes Palatability to Grass Carp Ctenopharyngodon idellus. Ecol. Indic. 2018, 85, 657–663. [Google Scholar] [CrossRef]
- Ali, Y.M.; Abdelmagid, A.H. Performance and Costs of Grass Carp in Controlling Aquatic Weeds Compared to Mechanical Control in Some Egyptian Canals (Case Study). Int. J. Fish. Aquac. Res. 2021, 7, 28–46. [Google Scholar]
- Essa, A.; Mabrouk, A.; Zaki, A. Growth Performance of Grass Carp, Ctenopharyngodon idella and Hybrid Grass Carp Fingerlings Fed on Different Types of Aquatic Plants and Artificial Diet in Concrete Basins. Egypt. J. Aquat. Res. 2004, 30, 341–348. [Google Scholar]
- Opuszyński, K. Weed Control and Fish Production. In Proceedings of the Grass Carp Conference, Gainesville, Florida, USA, January 1978; University of Florida Institute of Food and Agricultural Sciences: Gainesville, Florida, USA, 1979; pp. 103–138. Available online: https://plants.ifas.ufl.edu/media/plantsifasufledu/manage/control-methods/biological-control/chinese-grass-carp/proceedings-of-grass-carp-conferences/grass_carp_conference_1979.pdf (accessed on 8 November 2023).
- Yu, J.; Zhen, W.; Guan, B.; Zhong, P.; Jeppesen, E.; Liu, Z. Dominance of Myriophyllum spicatum in Submerged Macrophyte Communities Associated with Grass Carp. Knowl. Manag. Aquat. Ecosyst. 2016, 24. [Google Scholar] [CrossRef]
- Pine, R.; Anderson, L. Effect of Triploid Grass Carp on Submersed Aquatic Plants in Northern California Ponds. Calif. Fish Game 1991, 77, 27–35. [Google Scholar]
- Fowler, M.; Robson, T. The Effects of the Food Preferences and Stocking Rates of Grass Carp (Ctenopharyngodon idella Val.) on Mixed Plant Communities. Aquat. Bot. 1978, 5, 261–276. [Google Scholar] [CrossRef]
- Bozkurt, Y.; Yavas, İ.; Gül, A.; Balcı, B.A.; Çetin, N.C. Importance of Grass Carp (Ctenopharyngodon idella) for Controlling of Aquatic Vegetation. In Grasses - Benefits, Diversities and Functional Roles; IntechOpen: Rijeka, Croatia, 2017; ISBN 978-953-51-3494-7. [Google Scholar]
- Colle, D. Grass Carp for Biocontrol of Aquatic Weeds. In Biology and control of aquatic plants: A best management practices handbook; Gettys, L.A., Haller, W.T., Bellaud, M., Eds.; Aquatic Ecosystem Restoration Foundation: Marrieta, GA, USA, 2009; pp. 61–64. ISBN 978-0-615-32646-7. [Google Scholar]
- Domingues, F.D.; Starling, F.L.; Nova, C.C.; Loureiro, B.R.; Souza, L.C.; Branco, C.W. The Control of Floating Macrophytes by Grass Carp in Net Cages: Experiments in Two Tropical Hydroelectric Reservoirs. Aquac. Res. 2016, 48, 3356–3368. [Google Scholar] [CrossRef]
- Pentelow, F.; Stott, B. Grass Carp for Weed Control. Progress. Fish-Cult. 1965, 27, 210. [Google Scholar] [CrossRef]
- Vincent, J.; Sibbing, F. How the Grass Carp (Ctenopharyngodon idella) Chooses and Chews Its Food—Some Clues. J. Zool. 1992, 226, 435–444. [Google Scholar] [CrossRef]
- Moriarty, D.; Darlington, J.P.; Dunn, I.; Moriarty, C.M.; Tevlin, M. Feeding and Grazing in Lake George, Uganda. Proc. R. Soc. Lond. B Biol. Sci. 1973, 184, 299–319. [Google Scholar]
- Avault, J.W., Jr. Preliminary Studies with Grass Carp for Aquatic Weed Control. Progress. Fish-Cult. 1965, 27, 207–209. [Google Scholar] [CrossRef]
- Prabhavathy, G.; Sreenivasan, A. Cultural Prospects of Chinese Carps in Tamil Nadu. In Proceedings of the Indo-Pacific Fisheries Council, Colombo, Sri Lanka, 2 October–5 November 1976; FAO Regional Office for Asia and the Far East: Bangkok, Thailand, 1976; pp. 27–29. [Google Scholar]
- Bhukaswan, T.; Pholprasith, S.; Chatmalai, S. Aquatic Weed Control by the Grass Carp. Thai Fish Gaz. 1981, 34, 529–538. [Google Scholar]
- Kowtal, G. Monosex Sterile Phytophagous Fishes for Control of Some Aquatic Weeds. In Proceedings of the National Symposium on New Horizons in Freshwater Aquaculture, Bhubaneswar, India, 23–25 January 1991; pp. 123–125. [Google Scholar]
- Sun, Y.; Liang, X.; Chen, J.; Tang, R.; Li, L.; Li, D. Change in Ubiquitin Proteasome System of Grass Carp Ctenopharyngodon idellus Reared in the Different Stocking Densities. Front. Physiol. 2018, 9, 837. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.E.; Beckmen, K.B.; Johnson, J.K.; Cope, R.B.; Lawmaster, T.; Beasley, V.R. Toxic and Feeding Deterrent Effects of Native Aquatic Macrophytes on Exotic Grass Carp (Ctenopharyngodon idella). Ecotoxicology 2002, 11, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Sponchiado, M.; Schwarzbold, A.; Rotta, M.A. Performance of Grass Carp (Ctenopharyngodon idella) Using Peruvian Watergrass (Luziola peruviana) as Main Food Source. Bol. Inst. Pesca 2009, 35, 295–305. [Google Scholar]
- Kasinak, J.-M.E.; Bishop, C.J.; Wright, R.A.; Wilson, A.E. Grass Carp Do Not Consume the Nuisance Benthic Cyanobacterium, Lyngbya wollei. J Aquat Plant Manag 2015, 53, 74–80. [Google Scholar]
- Petr, T. (Ed.) Fisheries in Irrigation Systems of Arid Asia; Food & Agriculture Organization of the United Nations: Rome, Italy, 2003; Available online: https://www.fao.org/3/y5082e/y5082e00.htm (accessed on 16 October 2023).
- Aliev, D. Trial of Using Grass Carp for Aquatic Weed Control. In Problemy Rybokhoziaistvennogo Ispolzovaniia Ratitelnoiadnykn Ryb v Vodoemakh SSSR; USSR: Ashkabad, Turkmenistan, 1963; pp. 203–208. [Google Scholar]
- Gibbons, M.V.; Gibbons, H.L.; Sytsma, M.D. A Citizen’s Manual for Developing Integrated Aquatic Vegetation Management Plans; Washington State Department of Ecology: Olympia, WA, USA, 1994; Available online: http://stlri.org/pdfs/Citizen%27sGuide-VegMgt.pdf (accessed on 17 October 2023).
- Naskar, K. Aquatic and Semi-Aquatic Plants of the Lower Ganga Delta: Its Taxonomy, Ecology, and Economic Importance; Daya Books: Delhi, India, 1990; ISBN 978-81-7035-081-1. [Google Scholar]
- Yuan, X.-C.; Liang, X.-F.; Li, A.-X.; Cai, W.-J. The Feedback Regulation of Carbohydrates Intake on Food Intake and Appetite in Grass Carp (Ctenopharyngodon idella). Fish Physiol. Biochem. 2021, 47, 1395–1403. [Google Scholar] [CrossRef]
- Su, J.; Mei, L.; Xi, L.; Gong, Y.; Yang, Y.; Jin, J.; Liu, H.; Zhu, X.; Xie, S.; Han, D. Responses of Glycolysis, Glycogen Accumulation and Glucose-Induced Lipogenesis in Grass Carp and Chinese Longsnout Catfish Fed High-Carbohydrate Diet. Aquaculture 2021, 533, 736146. [Google Scholar] [CrossRef]
- Li, J.-P.; Fu, Y.-W.; Zhang, Q.-Z.; Xu, D.-H.; Liu, Y.-M.; Zhou, S.-Y.; Lin, D.-J. Grass Carp Which Survive Dactylogyrus ctenopharyngodonid Infection Also Gain Partial Immunity against Ichthyophthirius multifiliis. Dis. Aquat. Organ. 2018, 129, 63–70. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Y.-J.; Tian, L.-X.; Mai, K.-S.; Liang, G.-Y.; Yang, H.-J.; Huai, M.-Y.; Luo, W.-J. Effect of Dietary Carbohydrate-to-Lipid Ratios on Growth Performance, Body Composition, Nutrient Utilization and Hepatic Enzymes Activities of Herbivorous Grass Carp (Ctenopharyngodon idella). Aquac. Nutr. 2010, 16, 327–333. [Google Scholar] [CrossRef]
- Cai, W.; Liang, X.; Yuan, X.; Liu, L.; He, S.; Li, J.; Li, B.; Xue, M. Different Strategies of Grass Carp (Ctenopharyngodon idella) Responding to Insufficient or Excessive Dietary Carbohydrate. Aquaculture 2018, 497, 292–298. [Google Scholar] [CrossRef]
- Huang, C.; Sun, J.; Ji, H.; Oku, H.; Chang, Z.; Tian, J.; Yu, E.; Xie, J. Influence of Dietary Alpha-Lipoic Acid and Lipid Level on the Growth Performance, Food Intake and Gene Expression of Peripheral Appetite Regulating Factors in Juvenile Grass Carp (Ctenopharyngodon idellus). Aquaculture 2019, 505, 412–422. [Google Scholar] [CrossRef]
- Ni, P.-J.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Zhou, X.-Q.; Feng, L. Dietary Low or Excess Levels of Lipids Reduced Growth Performance, and Impaired Immune Function and Structure of Head Kidney, Spleen and Skin in Young Grass Carp (Ctenopharyngodon idella) under the Infection of Aeromonas hydrophila. Fish Shellfish Immunol. 2016, 55, 28–47. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Chen, Y.-P.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; et al. Modulation of Immune Response, Physical Barrier and Related Signaling Factors in the Gills of Juvenile Grass Carp (Ctenopharyngodon idella) Fed Supplemented Diet with Phospholipids. Fish Shellfish Immunol. 2016, 48, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Ni, P.-J.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhou, X.-Q. Impairing of Gill Health through Decreasing Immune Function and Structural Integrity of Grass Carp (Ctenopharyngodon idella) Fed Graded Levels Dietary Lipids after Challenged with Flavobacterium columnare. Fish Shellfish Immunol. 2019, 86, 922–933. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, H.; Chang, J.; Hu, B.; Liu, J.; Yu, D. Dietary Conjugated Linoleic Acid Supplementation Alleviates High Lipid-Induced Intestinal Damage in Grass Carp (Ctenopharyngodon idella). Isr. J. Aquac.-Bamidgeh 2021, 73, 1–14. [Google Scholar] [CrossRef]
- Dabrowski, K.; Glogowski, J. Studies on the Role of Exogenous Proteolytic Enzymes in Digestion Processes in Fish. Hydrobiologia 1977, 54, 129–134. [Google Scholar] [CrossRef]
- Santiago, C.B.; Reyes, O.S. Optimum Dietary Protein Level for Growth of Bighead Carp (Aristichthys nobilis) Fry in a Static Water System. Aquaculture 1991, 93, 155–165. [Google Scholar] [CrossRef]
- Ghazala, R.; Tabinda, A.; Yasar, A. Growth Response of Juvenile Grass Carp (Ctenopharyngodon idella) Fed Isocaloric Diets with Variable Protein Levels. J Anim Plant Sci 2011, 21, 850–856. [Google Scholar]
- Gangadhara, B.; Keshavanath, P.; Ramesha, T.; Priyadarshini, M. Digestibility of Bamboo-Grown Periphyton by Carps (Catla catla, Labeo rohita, Cirrhinus mrigala, Cyprinus carpio, Ctenopharyngodon idella, and Tor khudree) and Hybrid Red Tilapia (Oreochromis mossambicus × O. niloticus). J. Appl. Aquac. 2004, 15, 151–162. [Google Scholar] [CrossRef]
- Köprücü, K. Effects of Dietary Protein and Lipid Levels on Growth, Feed Utilization and Body Composition of Juvenile Grass Carp (Ctenopharyngodon idella). J. Fish. Com 2012, 6, 243–251. [Google Scholar] [CrossRef]
- Wu, W.; Ji, H.; Yu, H.; Sun, J.; Zhou, J. Effect of Refeeding Dietary Containing Different Protein and Lipid Levels on Growth Performance, Body Composition, Digestive Enzyme Activities and Metabolic Related Gene Expression of Grass Carp (Ctenopharyngodon idellus) after Overwinter Starvation. Aquaculture 2020, 523, 735196. [Google Scholar] [CrossRef]
- Carter, C.; Houlihan, D.; Brechin, J.; McCarthy, I. The Relationships between Protein Intake and Protein Accretion, Synthesis, and Retention Efficiency for Individual Grass Carp, Ctenopharyngodon idella (Valenciennes). Can. J. Zool. 1993, 71, 392–400. [Google Scholar] [CrossRef]
- Peng, X.-R.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Supplementation Exogenous Bile Acid Improved Growth and Intestinal Immune Function Associated with NF-κB and TOR Signalling Pathways in on-Growing Grass Carp (Ctenopharyngodon idella): Enhancement the Effect of Protein-Sparing by Dietary Lipid. Fish Shellfish Immunol. 2019, 92, 552–569. [Google Scholar] [CrossRef]
- Song, Y.; Yan, L.-C.; Xiao, W.-W.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Enzyme-Treated Soy Protein Supplementation in Low Protein Diet Enhanced Immune Function of Immune Organs in on-Growing Grass Carp. Fish Shellfish Immunol. 2020, 106, 318–331. [Google Scholar] [CrossRef] [PubMed]
- Tabinda, A.B.; Butt, A. Replacement of Fish Meal with Poultry By-Product Meal (Chicken Intestine) as a Protein Source in Grass Carp Fry Diet. Pak. J. Zool. 2012, 44. [Google Scholar]
- Liang, X.; Yu, X.; Han, J.; Yu, H.; Chen, P.; Wu, X.; Zheng, Y.; Xue, M. Effects of Dietary Protein Sources on Growth Performance and Feed Intake Regulation of Grass Carp (Ctenopharyngodon idellus). Aquaculture 2019, 510, 216–224. [Google Scholar] [CrossRef]
- Tian, J.; Li, Y.; Zhang, K.; Wang, G.; Xia, Y.; Yu, E.; Li, Z.; Gong, W.; Xie, J. Dietary Pennisetum sinese Roxb Meal Reduces Lipid Accumulation and Alleviates Enteritis in Juvenile Grass Carp, Ctenopharyngodon idella. Aquac. Rep. 2021, 21, 100915. [Google Scholar] [CrossRef]
- Wu, P.; Tian, L.; Zhou, X.-Q.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Xie, F.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; et al. Sodium Butyrate Enhanced Physical Barrier Function Referring to Nrf2, JNK and MLCK Signaling Pathways in the Intestine of Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2018, 73, 121–132. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, X.; Han, D.; Jin, J.; Yang, Y.; Xie, S. Responses to Fishmeal and Soybean Meal-Based Diets by Three Kinds of Larval Carps of Different Food Habits. Aquac. Nutr. 2015, 21, 552–568. [Google Scholar] [CrossRef]
- Gan, L.; Li, X.-X.; Pan, Q.; Wu, S.-L.; Feng, T.; Ye, H. Effects of Replacing Soybean Meal with Faba Bean Meal on Growth, Feed Utilization and Antioxidant Status of Juvenile Grass Carp, Ctenopharyngodon idella. Aquac. Nutr. 2017, 23, 192–200. [Google Scholar] [CrossRef]
- Zheng, Q.; Wen, X.; Han, C.; Li, H.; Xie, X. Effect of Replacing Soybean Meal with Cottonseed Meal on Growth, Hematology, Antioxidant Enzymes Activity and Expression for Juvenile Grass Carp, Ctenopharyngodon idellus. Fish Physiol. Biochem. 2012, 38, 1059–1069. [Google Scholar] [CrossRef]
- Köprücü, K.; Sertel, E. The Effects of Less-Expensive Plant Protein Sources Replaced with Soybean Meal in the Juvenile Diet of Grass Carp (Ctenopharyngodon idella): Growth, Nutrient Utilization and Body Composition. Aquac. Int. 2012, 20, 399–412. [Google Scholar] [CrossRef]
- Liu, H.; Yan, Q.; Han, D.; Jin, J.; Zhu, X.; Yang, Y.; Xie, S. Effect of Dietary Cottonseed Meal on Growth Performance, Physiological Response, and Gossypol Accumulation in Pre-Adult Grass Carp, Ctenopharyngodon idellus. Chin. J. Oceanol. Limnol. 2016, 34, 992–1003. [Google Scholar] [CrossRef]
- Hu, H.; Han, D.; Zhu, X.; Yang, Y.; Jin, J.; Liu, H.; Xie, S. Effect of Different Protein Source Diets on Growth, Sensory Parameters and Flesh Texture of On-Growing Grass Carp (Ctenopharyngodon idellus). Isr. J. Aquac.-Bamidgeh 2018, 70, 1–13. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, M.; Li, Y.; Zhang, Y.; Xu, W.; Zhao, D.; Chen, Y.; Zuo, A.; Qu, F.; Tang, J.; et al. Effects of Ghrelin on Intestinal Cell Proliferation, the Expression of Protein Absorption and Metabolism Factors in Juvenile Grass Carp (Ctenopharyngodon idella). Aquac. Rep. 2022, 22, 100928. [Google Scholar] [CrossRef]
- Peng, K.-S.; Wu, N.; Cui, Z.-W.; Zhang, X.-Y.; Lu, X.-B.; Wang, Z.-X.; Zhang, Y.-A. Effect of the Complete Replacement of Dietary Fish Meal by Soybean Meal on Histopathology and Immune Response of the Hindgut in Grass Carp (Ctenopharyngodon idellus). Vet. Immunol. Immunopathol. 2020, 221, 110009. [Google Scholar] [CrossRef]
- Lu, R.; Chen, Y.; Yu, W.; Lin, M.; Yang, G.; Qin, C.; Meng, X.; Zhang, Y.; Ji, H.; Nie, G. Defatted Black Soldier Fly (Hermetia illucens) Larvae Meal Can Replace Soybean Meal in Juvenile Grass Carp (Ctenopharyngodon idellus) Diets. Aquac. Rep. 2020, 18, 100520. [Google Scholar] [CrossRef]
- Abouel Azm, F.R.; Kong, F.; Tan, Q.; Zhu, Y.; Yu, H.; Yao, J.; Luo, Z. Effects of Replacement of Dietary Rapeseed Meal by Distiller’s Dried Grains with Solubles (DDGS) on Growth Performance, Muscle Texture, Health and Expression of Muscle-Related Genes in Grass Carp (Ctenopharyngodon idellus). Aquaculture 2021, 533, 736169. [Google Scholar] [CrossRef]
- Cai, X.; Luo, L.; Xue, M.; Wu, X.; Zhan, W. Growth Performance, Body Composition and Phosphorus Availability of Juvenile Grass Carp (Ctenopharyngodon idellus) as Affected by Diet Processing and Replacement of Fishmeal by Detoxified Castor Bean Meal. Aquac. Nutr. 2005, 11, 293–299. [Google Scholar] [CrossRef]
- Li, X.-Y.; Tang, L.; Hu, K.; Liu, Y.; Jiang, W.-D.; Jiang, J.; Wu, P.; Chen, G.-F.; Li, S.-H.; Kuang, S.-Y.; et al. Effect of Dietary Lysine on Growth, Intestinal Enzymes Activities and Antioxidant Status of Sub-Adult Grass Carp (Ctenopharyngodon idella). Fish Physiol. Biochem. 2014, 40, 659–671. [Google Scholar] [CrossRef]
- Gan, L.; Liu, Y.; Tian, L.; Yue, Y.; Liu, F.; Yang, H.; Chen, Y.; Liang, G. Effects of Processing Method and Dietary Lysine Levels on Growth Performance, Feed Conversion Ratio and Body Composition of Grass Carp, Ctenopharyngodon idella. Isr. J. Aquac.-Bamidgeh 2015, 67, 1–7. [Google Scholar]
- Huang, D.; Liang, H.; Ren, M.; Ge, X.; Ji, K.; Yu, H.; Maulu, S. Effects of Dietary Lysine Levels on Growth Performance, Whole Body Composition and Gene Expression Related to Glycometabolism and Lipid Metabolism in Grass Carp, Ctenopharyngodon idellus Fry. Aquaculture 2021, 530, 735806. [Google Scholar] [CrossRef]
- Huang, D.; Maulu, S.; Ren, M.; Liang, H.; Ge, X.; Ji, K.; Yu, H. Dietary Lysine Levels Improved Antioxidant Capacity and Immunity via the TOR and P38 MAPK Signaling Pathways in Grass Carp, Ctenopharyngodon idellus Fry. Front. Immunol. 2021, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Liu, Y.-J.; Tian, L.-X.; Yue, Y.-R.; Yang, H.-J.; Liu, F.-J.; Chen, Y.-J.; Liang, G.-Y. Effects of Dissolved Oxygen and Dietary Lysine Levels on Growth Performance, Feed Conversion Ratio and Body Composition of Grass Carp, idella. Aquac. Nutr. 2013, 19, 860–869. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Feng, L.; Jiang, W.-D.; Kuang, S.-Y.; Jiang, J.; Li, S.-H.; Tang, L.; Zhou, X.-Q. Effects of Dietary Arginine Supplementation on Growth Performance, Flesh Quality, Muscle Antioxidant Capacity and Antioxidant-Related Signalling Molecule Expression in Young Grass Carp (Ctenopharyngodon idella). Food Chem. 2015, 167, 91–99. [Google Scholar] [CrossRef]
- Varghese, T.; Kumar, V.R.; Gopan, A.; Valappil, R.K.; Sajina, K.; Mishal, P.; Pal, A.K. Dietary Arginine Modulates Nonspecific Immune Responses in Indian Major Carp, Cirrhinus mrigala Exposed to Hypoxia. Aquaculture 2020, 529, 735613. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, F.-J.; Tian, L.-X.; Liu, Y.-J.; Li, S.-F.; Cheng, J.-H. Effect of Dietary Alanine and Glycine Supplementation on Growth Performance, Body Composition and Apparent Nutrient Digestibility of Juvenile Grass Carp (Ctenopharyngodon idella). Isr. J. Aquac.-Bamidgeh 2016, 1–9. [Google Scholar] [CrossRef]
- Xie, S.; Tian, L.; Niu, J.; Liang, G.; Liu, Y. Effect of N-Acetyl Cysteine and Glycine Supplementation on Growth Performance, Glutathione Synthesis, and Antioxidative Ability of Grass Carp, Ctenopharyngodon idella. Fish Physiol. Biochem. 2017, 43, 1011–1020. [Google Scholar] [CrossRef]
- Deng, Y.-P.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Wu, P.; Zhang, Y.-A.; Feng, L.; Zhou, X.-Q. Differential Growth Performance, Intestinal Antioxidant Status and Relative Expression of Nrf2 and Its Target Genes in Young Grass Carp (Ctenopharyngodon idella) Fed with Graded Levels of Leucine. Aquaculture 2014, 434, 66–73. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Yang, Q.-H.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q.; Feng, L. Betaine Supplementations Enhance the Intestinal Immunity of On-Growing Grass Carp (Ctenopharyngodon idella): Partly Related to TOR and NF-κB Signaling Pathways. Aquaculture 2020, 518, 734846. [Google Scholar] [CrossRef]
- Luo, L.; Wen, H.; Wang, L.; Li, Q.; Long, Y.; Guo, J.; Yang, X. Effects of Taurine on Growth Performance, Quality, Digestive and Metabolic Enzyme Activity of Grass Carp (Ctenopharymgodon idellus). Chin. J. Anim. Nutr. 2006, 18, 166–171. [Google Scholar]
- Wang, H.; Zhao, Y.; Jin, B.; Liang, J. Effects of Dietary Alpha-Ketoglutarate Supplementation on Growth and Serum Biochemical Parameters of Grass Carp (Ctenopharyngodon idella) Fingerlings. Isr. J. Aquac.-Bamidgeh 2016, 1–6. [Google Scholar] [CrossRef]
- Pan, J.-H.; Feng, L.; Jiang, W.-D.; Wu, P.; Kuang, S.-Y.; Tang, L.; Zhang, Y.-A.; Zhou, X.-Q.; Liu, Y. Vitamin E Deficiency Depressed Fish Growth, Disease Resistance, and the Immunity and Structural Integrity of Immune Organs in Grass Carp (Ctenopharyngodon idella): Referring to NF-κB, TOR and Nrf2 Signaling. Fish Shellfish Immunol. 2017, 60, 219–236. [Google Scholar] [CrossRef]
- Pan, J.-H.; Feng, L.; Jiang, W.-D.; Wu, P.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Zhou, X.-Q.; Liu, Y. Vitamin E Deficiency Depressed Gill Immune Response and Physical Barrier Referring to NF-kB, TOR, Nrf2 and MLCK Signalling in Grass Carp (Ctenopharyngodon idella) under Infection of Flavobacterium columnare. Aquaculture 2018, 484, 13–27. [Google Scholar] [CrossRef]
- Xu, H.-J.; Jiang, W.-D.; Feng, L.; Liu, Y.; Wu, P.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Dietary Vitamin C Deficiency Depresses the Growth, Head Kidney and Spleen Immunity and Structural Integrity by Regulating NF-κB, TOR, Nrf2, Apoptosis and MLCK Signaling in Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016, 52, 111–138. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, P.; Gao, C.; Yin, Y.; Wang, N.; Li, Y. Effect of Vitamin C on Lead-Induced Cell Viability Levels, Oxidative Stress, and Immune-Related Gene Expression in Grass Carp Kidney Cells. N. Am. J. Aquac. 2021, 83, 218–227. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. The Regulatory Effects of Pyridoxine Deficiency on the Grass Carp (Ctenopharyngodon idella) Gill Barriers Immunity, Apoptosis, Antioxidant, and Tight Junction Challenged with Flavobacterium columnar. Fish Shellfish Immunol. 2020, 105, 209–223. [Google Scholar] [CrossRef]
- Shafique, L.; Afzal, M.; Shah, S.Z.H.; Fatima, M.; Naz, H.; ur Rehman, S.; Wei, Y.; Liu, Q. Dietary Formic Acid and Vitamin D3 as Growth Effective Supplement for Grass Carp Fingerlings. Pak. J Zool 2019, 51, 2385–2388. [Google Scholar] [CrossRef]
- He, P.; Feng, L.; Zhang, L.; Mi, H.-F.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q.; et al. The Negative Impacts of Dietary Biotin Deficiency on Antioxidant Status, Apoptosis and Tight Junction Protein Transcription of Immune Organs in Grass Carp (Ctenopharyngodon idella). Aquaculture 2022, 547, 737439. [Google Scholar] [CrossRef]
- Shi, L.; Feng, L.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; et al. Folic Acid Deficiency Impairs the Gill Health Status Associated with the NF-κB, MLCK and Nrf2 Signaling Pathways in the Gills of Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2015, 47, 289–301. [Google Scholar] [CrossRef]
- Guo, Y.-L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Zhou, X.-Q.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Feng, L. The Decreased Growth Performance and Impaired Immune Function and Structural Integrity by Dietary Iron Deficiency or Excess Are Associated with TOR, NF-κB, p38MAPK, Nrf2 and MLCK Signaling in Head Kidney, Spleen and Skin of Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2017, 65, 145–168. [Google Scholar] [CrossRef]
- Guo, Y.-L.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhou, X.-Q. Dietary Iron Deficiency Impaired Intestinal Immune Function of On-Growing Grass Carp under the Infection of Aeromonas hydrophila: Regulation of NF-κB and TOR Signaling. Fish Shellfish Immunol. 2019, 93, 669–682. [Google Scholar] [CrossRef]
- Liang, J.-J.; Liu, Y.-J.; Tian, L.-X.; Yang, H.-J.; Liang, G.-Y. Effects of Dietary Phosphorus and Starch Levels on Growth Performance, Body Composition and Nutrient Utilization of Grass Carp (Ctenopharyngodon idella Val.). Aquac. Res. 2012, 43, 1200–1208. [Google Scholar] [CrossRef]
- Chen, K.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Zhou, X.-Q.; Feng, L. Effect of Dietary Phosphorus Deficiency on the Growth, Immune Function and Structural Integrity of Head Kidney, Spleen and Skin in Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2017, 63, 103–126. [Google Scholar] [CrossRef]
- Liu, T.; Wen, H.; Jiang, M.; Yuan, D.; Gao, P.; Zhao, Y.; Wu, F.; Liu, W. Effect of Dietary Chromium Picolinate on Growth Performance and Blood Parameters in Grass Carp Fingerling, Ctenopharyngodon idellus. Fish Physiol. Biochem. 2010, 36, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Feng, L.; Jiang, W.-D.; Wu, P.; Tang, L.; Kuang, S.-Y.; Zeng, Y.-Y.; Zhou, X.-Q.; Liu, Y. Selenium Deficiency Impaired Immune Function of the Immune Organs in Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2018, 77, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Adineh, H.; Naderi, M.; Nazer, A.; Yousefi, M.; Ahmadifar, E. Interactive Effects of Stocking Density and Dietary Supplementation with Nano Selenium and Garlic Extract on Growth, Feed Utilization, Digestive Enzymes, Stress Responses, and Antioxidant Capacity of Grass Carp, Ctenopharyngodon idella. J. World Aquac. Soc. 2021, 52, 789–804. [Google Scholar] [CrossRef]
- Liu, G.; Yu, H.; Wang, C.; Li, P.; Liu, S.; Zhang, X.; Zhang, C.; Qi, M.; Ji, H. Nano-Selenium Supplements in High-Fat Diets Relieve Hepatopancreas Injury and Improve Survival of Grass Carp Ctenopharyngodon idella by Reducing Lipid Deposition. Aquaculture 2021, 538, 736580. [Google Scholar] [CrossRef]
- Liang, J.-J.; Yang, H.-J.; Liu, Y.-J.; Tian, L.-X.; Liang, G.-Y. Dietary Zinc Requirement of Juvenile Grass Carp (Ctenopharyngodon idella) Based on Growth and Mineralization. Aquac. Nutr. 2012, 18, 380–387. [Google Scholar] [CrossRef]
- Zhang, J. Purification and Some Characterization of Alkaline Phosphatase from Grass Carps (Ctenopharyngodon idellus). J. Xiamen Univ. (Nat. Sci.) 2005, 44, 684–687. [Google Scholar]
- Zhu, W.; Liu, M.; Chen, C.; Wu, F.; Yang, J.; Tan, Q.; Xie, S.; Liang, X. Quantifying the Dietary Potassium Requirement of Juvenile Grass Carp (Ctenopharyngodon idellus). Aquaculture 2014, 430, 218–223. [Google Scholar] [CrossRef]
- Liu, M.; Leng, X.; Li, X.; Xiao, C.; Chen, D. Effects of Azomite on Growth Performance, Intestinal Digestive Enzyme Activities and Serum Nonspecific Immune of Grass Carp (Ctenopharyngodon idella). J. Zhejiang Univ. Agric. Life Sci. 2011, 37, 312–318. [Google Scholar]
- Tian, J.; Lei, C.; Ji, H.; Kaneko, G.; Zhou, J.; Yu, H.; Li, Y.; Yu, E.; Xie, J. Comparative Analysis of Effects of Dietary Arachidonic Acid and EPA on Growth, Tissue Fatty Acid Composition, Antioxidant Response and Lipid Metabolism in Juvenile Grass Carp, Ctenopharyngodon idellus. Br. J. Nutr. 2017, 118, 411–422. [Google Scholar] [CrossRef]
- Tian, J.; Ji, H.; Oku, H.; Zhou, J. Effects of Dietary Arachidonic Acid (ARA) on Lipid Metabolism and Health Status of Juvenile Grass Carp, Ctenopharyngodon idellus. Aquaculture 2014, 430, 57–65. [Google Scholar] [CrossRef]
- Dong, G.-F.; Zou, Q.; Wang, H.; Huang, F.; Liu, X.-C.; Chen, L.; Yang, C.-Y.; Yang, Y. Conjugated Linoleic Acid Differentially Modulates Growth, Tissue Lipid Deposition, and Gene Expression Involved in the Lipid Metabolism of Grass Carp. Aquaculture 2014, 432, 181–191. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, X.-F.; Yuan, X.; Li, J.; He, Y.; Fang, L.; Guo, X.; Liu, L.; Li, B.; Shen, D. Neuropeptide Y Stimulates Food Intake and Regulates Metabolism in Grass Carp, Ctenopharyngodon idellus. Aquaculture 2013, 380, 52–61. [Google Scholar] [CrossRef]
- Zhao, H.-F.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Wu, P.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Zhou, X.-Q.; et al. Dietary Choline Regulates Antibacterial Activity, Inflammatory Response and Barrier Function in the Gills of Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016, 52, 139–150. [Google Scholar] [CrossRef]
- Zhao, H.-F.; Feng, L.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; et al. Flesh Shear Force, Cooking Loss, Muscle Antioxidant Status and Relative Expression of Signaling Molecules (Nrf2, Keap1, TOR, and CK2) and Their Target Genes in Young Grass Carp (Ctenopharyngodon idella) Muscle Fed with Graded Levels of Choline. PLoS ONE 2015, 10, e0142915. [Google Scholar] [CrossRef]
- Yuan, Z.-H.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Choline Deficiency Decreased the Growth Performances and Damaged the Amino Acid Absorption Capacity in Juvenile Grass Carp (Ctenopharyngodon idella). Aquaculture 2020, 518, 734829. [Google Scholar] [CrossRef]
- Yuan, Z.; Feng, L.; Jiang, W.; Wu, P.; Liu, Y.; Kuang, S.; Tang, L.; Zhou, X. Dietary Choline Deficiency Aggravated the Intestinal Apoptosis in Association with the MAPK Signalling Pathways of Juvenile Grass Carp (Ctenopharyngodon idella). Aquaculture 2021, 532, 736046. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, Y.; Liang, X.-F.; Guo, X.; Fang, L.; Li, J.; Liu, L.; Li, B. Effect of Dietary Glutathione Supplementation on the Biological Value of Rapeseed Meal to Juvenile Grass Carp, Ctenopharyngodon idellus. Aquac. Nutr. 2015, 21, 73–84. [Google Scholar] [CrossRef]
- Ming, J.-H.; Ye, J.-Y.; Zhang, Y.-X.; Xu, P.; Xie, J. Effects of Dietary Reduced Glutathione on Growth Performance, Non-Specific Immunity, Antioxidant Capacity and Expression Levels of IGF-I and HSP70 mRNA of Grass Carp (Ctenopharyngodon idella). Aquaculture 2015, 438, 39–46. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Grings, M.; Descovi, S.N.; Henn, A.S.; Flores, E.M.; da Silva, A.S.; Leipnitz, G.; Baldisserotto, B. Exposure to Methylmercury Chloride Inhibits Mitochondrial Electron Transport Chain and Phosphotransfer Network in Liver and Gills of Grass Carp: Protective Effects of Diphenyl Diselenide Dietary Supplementation as an Alternative Strategy for Mercury Toxicity. Aquaculture 2019, 509, 85–95. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; da Silva, A.S.; Henn, A.S.; Flores, E.M.; Baldisserotto, B. Diphenyl Diselenide Dietary Supplementation Alleviates Behavior Impairment and Brain Damage in Grass Carp (Ctenopharyngodon idella) Exposed to Methylmercury Chloride. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 229, 108674. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, J.; Feng, Y.; Ye, Q.; Wen, L.; Xu, G.; Zou, J. Effects of Compound Antimicrobial Peptides on the Growth Performance, Antioxidant and Immune Responses and Disease Resistance of Grass Carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2020, 107, 163–170. [Google Scholar] [CrossRef]
- Lone, K.; Matty, A. The Effect of Feeding 11-Ketotestosterone on the Food Conversion Efficiency and Tissue Protein and Nucleic Acid Contents of Juvenile Carp, Cyprinus carpio L. J. Fish Biol. 1982, 20, 93–104. [Google Scholar] [CrossRef]
- Liu, X.; Feng, L.; Jiang, W.-D.; Wu, P.; Jiang, J.; Tang, L.; Kuang, S.-Y.; Zhou, X.-Q.; Liu, Y. Dimethyl-β-Propiothetine (DMPT) Supplementation under the All-Plant Protein Diet Enhances Growth Performance, Digestive Capacity and Intestinal Structural Integrity for on-Growing Grass Carp (Ctenopharyngodon idella). Aquaculture 2019, 513, 734421. [Google Scholar] [CrossRef]
- Wu, P.; Liu, X.-W.; Feng, L.; Jiang, W.-D.; Kuang, S.-Y.; Tang, L.; Shi, H.-Q.; Zhou, X.-Q.; Liu, Y. (2-Carboxyethyl) Dimethylsulfonium Bromide Supplementation in Non-Fish Meal Diets for on-Growing Grass Carp (Ctenopharyngodon idella): Beneficial Effects on Immune Function of the Immune Organs via Modulation of NF-κB and TOR Signalling Pathway. Fish Shellfish Immunol. 2020, 107, 309–323. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, X.; Zhu, H.; Zhang, Q.; He, Y.; Shen, Y.; Xu, X.; Li, J. The Effects of Exposure to Microplastics on Grass Carp (Ctenopharyngodon idella) at the Physiological, Biochemical, and Transcriptomic Levels. Chemosphere 2022, 286, 131831. [Google Scholar] [CrossRef]
- Morselli, M.B.; Reis, J.H.; Baldissera, M.D.; Souza, C.F.; Baldisserotto, B.; Petrolli, T.G.; Paiano, D.; Lopes, D.L.; Da Silva, A.S. Benefits of Thymol Supplementation on Performance, the Hepatic Antioxidant System, and Energetic Metabolism in Grass Carp. Fish Physiol. Biochem. 2020, 46, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jiang, W.-D.; Zhang, J.-X.; Feng, L.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Peng, Y.; et al. Cinnamaldehyde Improves the Growth Performance and Digestion and Absorption Capacity in Grass Carp (Ctenopharyngodon idella). Fish Physiol. Biochem. 2020, 46, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Ji, H.; Ye, Y.; Zhang, B.; Chen, Y.; Tian, J.; Liu, P.; Chen, L.; Du, Z. Dietary Silymarin Supplementation Promotes Growth Performance and Improves Lipid Metabolism and Health Status in Grass Carp (Ctenopharyngodon idellus) Fed Diets with Elevated Lipid Levels. Fish Physiol. Biochem. 2017, 43, 245–263. [Google Scholar] [CrossRef]
- Yang, S.-S.; Yu, C.-B.; Luo, Z.; Luo, W.-L.; Zhang, J.; Xu, J.-X.; Xu, W.-N. Berberine Attenuates Sodium Palmitate-Induced Lipid Accumulation, Oxidative Stress and Apoptosis in Grass Carp (Ctenopharyngodon idella) Hepatocyte in Vitro. Fish Shellfish Immunol. 2019, 88, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, Q.; Tian, H.; Shi, H.; Liu, W. Chinese Herbal Extract Berberine on Oxidative Stress and Apoptosis in the Hepatic Cells of Grass Carp (Ctenopharyngodon idellus). J Fish Sci China 2018, 25, 1281–1288. [Google Scholar] [CrossRef]
- Han, J.; Hua, X.; Huang, X.; Wang, J.; Yu, N.; Zhou, H. Effects of Feeding Modes of Chitosan on Prevention of Starvation of Ctenopharyngodon idellus. J. Fish. China 2010, 34, 459–465. [Google Scholar] [CrossRef]
- Yang, G.; Qiu, H.; Yu, R.; Xiong, L.; Yan, Q.; Wen, C.; Peng, M. Dietary Supplementation of β-Glucan, Inulin and Emodin Modulates Antioxidant Response and Suppresses Intestinal Inflammation of Grass Carp (Ctenopharyngodon idellus). Anim. Feed Sci. Technol. 2021, 272, 114789. [Google Scholar] [CrossRef]
- Lu, Z.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Li, S.-W.; Liu, X.-A.; et al. Mannan Oligosaccharides Application: Multipath Restriction from Aeromonas hydrophila Infection in the Skin Barrier of Grass Carp (Ctenopharyngodon idella). Front. Immunol. 2021, 12, 742107. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Chen, M.; Xie, S.-W.; Chen, X.-Q.; Liu, Y.-J.; Tian, L.-X.; Niu, J. Effects of Dietary Xylooligosaccharide on Growth Performance, Enzyme Activity and Immunity of Juvenile Grass Carp, Ctenopharyngodon idellus. Aquac. Rep. 2020, 18, 100519. [Google Scholar] [CrossRef]
- Yang, M.; Lu, Z.; Li, F.; Shi, F.; Zhan, F.; Zhang, Y.; Zhao, L.; Li, Y.; Li, J.; Lin, L. Alginate Oligosaccharide Improves Fat Metabolism and Antioxidant Capacity in the Liver of Grass Carp (Ctenopharyngodon idellus). Aquaculture 2021, 540, 736664. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, M.; Ding, W.; Zhao, S.; Jiabing, G. Feed Requirement Determination of Grass Carp (Ctenopharyngodon idella) Using a Hybrid Method of Bioenergetics Factorial Model and Fuzzy Logic Control Technology under Outdoor Pond Culturing Systems. Fish Shellfish Immunol. 2020, 521, 734970. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, Y.; Ji, H.; Yu, H. The Effect of Green Tea Waste on Growth and Health of Grass Carp (Ctenopharyngodon idellus). Turk. J. Fish. Aquat. Sci. 2016, 16, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, Z.; Li, X.; Tan, S.; Cheng, Z.; Leng, X. Influences of Dietary Eucommia Ulmoides Extract on Growth, Flesh Quality, Antioxidant Capacity and Collagen-Related Genes Expression in Grass Carp (Ctenopharyngodon idellus). Anim. Feed Sci. Technol. 2021, 277, 114965. [Google Scholar] [CrossRef]
- Zhu, D.; Huang, R.; Chen, L.; Fu, P.; Luo, L.; He, L.; Li, Y.; Liao, L.; Zhu, Z.; Wang, Y. Cloning and Characterization of the LEF/TCF Gene Family in Grass Carp (Ctenopharyngodon idella) and Their Expression Profiles in Response to Grass Carp Reovirus Infection. Fish Shellfish Immunol. 2019, 86, 335–346. [Google Scholar] [CrossRef]
- Meng, X.-L.; Zhu, Z.-X.; Lu, R.-H.; Li, S.; Hu, W.-P.; Qin, C.-B.; Yan, X.; Yang, G.; Nie, G.-X. Regulation of Growth Performance and Lipid Metabolism in Juvenile Grass Carp (Ctenopharyngodon idella) with Honeysuckle (Lonicera japonica) Extract. Fish Physiol. Biochem. 2019, 45, 1563–1573. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Hoseinifar, S.H.; Adineh, H.; Moghadam, M.S.; Dawood, M.A. Assessing the Impact of Purslane (Portulaca oleracea L.) on Growth Performance, Anti-Oxidative, and Immune Activities in Grass Carp (Ctenopharyngodon idella). Ann. Anim. Sci. 2020, 20, 1427–1440. [Google Scholar] [CrossRef]
- Mo, W.Y. Food Wastes as Feeds Incorporated with Chinese Herbs and Prebiotic Fibers on Growth and Non-Specific Immunity of Grass Carp, Bighead, Mud Carp and Nile Tilapia. Ph.D. Thesis, Hong Kong Baptist University:, Hong Kong, 2014. [Google Scholar]
- Chen, L.; Zhang, Y. The Growth Performance and Nonspecific Immunity of Juvenile Grass Carp (Ctenopharyngodon idella) Affected by Dietary Porphyra yezoensis Polysaccharide Supplementation. Fish Shellfish Immunol. 2019, 87, 615–619. [Google Scholar] [CrossRef]
- Tang, T.; Bai, J.; Ao, Z.; Wei, Z.; Hu, Y.; Liu, S. Effects of Dietary Paper Mulberry (Broussonetia papyrifera) on Growth Performance and Muscle Quality of Grass Carp (Ctenopharyngodon idella). Animals 2021, 11, 1655. [Google Scholar] [CrossRef]
- Omar, S.S.; Merrifield, D.L.; Kühlwein, H.; Williams, P.E.; Davies, S.J. Biofuel Derived Yeast Protein Concentrate (YPC) as a Novel Feed Ingredient in Carp Diets. Aquaculture 2012, 330, 54–62. [Google Scholar] [CrossRef]
- Yang, G.; Yu, R.; Geng, S.; Xiong, L.; Yan, Q.; Kumar, V.; Wen, C.; Peng, M. Apple Polyphenols Modulates the Antioxidant Defense Response and Attenuates Inflammatory Response Concurrent with Hepatoprotective Effect on Grass Carp (Ctenopharyngodon idellus) Fed Low Fish Meal Diet. Aquaculture 2021, 534, 736284. [Google Scholar] [CrossRef]
- Chi, C.; Giri, S.S.; Jun, J.W.; Kim, H.J.; Yun, S.; Kim, S.G.; Park, S.C. Immunomodulatory Effects of a Bioactive Compound Isolated from Dryopteris crassirhizoma on the Grass Carp Ctenopharyngodon idella. J. Immunol. Res. 2016, 2016. [Google Scholar] [CrossRef]
- Chen, D.-D.; Yao, Y.-Y.; Cui, Z.-W.; Zhang, X.-Y.; Guo, X.; Zhou, Y.-Y.; Zhang, Y.-A. Comparative Study of the Immunoprotective Effect of Two Grass Carp-Sourced Bacillus subtilis Spore-Based Vaccines against Grass Carp Reovirus. Aquaculture 2019, 504, 88–95. [Google Scholar] [CrossRef]
- Qu, F.; Liu, Z.; Hu, Y.; Zhao, Q.; Zhou, Y.; Liu, Z.; Zhong, L.; Lu, S.; Li, J. Effects of Dietary Glutamine Supplementation on Growth Performance, Antioxidant Status and Intestinal Function in Juvenile Grass Carp (Ctenopharyngodon idella). Aquac. Nutr. 2019, 25, 609–621. [Google Scholar] [CrossRef]
- Gao, Y.-J.; Liu, Y.-J.; Chen, X.-Q.; Yang, H.-J.; Li, X.-F.; Tian, L.-X. Effects of Graded Levels of Histidine on Growth Performance, Digested Enzymes Activities, Erythrocyte Osmotic Fragility and Hypoxia-Tolerance of Juvenile Grass Carp Ctenopharyngodon idella. Aquaculture 2016, 452, 388–394. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.-J.; Tian, L.-X.; Xie, M.-Q.; Yang, H.-J.; Wang, Y.; Liang, G.-Y. Quantitative Dietary Lysine Requirement of Juvenile Grass Carp Ctenopharyngodon idella. Aquaculture 2005, 249, 419–429. [Google Scholar] [CrossRef]
- Hu, Y.; Feng, L.; Jiang, W.; Wu, P.; Liu, Y.; Kuang, S.; Tang, L.; Zhou, X. Lysine Deficiency Impaired Growth Performance and Immune Response and Aggravated Inflammatory Response of the Skin, Spleen and Head Kidney in Grown-up Grass Carp (Ctenopharyngodon idella). Anim. Nutr. 2021, 7, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.-C.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Liu, X.-A.; Zhou, X.-Q. Effects of Dietary Methionine on Growth Performance, Muscle Nutritive Deposition, Muscle Fibre Growth and Type I Collagen Synthesis of on-Growing Grass Carp (Ctenopharyngodon idella). Br. J. Nutr. 2021, 126, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.-Y.; Feng, L.; Jiang, W.-D.; Jiang, J.; Wu, P.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Zhou, X.-Q.; et al. Methionine Hydroxy Analogue Enhanced Fish Immunity via Modulation of NF-κB, TOR, MLCK, MAPKs and Nrf2 Signaling in Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016, 56, 208–228. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Jiang, W.; Kuang, S.; Hu, K.; Tang, L.; Liu, Y.; Jiang, J.; Zhang, Y.; Zhou, X.; Feng, L. Growth, Digestive and Absorptive Capacity and Antioxidant Status in Intestine and Hepatopancreas of Sub-Adult Grass Carp Ctenopharyngodon idella Fed Graded Levels of Dietary Threonine. J. Anim. Sci. Biotechnol. 2015, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.-D.; Wen, H.-L.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Wu, P.; Zhao, J.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. The Tight Junction Protein Transcript Abundance Changes and Oxidative Damage by Tryptophan Deficiency or Excess Are Related to the Modulation of the Signalling Molecules, NF-κB P65, TOR, Caspase-(3, 8, 9) and Nrf2 mRNA Levels, in the Gill of Young Grass Carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2015, 46, 168–180. [Google Scholar] [CrossRef]
- He, P.; Jiang, W.-D.; Liu, X.-A.; Feng, L.; Wu, P.; Liu, Y.; Jiang, J.; Tan, B.-P.; Yang, Q.-H.; Kuang, S.-Y.; et al. Dietary Biotin Deficiency Decreased Growth Performance and Impaired the Immune Function of the Head Kidney, Spleen and Skin in on-Growing Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2020, 97, 216–234. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.-J.; Liu, Y.-J.; Yang, Z.-N.; Tian, L.-X.; Yang, H.-J.; Liang, G.-Y. Dietary Calcium Requirement and Effects on Growth and Tissue Calcium Content of Juvenile Grass Carp (Ctenopharyngodon idella). Aquac. Nutr. 2012, 18, 544–550. [Google Scholar] [CrossRef]
- Tang, Q.; Feng, L.; Jiang, W.; Liu, Y.; Jiang, J.; Li, S.; Kuang, S.; Tang, L.; Zhou, X. Effects of Dietary Copper on Growth, Digestive, and Brush Border Enzyme Activities and Antioxidant Defense of Hepatopancreas and Intestine for Young Grass Carp (Ctenopharyngodon idella). Biol. Trace Elem. Res. 2013, 155, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Feng, L.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Li, S.-H.; Tang, L.; Kuang, S.-Y.; Zhou, X.-Q. The Impaired Flesh Quality by Iron Deficiency and Excess Is Associated with Increasing Oxidative Damage and Decreasing Antioxidant Capacity in the Muscle of Young Grass Carp (Ctenopharyngodon idellus). Aquac. Nutr. 2016, 22, 191–201. [Google Scholar] [CrossRef]
- Liang, J.; Tian, L.; Liu, Y.; Yang, H.; Liang, G. Dietary Magnesium Requirement and Effects on Growth and Tissue Magnesium Content of Juvenile Grass Carp (Ctenopharyngodon idella). Aquac. Nutr. 2012, 18, 56–64. [Google Scholar] [CrossRef]
- Liu, L.; Liang, X.-F.; Li, J.; Fang, J.; Yuan, X.; Li, J.; Alam, M. Effects of Dietary Selenium on Growth Performance and Oxidative Stress in Juvenile Grass Carp Ctenopharyngodon idellus. Aquac. Nutr. 2018, 24, 1296–1303. [Google Scholar] [CrossRef]
- Ma, P.; Hu, Z.; Li, L.; Li, D.; Tang, R. Dietary Selenium Promotes the Growth Performance through Growth Hormone–Insulin-like Growth Factor and Hypothalamic–Pituitary–Thyroid Axes in Grass Carp (Ctenopharyngodon idella). Fish Physiol. Biochem. 2021, 47, 1313–1327. [Google Scholar] [CrossRef]
- Song, Z.-X.; Jiang, W.-D.; Liu, Y.; Wu, P.; Jiang, J.; Zhou, X.-Q.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Dietary Zinc Deficiency Reduced Growth Performance, Intestinal Immune and Physical Barrier Functions Related to NF-κB, TOR, Nrf2, JNK and MLCK Signaling Pathway of Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2017, 66, 497–523. [Google Scholar] [CrossRef]
- Yuan, Z.; Wu, P.; Feng, L.; Jiang, W.; Liu, Y.; Kuang, S.; Tang, L.; Zhou, X. Dietary Choline Inhibited the Gill Apoptosis in Association with the p38MAPK and JAK/STAT3 Signalling Pathways of Juvenile Grass Carp (Ctenopharyngodon idella). Aquaculture 2020, 529, 735699. [Google Scholar] [CrossRef]
- Liu, X.-W.; Zhang, J.-X.; Feng, L.; Jiang, W.-D.; Wu, P.; Kuang, S.-Y.; Tang, L.; Shi, H.-Q.; Zhou, X.-Q.; Liu, Y. Protective Effects and Potential Mechanisms of (2-Carboxyethyl) Dimethylsulfonium Bromide (Br-DMPT) on Gill Health Status of on-Growing Grass Carp (Ctenopharyngodon idella) after Infection with Flavobacterium columnare. Fish Shellfish Immunol. 2020, 106, 228–240. [Google Scholar] [CrossRef]
- Tie, H.-M.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Dietary Exogenous Supplementation of Nucleotides Strengthens the Disease Resistance, Antioxidant Capacity and Immunity in the Gill of on-Growing Grass Carp (Ctenopharyngodon idella) Following a Challenge with Flavobacterium columnare. Aquaculture 2021, 540, 736729. [Google Scholar] [CrossRef]
- Hu, Q.-Y.; Wu, P.; Feng, L.; Jiang, W.-D.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Li, J.; Zhou, X.-Q. Antimicrobial Peptide Isalo Scorpion Cytotoxic Peptide (IsCT) Enhanced Growth Performance and Improved Intestinal Immune Function Associated with Janus Kinases (JAKs)/Signal Transducers and Activators of Transcription (STATs) Signalling Pathways in on-Growing Grass Carp (Ctenopharyngodon idella). Aquaculture 2021, 539, 736585. [Google Scholar] [CrossRef]
- Lu, Z.-Y.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Mannan Oligosaccharides Improved Growth Performance and Antioxidant Capacity in the Intestine of On-Growing Grass Carp (Ctenopharyngodon idella). Aquac. Rep. 2020, 17, 100313. [Google Scholar] [CrossRef]
- Wei, L.; Wu, P.; Zhou, X.-Q.; Jiang, W.-D.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Feng, L. Dietary Silymarin Supplementation Enhanced Growth Performance and Improved Intestinal Apical Junctional Complex on Juvenile Grass Carp (Ctenopharyngodon idella). Aquaculture 2020, 525, 735311. [Google Scholar] [CrossRef]
- Sun, C.; Liu, Y.; Feng, L.; Jiang, W.-D.; Wu, P.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Xylooligosaccharide Supplementation Improved Growth Performance and Prevented Intestinal Apoptosis in Grass Carp. Aquaculture 2021, 535, 736360. [Google Scholar] [CrossRef]
- Duan, X.-D.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Zhou, X.-Q. Dietary Soybean β-Conglycinin Suppresses Growth Performance and Inconsistently Triggers Apoptosis in the Intestine of Juvenile Grass Carp (Ctenopharyngodon idella) in Association with ROS-Mediated MAPK Signalling. Aquac. Nutr. 2019, 25, 770–782. [Google Scholar] [CrossRef]
- Devaraj, K.; Keshavappa, G.; Manissery, J. Growth of Grass Carp, Ctenopharyngodon idella Val., Fed on Two Terrestrial Fodder Plants. Aquac. Res. 1986, 17, 123–128. [Google Scholar] [CrossRef]
- Zolfinejad, K.; Khara, H.; Filizadeh, Y. Food Preference and Growth of Grass Carp, Ctenopharyngodon idella (Cuvier and Valenciennes, 1844) Fed Some Aquatic and Terrestrial Plants. Iran. J. Fish. Sci. 2017, 17, 1278–1286. [Google Scholar]
- Sutton, D.L. Utilization of Hydrilla by the White Amur. Hyacinth Control J. 1974, 12, 66–70. [Google Scholar]
- Shrestha, M.; Yadav, C. Feeding of Napier (Pennisetum purpureum) to Grass Carp in Polyculture: A Sustainable Fish Culture Practice for Small Farmers. Asian Fish. Sci. 1998, 11, 287–294. [Google Scholar] [CrossRef]
- Law, A. Digestibility of Napier Grass (Pennisetum purpureum) in Grass Carp (Ctenopharyngodon idella). Pertanika 1978, 1, 51–54. Available online: https://www.semanticscholar.org/paper/Digestibility-of-Napier-Grass-(Pennisetum-in-Grass-Law/bb0992b96aa06c94e8017ef3248c920baa2953f6#citing-papers (accessed on 27 October 2023).
- Costa, M.; Radünz Neto, J.; Lazzari, R.; Veiverberg, C.; Sutili, F.; Loro, V. Others Digestive Enzymes in Grass Carp Juveniles Fed with Forage and Ration. Arch. Zootec. 2011, 60, 563–570. [Google Scholar] [CrossRef]
- Rajadevan, P.; Schramm, M. Nutritional Value of Cabbage and Kikuyu Grass as Food for Grass Carp, Ctenopharyngodon idella Val. S. Afr. J. Anim. Sci. 1989, 19, 67–70. [Google Scholar]
- Zhao, H.; Xia, J.; Zhang, X.; He, X.; Li, L.; Tang, R.; Chi, W.; Li, D. Diet Affects Muscle Quality and Growth Traits of Grass Carp (Ctenopharyngodon idellus): A Comparison between Grass and Artificial Feed. Front. Physiol. 2018, 9, 283. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.M.; Ali, M.L.; Khan, S.; Haque, M.M.; Shahjahan, M. Use of Asian Watergrass as Feed of Grass Carp. Aquac. Rep. 2020, 18, 100434. [Google Scholar] [CrossRef]
- Yang, S.; Li, L.; Qi, B.; Wu, Y.; Hu, X.; Lin, W.; Hao, S.; Huang, H. Quality Evaluation of Crisp Grass Carp (Ctenopharyngodon idellus C. ET V) Based on Instrumental Texture Analysis and Cluster Analysis. Food Anal. Methods 2015, 8, 2107–2114. [Google Scholar] [CrossRef]
- Ma, L.-L.; Kaneko, G.; Wang, X.-J.; Xie, J.; Tian, J.-J.; Zhang, K.; Wang, G.-J.; Yu, D.-G.; Li, Z.-F.; Gong, W.-B.; et al. Effects of Four Faba Bean Extracts on Growth Parameters, Textural Quality, Oxidative Responses, and Gut Characteristics in Grass Carp. Aquaculture 2020, 516, 734620. [Google Scholar] [CrossRef]
- Tian, J.; Ji, H.; Wang, Y.; Xie, J.; Wang, G.; Li, Z.; Yu, E.; Yu, D.; Zhang, K.; Gong, W. Lipid Accumulation in Grass Carp (Ctenopharyngodon idellus) Fed Faba Beans (Vicia faba L.). Fish Physiol. Biochem. 2019, 45, 631–642. [Google Scholar] [CrossRef]
- Zheng, X.; Li, X.; Wei, J.; Hu, J.; Sun, W.; Xu, H.; Leng, X. Effects of Broad Bean, Common Vetch Seed and Bitter Melon Seed Diets on the Growth, Flesh Composition, Tissue Indices and Digestive Enzymes of Grass Carp. J. Fish. Sci. China 2016, 23, 370–381. [Google Scholar]
- Ma, L.; Kaneko, G.; Xie, J.; Wang, G.; Li, Z.; Tian, J.; Zhang, K.; Xia, Y.; Gong, W.; Li, H.; et al. Safety Evaluation of Four Faba Bean Extracts Used as Dietary Supplements in Grass Carp Culture Based on Hematological Indices, Hepatopancreatic Function and Nutritional Condition. PeerJ 2020, 8, e9516. [Google Scholar] [CrossRef]
- Ma, L.-L.; Zhang, J.-M.; Kaneko, G.; Xie, J.; Sun, J.-H.; Wang, G.-J.; Tian, J.-J.; Zhang, K.; Li, Z.-F.; Gong, W.-B. Growth Performance, Intestinal Microbiota and Immune Response of Grass Carp Fed Isonitrogenous and Isoenergetic Diets Containing Faba Bean Extracts. Aquac. Rep. 2022, 22, 100924. [Google Scholar] [CrossRef]
- Rottmann, R.; Shireman, J.; Lincoln, E. Comparison of Three Live Foods and Two Dry Diets for Intensive Culture of Grass Carp and Bighead Carp Larvae. Aquaculture 1991, 96, 269–280. [Google Scholar] [CrossRef]
- Fischer, Z. The Elements of Energy Balance in Grass Carp (Ctenopharyngodon idella Val.): II. Fish Fed with Animal Food. Pol. Arch. Hydrobiol. 1972, 19, 65–82. [Google Scholar]
- Choi, W.M.; Lam, C.L.; Mo, W.Y.; Wong, M.H. Upgrading Food Wastes by Means of Bromelain and Papain to Enhance Growth and Immunity of Grass Carp (Ctenopharyngodon idella). Environ. Sci. Pollut. Res. 2016, 23, 7186–7194. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.Y.; Cheng, Z.; Choi, W.M.; Lun, C.H.; Man, Y.B.; Wong, J.T.; Chen, X.W.; Lau, S.C.; Wong, M.H. Use of Food Waste as Fish Feeds: Effects of Prebiotic Fibers (Inulin and Mannanoligosaccharide) on Growth and Non-Specific Immunity of Grass Carp (Ctenopharyngodon idella). Environ. Sci. Pollut. Res. 2015, 22, 17663–17671. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Choi, W.; Man, K.; Wong, M.H. Food Waste-Based Pellets for Feeding Grass Carp (Ctenopharyngodon idellus): Adding Baker’s Yeast and Enzymes to Enhance Growth and Immunity. Sci. Total Environ. 2020, 707, 134954. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Mo, W.-Y.; Nie, X.-P.; Li, K.-B.; Choi, W.-M.; Man, Y.-B.; Wong, M.-H. The Use of Food Waste-Based Diets and Napier Grass to Culture Grass Carp: Growth Performance and Contaminants Contained in Cultured Fish. Environ. Sci. Pollut. Res. 2016, 23, 7204–7210. [Google Scholar] [CrossRef]
- Li, X.; Zhu, X.; Han, D.; Yang, Y.; Jin, J.; Xie, S. Carbohydrate Utilization by Herbivorous and Omnivorous Freshwater Fish Species: A Comparative Study on Gibel Carp (Carassius auratus gibelio var CAS III) and Grass Carp (Ctenopharyngodon idellus). Aquac. Res. 2016, 47, 128–139. [Google Scholar] [CrossRef]
- Tian, L.X.; Liu, Y.J.; Yang, H.J.; Liang, G.Y.; Niu, J. Effects of Different Dietary Wheat Starch Levels on Growth, Feed Efficiency and Digestibility in Grass Carp (Ctenopharyngodon idella). Aquac. Int. 2012, 20, 283–293. [Google Scholar] [CrossRef]
- Horvath, L.; Tamas, G.; Seagrave, C. Carp and Pond Fish Culture: Including Chinese Herbivorous Species, Pike, Tench, Zander, Wels Catfish, Goldfish, African Catfish and Sterlet; John Wiley & Sons: New York, NY, USA, 2008; ISBN 978-1-4051-7175-5. [Google Scholar]
- Ries, E.F.; Ferreira, C.C.; Goulart, F.R.; Lovatto, N.M.; Loureiro, B.B.; Bender, A.B.; Macedo, G.A.; Silva, L.P. Improving Nutrient Availability of Defatted Rice Bran Using Different Phytase Sources Applied to Grass Carp (Ctenopharyngodon idella) Diet. An. Acad. Bras. Ciênc. 2020, 92, e20190201. [Google Scholar] [CrossRef]
- Fallahi, M.; Amiri, A.; Arshad, N.; Moradi, M.; Daghigh Roohi, J. Culture of Chinese Carps Using Anaerobic Fermented Cow Manure (Slurry) and Comparison of Survival and Growth Factors versus Traditional Culture. Iran. J. Fish. Sci. 2013, 12, 56–75. [Google Scholar]
- Afzal, M.; Rab, A.; Akhtar, N.; Khan, M.F.; Barlas, A.; Qayyum, M. Effect of Organic and Inorganic Fertilizers on the Growth Performance of Bighead Carp (Aristichthys nobilis) in Polyculture System. Int. J. Agric. Biol. 2007, 9, 931–933. [Google Scholar]
- Cui, Y.; Chen, S.; Wang, S. Effect of Ration Size on the Growth and Energy Budget of the Grass Carp, Ctenopharyngodon idella Val. Aquaculture 1994, 123, 95–107. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, W.; Han, D.; Zhu, X.; Yang, Y.; Jin, J.; Liu, H.; Xie, S. Effects of Food Restriction on Growth, Body Composition and Gene Expression Related in Regulation of Lipid Metabolism and Food Intake in Grass Carp. Aquaculture 2017, 469, 28–35. [Google Scholar] [CrossRef]
- Du, Z.-Y.; Liu, Y.-J.; Tian, L.-X.; He, J.-G.; Cao, J.-M.; Liang, G.-Y. The Influence of Feeding Rate on Growth, Feed Efficiency and Body Composition of Juvenile Grass Carp (Ctenopharyngodon idella). Aquac. Int. 2006, 14, 247–257. [Google Scholar] [CrossRef]
- Li, X.-Q.; Xu, H.-B.; Sun, W.-T.; Xu, X.-Y.; Xu, Z.; Leng, X.-J. Grass Carp Fed a Fishmeal-Free Extruded Diet Showed Higher Weight Gain and Nutrient Utilization than Those Fed a Pelleted Diet at Various Feeding Rates. Aquaculture 2018, 493, 283–288. [Google Scholar] [CrossRef]
- Gasaway, R. Growth, Survival and Harvest of Grass Carp in Florida Lakes. In Proceedings of the Symposium on Culture of Exotic Fishes, Atlanta, GA, USA, 4 January 1978; Fish Culture Section of the Americanr. Fisheries Society: Auburn, AL, USA, 1978; pp. 167–188. [Google Scholar]
- Sutton, D.L. Utilization of Duckweed by the White Amur. In Proceedings of the 4th International Symposium on Biological Control of Weeds, Gainesville, FL, USA, 30 August–2 September 1976; University of Georgia and USDA Forest Service: Tifton, GA, USA, 1978; pp. 257–260. Available online: http://bugwoodcloud.org/ibiocontrol/proceedings/pdf/4_257-260.pdf (accessed on 8 November 2023).
- Imanpoor, M.; Enayat Gholampour, T.; Zolfaghari, M. Effect of Light and Music on Growth Performance and Survival Rate of Goldfish (Carassius auratus). Iran. J. Fish. Sci. 2011, 10, 641–653. [Google Scholar]
- Zhang, L.; Xu, N.; Liu, X.; Onxayvieng, K.; Liu, L.; Tang, R.; Li, D. Exercise Training Accelerates UPS-and mTOR-Mediated Protein Turnover of Grass Carp Ctenopharyngodon idella. Aquaculture 545, 737252. [CrossRef]
- Sharm, J.G.; Chakrabarti, R. Effects of Different Stocking Densities on Survival and Growth of Grass Carp, Ctenopharyngodon idella, Larvae Using a Recirculating Culture System. J. Appl. Aquac. 1998, 8, 79–83. [Google Scholar] [CrossRef]
- Jena, J.; Ayyappan, S.; Aravindakshan, P.; Muduli, H. Comparative Evaluation of Growth, Survival and Production of Carp Species at Different Stocking Densities under Polyculture. Indian J Fish 2001, 48, 17–25. [Google Scholar]
- Jena, J.; Ayyappan, S.; Aravindakshan, P. Comparative Evaluation of Production Performance in Varied Cropping Patterns of Carp Polyculture Systems. Aquaculture 2002, 207, 49–64. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. USACE 2012: Aligning the U.S. Army Corps of Engineers for Success in the 21st Century; U.S. Army Corps of Engineers: Washington DC, USA, 2003. [Google Scholar]
- Wu, C. Data Driven Modeling and Simulation about Carp Aggregation. Master’s Thesis, University of Tennessee at Chattanooga: Chattanooga, TN, USA, 2016. [Google Scholar]
- Bajer, P.; Chizinski, C.J.; Sorensen, P. Using the Judas Technique to Locate and Remove Wintertime Aggregations of Invasive Common Carp. Fish. Manag. Ecol. 2011, 18, 497–505. [Google Scholar] [CrossRef]
- Hessler, T.M.; Chapman, D.C.; Paukert, C.P.; Jolley, J.C.; Byrne, M.E. Winter Habitat Selection and Efficacy of Telemetry to Aid Grass Carp Removal Efforts in a Large Reservoir. N. Am. J. Fish. Manag. 2021, 43, 189–202. [Google Scholar] [CrossRef]
- Beyers, D.W.; Carlson, C.A. Movement and Habitat Use of Triploid Grass Carp in a Colorado Irrigation Canal. N. Am. J. Fish. Manag. 1993, 13, 141–150. [Google Scholar] [CrossRef]
- Barnard, P. Gustatory and Olfactory Feeding Responces in Japanese Koi Carp (Cyprinus carpio). PhD Thesis, University of Stellenbosch: Stellenbosch, South Africa, 2006. [Google Scholar]
- Lindstedt, K.J. Chemical Control of Feeding Behavior. Comp. Biochem. Physiol. A Physiol. 1971, 39, 553–581. [Google Scholar] [CrossRef]
- Mackie, A.M. Identification of the Gustatory Feeding Stimulants. In Chemoreception in fishes; Hara, T.J., Ed.; Elsevier: Amsterdam, Netherlands, 1982; pp. 275–291. [Google Scholar]
- Mearns, K.J.; Ellingsen, O.F.; Døving, K.B.; Helmer, S. Feeding Behaviour in Adult Rainbow Trout and Atlantic Salmon Parr, Elicited by Chemical Fractions and Mixtures of Compounds Identified in Shrimp Extract. Aquaculture 1987, 64, 47–63. [Google Scholar] [CrossRef]
- Sakata, K. Feeding Attractants and Stimulants for Marine Gastropods. Bioorganic Mar. Chem. 1989, 3, 115–129. [Google Scholar] [CrossRef]
- Yuan, X.; Cai, W.; Liang, X.-F.; Su, H.; Yuan, Y.; Li, A.; Tao, Y.-X. Obestatin Partially Suppresses Ghrelin Stimulation of Appetite in “High-Responders” Grass Carp, Ctenopharyngodon idellus. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2015, 184, 144–149. [Google Scholar] [CrossRef]
- Claus, A. Chemosensory Control of Filter Feeding Behavior in Bigheaded Carps. Master’s Thesis, Minneapolis, MN, USA: University of Minnesota, 2015. [Google Scholar]
- Cai, L.; Fang, M.; Johnson, D.; Lin, S.; Tu, Z.; Liu, G.; Huang, Y. Interrelationships between Feeding, Food Deprivation and Swimming Performance in Juvenile Grass Carp. Aquat. Biol. 2014, 20, 69–76. [Google Scholar] [CrossRef]
- Schramm, H.; Jirka, K.J. Evaluation of Methods for Capturing Grass Carp in Agricultural Canals. J Aquat Plant Manage 1986, 24, 57–59. [Google Scholar]
- Cassani, J.; Hardin, S.; Mudrak, V.; Zajicek, P. A Risk Analysis Pertaining to the Use of Triploid Grass Carp for the Biological Control of Aquatic Plants; Florida Department of Environmental Protection: Tallahassee, FL, USA, 2008; Available online: www.lakemango.files.wordpress.com/2015/07/risk-analysis-tgc-cassani-2008.pdf (accessed on 25 October 2023).
- Wilson, J.L.; Cottrell, K.D. Catchability and Organoleptic Evaluation of Grass Carp in East Tennessee Ponds. Trans. Am. Fish. Soc. 1979, 108, 97–99. [Google Scholar] [CrossRef]
- Yu, H.; Wang, X.; Kong, F.; Song, X.; Tan, Q. The Attractive Effects of Amino Acids and Some Classical Substances on Grass Carp (Ctenopharyngodon idellus). Fish Physiol. Biochem. 2021, 47, 1489–1505. [Google Scholar] [CrossRef] [PubMed]
- Bonar, S.; Vecht, S.; Bennett, C.; Pauley, G.; Thomas, G. Capture of Grass Carp from Vegetated Lakes. J. Aquat. Plant Manag. 1993, 31, 168–174. [Google Scholar]
- Hara, T.J. The Diversity of Chemical Stimulation in Fish Olfaction and Gustation. Rev. Fish Biol. Fish. 1994, 4, 1–35. [Google Scholar] [CrossRef]
- Johnsen, P.; Zhou, H.; Adams, M. Olfactory Sensitivity of the Herbivorous Grass Carp, Ctenopharyngodon idella, to Amino Acids. J. Fish Biol. 1988, 33, 127–134. [Google Scholar] [CrossRef]
- Wildhaber, M.L.; West, B.M.; Ditter, K.K.; Peterson, A.S.; Beaman, Z.B. Electro-Olfactory Responses of Grass Carp, Bighead Carp, and Silver Carp to the Amino Acids L-Alanine, L-Arginine, L-Aspartic Acid, L-Asparagine, L-Glutamine, and L-glutamic Acid. Fishes 2023, 8, 334. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, F.; Ding, S. Avoidance Response of Silver Carp (Hypophthalmichthys molitrix) to the Major Effluents and Four Organic Toxicants in Changzhou City. J. Nanjing Univ. (Nat. Sci. Ed.) 1989, 25, 689–695. [Google Scholar]
- Pashchenko, N.I.; Kasumyan, A.O. Scanning Electron Microscopy of Development of the Olfactory Organ in Ontogeny of Grass Carp Ctenopharyngodon idella. J. Ichthyol. 2015, 55, 880–899. [Google Scholar] [CrossRef]
- Goh, Y.; Tamura, T. Electrical Responses of the Olfactory Tract to Some Chemical Stimulants in Carp. Bull. Jpn. Soc. Sci. Fish. Jpn. 1978, 44, 1289–1294. [Google Scholar] [CrossRef]
- Satou, M. Electrophysiological Study of the Olfactory System in Fish I. Bulbar Responses with Special Reference to Adaptation in the Carp, Cyprinus carpio L. J Fac Sci Univ Tokyo 1971, 12, 183–218. [Google Scholar]
- Doving, K.; Lastein, S. The Alarm Reaction in Fishes-Odorants, Modulations of Responses, Neural Pathways. Ann. N. Y. Acad. Sci. 2009, 1170, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.C.; Detmer, T.M.; White, D.; Wahl, D.H. Non-Native Silver Carp Fail to Generalize Behavior When Exposed to Odors from Three North American Predators. Environ. Biol. Fishes 2021, 104, 1033–1043. [Google Scholar] [CrossRef]
- Wilson, J.C.; White, D.P.; Detmer, T.M.; Wahl, D.H. Behavioral Response of Juvenile Silver and Bighead Carp to Conspecific and Heterospecific Alarm Cues. Biol. Invasions 2021, 23, 2233–2248. [Google Scholar] [CrossRef]
- Conover, G.; Simmonds, R.; Whalen, M. Management and Control Plan for Bighead, Black, Grass, and Silver Carps in the United States; Asian Carp Working Group, Aquatic Nuisance Species Task Force: Washington, DC, USA, 2007; Available online: https://www.landcan.org/pdfs/Carps_Management_Plan.pdf (accessed on 25 October 2023).
- Maniak, P.J.; Lossing, R.D.; Sorensen, P.W. Injured Eurasian Ruffe, Gymnocephalus cernuus, Release an Alarm Pheromone That Could Be Used to Control Their Dispersal. J. Gt. Lakes Res. 2000, 26, 183–195. [Google Scholar] [CrossRef]
- Li, W.; Scott, A.P.; Siefkes, M.J.; Yun, S.-S.; Zielinski, B. A Male Pheromone in the Sea Lamprey (Petromyzon marinus): An Overview. Fish Physiol. Biochem. 2003, 28, 259–262. [Google Scholar] [CrossRef]
- Sorensen, P.W.; Stacey, N.E. Brief Review of Fish Pheromones and Discussion of Their Possible Uses in the Control of Non-Indigenous Teleost Fishes. N. Z. J. Mar. Freshw. Res. 2004, 38, 399–417. [Google Scholar] [CrossRef]
- Sisler, S.P. Behavioral Evidence for Aggregation Pheromones in Goldfish (Carassius auratus) and Common Carp (Cyprinus carpio). PhD Thesis, Minneapolis, MN, USA: University of Minnesota, 2005. [Google Scholar]
- Noatch, M.R.; Suski, C.D. Non-Physical Barriers to Deter Fish Movements. Environ. Rev. 2012, 20, 71–82. [Google Scholar] [CrossRef]
- El-Gamal, A. Timing of Hypophysation Processes in the Silver Carp Hypophthalmichthys molitrix (Valenciennes) and an Attempt to Employ the Concept of Latency Time. Egypt. J. Aquat. Biol. Fish. 2006, 10, 33–54. [Google Scholar] [CrossRef]
- Evans, D. The Physiology of Fishes: Edited by David H. Evans; Marine science series; CRC Press: Boca Raton, FL, USA, 1993; ISBN 978-0-8493-8042-6. [Google Scholar]
- Sveinsson, T.; Hara, T.J. Mature Males of Arctic Charr, Salvelinus alpinus, Release F-Type Prostaglandins to Attract Conspecific Mature Females and Stimulate Their Spawning Behaviour. Environ. Biol. Fishes 1995, 42, 253–266. [Google Scholar] [CrossRef]
- Van den Hurk, R.; Resink, J. Male Reproductive System as Sex Pheromone Producer in Teleost Fish. J. Exp. Zool. 1992, 261, 204–213. [Google Scholar] [CrossRef]
- Sherwood, N.M.; Kyle, A.L.; Kreiberg, H.; Warby, C.M.; Magnus, T.H.; Carolsfeld, J.; Price, W.S. Partial Characterisation of a Spawning Pheromone in the Herring Clupea harengus pallasi. Can. J. Zool. 1991, 69, 91–103. [Google Scholar] [CrossRef]
- Sloan, J.L.; Cordo, E.B.; Mensinger, A.F. Acoustical Conditioning and Retention in the Common Carp (Cyprinus carpio). J. Gt. Lakes Res. 2013, 39, 507–512. [Google Scholar] [CrossRef]
- Zion, B.; Barki, A.; Grinshpon, J.; Rosenfeld, L.; Karplus, I. An Automatic Fishing Machine Based on Acoustic Conditioning. Aquac. Eng. 2011, 45, 87–91. [Google Scholar] [CrossRef]
- Zion, B.; Karplus, I.; Barki, A. Ranching Acoustically Conditioned Fish Using an Automatic Fishing Machine. Aquaculture 2012, 330, 136–141. [Google Scholar] [CrossRef]
- Willis, D.J.; Hoyer, M.V.; Canfield, D.E., Jr.; Lindberg, W.J. Training Grass Carp to Respond to Sound for Potential Lake Management Uses. N. Am. J. Fish. Manag. 2002, 22, 208–212. [Google Scholar] [CrossRef]
- Popper, A.N. Pure-Tone Auditory Thresholds for the Carp, Cyprinis carpio. J. Acoust. Soc. Am. 1972, 52, 1714–1717. [Google Scholar] [CrossRef]
- Dziaman, R.; Sitarek, M.; Klyszejko, B. The Effect of Sublethal Concentration of Decis 2.5 EC Pesticide on Learning and Memory Processes in Common Carp, Cyprinus carpio (Actinopterygii: Cypriniformes: Cyprinidae). Acta Ichthyol. Piscat. 2010, 40, 145. [Google Scholar] [CrossRef]
- Great Lakes and Mississippi River Interbasin Study (GLMRIS) Team. Inventory of Available Controls for Aquatic Nuisance Species of Concern: Chicago Area Waterway System; U.S. Army Corps of Engineers: Chicago, IL, USA, 2012. Available online: https://glmris.anl.gov/controls/ (accessed on 27 October 2023).
- FishPro Consulting Engineers and Scientists Feasibility Study to Limit the Invasion of Asian Carp into the Upper Mississippi River Basin; Wisconsin Department of Natural Resources: Madison, WI, USA, 2004. Available online: https://citeseerx.ist.psu.edu/doc/10.1.1.397.6397 (accessed on 25 October 2023).
- U.S. Army Corps of Engineers. The Great Lakes and Mississippi River Interbasin Study. Brandon Road Final Integrated Feasibility Study and Environmental Impact Statement; United States Army Corps of Engineers: Will County, IL, USA, 2018; pp. 1–564. Available online: https://glmris.anl.gov/ (accessed on 30 October 2023).
- Holliman, F.M. Operational Protocols for Electric Barriers on the Chicago Sanitary and Ship Canal: Influence of Electrical Characteristics, Water Conductivity, Fish Behavior, and Water Velocity on Risk for Breach by Small Silver and Bighead Carp; U.S. Army Corps of Engineers: Cincinnati, OH, USA, 2011; Available online: https://www.lrc.usace.army.mil/Portals/36/docs/projects/ans/docs/FinalOperationalProtocolsReport.pdf (accessed on 25 October 2023).
- Eickholt, J.; Kelly, D.; Bryan, J.; Miehls, S.; Zielinski, D. Advancements towards Selective Barrier Passage by Automatic Species Identification: Applications of Deep Convolutional Neural Networks on Images of Dewatered Fish. ICES J. Mar. Sci. 2020, 77, 2804–2813. [Google Scholar] [CrossRef]
- Moy, P.B.; Polls, I.; Dettmer, J.M. The Chicago Sanitary and Ship Canal Aquatic Nuisance Species Dispersal Barrier; US Army Corps of Engineers: Chicago, IL, USA, 2011; Available online: http://ilrdss.sws.uiuc.edu/pubs/govconf2005/session4c/Chuck%20Shea.pdf (accessed on 25 October 2023).
- Parker, A.D.; Glover, D.C.; Finney, S.T.; Rogers, P.B.; Stewart, J.G.; Simmonds, R.L., Jr. Direct Observations of Fish Incapacitation Rates at a Large Electrical Fish Barrier in the Chicago Sanitary and Ship Canal. J. Gt. Lakes Res. 2015, 41, 396–404. [Google Scholar] [CrossRef]
- Nutile, S.; Amberg, J.J.; Goforth, R.R. Evaluating the Effects of Electricity on Fish Embryos as a Potential Strategy for Controlling Invasive Cyprinids. Trans. Am. Fish. Soc. 2013, 142, 1–9. [Google Scholar] [CrossRef]
- Dettmers, J.M.; Boisvert, B.A.; Barkley, T.; Sparks, R.E. Potential Impact of Steel-Hulled Barges on Movement of Fish across an Electric Barrier to Prevent the Entry of Invasive Carp into Lake Michigan; INHS Center for Aquatic Ecology: Zion, IL, USA, 2005; Available online: https://www.ideals.illinois.edu/items/10143/bitstreams/37249/data.pdf (accessed on 25 October 2023).
- Sparks, R.E.; Barkley, T.; Creque, S.; Dettmers, J.; Stainbrook, K. Evaluation of an Electric Fish Dispersal Barrier in the Chicago Sanitary and Ship Canal. In Proceedings of the American Fisheries Society Symposium 74: Invasive Asian Carps in North America, Peoria, IL, USA, 2010, 22–23 August 2006; American Fisheries Society: Bethesda, MD, USA, 2011; pp. 139–161. [Google Scholar] [CrossRef]
- Parker, A.D.; Glover, D.C.; Finney, S.T.; Rogers, P.B.; Stewart, J.G.; Simmonds, R.L., Jr. Fish Distribution, Abundance, and Behavioral Interactions within a Large Electric Dispersal Barrier Designed to Prevent Asian Carp Movement. Can. J. Fish. Aquat. Sci. 2016, 73, 1060–1071. [Google Scholar] [CrossRef]
- Hartley, W.; Simpson, D. Electric Fish Screens in the United Kingdom. In Fishing with Electricity—Its Applications to Biology and Management; Vibert, R., Ed.; Fish News Books, Blackwell Scientific Publications: Oxford, England, 1967; pp. 183–197. [Google Scholar]
- Bajer, P.G.; Claus, A.C.; Wein, J.; Kukulski, E. Field Test of a Low-Voltage, Portable Electric Barrier to Guide Invasive Common Carp into a Mock Trap during Seasonal Migrations. Manag. Biol. Invasions 2018, 9, 291. [Google Scholar] [CrossRef]
- Kim, J.; Mandrak, N.E. Effects of Strobe Lights on the Behaviour of Freshwater Fishes. Environ. Biol. Fishes 2017, 100, 1427–1434. [Google Scholar] [CrossRef]
- Maceina, M.J.; Slipke, J.W.; Grizzle, J.M. Effectiveness of Three Barrier Types for Confining Grass Carp in Embayments of Lake Seminole, Georgia. N. Am. J. Fish. Manag. 1999, 19, 968–976. [Google Scholar] [CrossRef]
- Bowzer, J.C.; Trushenski, J.T.; Gause, B.R.; Bowker, J.D. Efficacy and Physiological Responses of Grass Carp to Different Sedation Techniques: II. Effect of Pulsed DC Electricity Voltage and Exposure Time on Sedation and Blood Chemistry. N. Am. J. Aquac. 2012, 74, 567–574. [Google Scholar] [CrossRef]
- Briggs, A.S.; Dean, J.C.; Boase, J.C.; Kocovsky, P.M.; Luoma, J.A. Optimum Electrofishing Waveforms and Parameters to Induce Immobilization of Juvenile Grass Carp. N. Am. J. Fish. Manag. 2019, 39, 705–713. [Google Scholar] [CrossRef]
- Ridgway, J.L.; Lawson, K.M.; Shier, S.A.; Calfee, R.D.; Chapman, D.C. An Assessment of Fish Herding Techniques: Management Implications for Mass Removal and Control of Silver Carp. N. Am. J. Fish. Manag. 2021, 43, 176–188. [Google Scholar] [CrossRef]
- Cupp, A.R.; Brey, M.K.; Calfee, R.D.; Chapman, D.C.; Erickson, R.; Fischer, J.; Fritts, A.K.; George, A.E.; Jackson, P.R.; Knights, B.C.; et al. Emerging Control Strategies for Integrated Pest Management of Invasive Carps. J. Vertebr. Biol. 2021, 70, 21057-1. [Google Scholar] [CrossRef]
- Zhang, N.; Lin, C.; Xu, J.; Shi, J.; Luo, J.; Bai, Y.; Yin, R.; Shi, X. The Effect of Water Flow on the Phototaxis of Juvenile Grass Carp. Acta Hydrobiol. Sin. 2019, 43, 1253–1261. [Google Scholar]
- Kim, J.; Mandrak, N.E. Effects of Vertical Electric Barrier on the Behaviour of Common Carp. Manag. Biol. Invasions 2017, 8, 497–505. [Google Scholar] [CrossRef]
- Ruebush, B.C. In-Situ Tests of Sound-Bubble-Strobe Light Barrier Technologies to Prevent the Range Expansions of Asian Carp. Aquat. Invasions 2012, 7, 37–48. [Google Scholar] [CrossRef]
- Mu, X.; Zhen, W.; Li, X.; Cao, P.; Gong, L.; Xu, F. A Study of the Impact of Different Flow Velocities and Light Colors at the Entrance of a Fish Collection System on the Upstream Swimming Behavior of Juvenile Grass Carp. Water 2019, 11, 322. [Google Scholar] [CrossRef]
- Brandenburg, W.H.; Francis, T.A.; Snyder, D.E.; Bestgen, K.R.; Hines, B.A.; Wilson, W.D.; Bohn, S.; Harrison, A.S.; Clark Barkalow, S.L. Discovery of Grass Carp Larvae in the Colorado River Arm of Lake Powell. N. Am. J. Fish. Manag. 2019, 39, 166–171. [Google Scholar] [CrossRef]
- Vetter, B.J.; Rogers, L.S.; Mensinger, A.F. The Effect of Light Stimuli on Dark-Adapted Visual Sensitivity in Invasive Silver Carp Hypophthalmichthys molitrix and Bighead Carp H. nobilis. J. Fish Biol. 2019, 95, 256–262. [Google Scholar] [CrossRef]
- Funge-Smith, S. Review of the State of the World Fishery Resources: Inland Fisheries; FAO Fisheries and Aquaculture Circular No.C942 Revision 3; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Available online: https://www.fao.org/3/ca0388en/CA0388EN.pdf (accessed on 27 October 2023).
- U.S. Environmental Protection Agency. Carbon Dioxide – Carp; EPA Reg. No. 6704-95; U.S. Environmental Protection Agency: Washington DC, USA, 2019. Available online: https://ordspub.epa.gov/ords/pesticides/f?p=PPLS:8:::::P8_PUID,P8_RINUM:527856,6704-95 (accessed on 27 October 2023).
- Hasler, C.T.; Woodley, C.M.; Schneider, E.V.; Hixson, B.K.; Fowler, C.J.; Midway, S.R.; Suski, C.D.; Smith, D.L. Avoidance of Carbon Dioxide in Flowing Water by Bighead Carp. Can. J. Fish. Aquat. Sci. 2019, 76, 961–969. [Google Scholar] [CrossRef]
- Kates, D.; Dennis, C.; Noatch, M.R.; Suski, C.D. Responses of Native and Invasive Fishes to Carbon Dioxide: Potential for a Nonphysical Barrier to Fish Dispersal. Can. J. Fish. Aquat. Sci. 2012, 69, 1748–1759. [Google Scholar] [CrossRef]
- Donaldson, M.R.; Amberg, J.; Adhikari, S.; Cupp, A.; Jensen, N.; Romine, J.; Wright, A.; Gaikowski, M.; Suski, C.D. Carbon Dioxide as a Tool to Deter the Movement of Invasive Bigheaded Carps. Trans. Am. Fish. Soc. 2016, 145, 657–670. [Google Scholar] [CrossRef]
- Cupp, A.R.; Erickson, R.A.; Fredricks, K.T.; Swyers, N.; Hatton, T.W.; Amberg, J.J. Responses of Invasive Silver and Bighead Carp to a Carbon Dioxide Barrier in Outdoor Ponds. Can. J. Fish. Aquat. Sci. 2017, 74, 297–305. [Google Scholar] [CrossRef]
- Tix, J.A.; Hasler, C.T.; Sullivan, C.; Jeffrey, J.D.; Suski, C.D. Elevated Carbon Dioxide Has the Potential to Impact Alarm Cue Responses in Some Freshwater Fishes. Aquat. Ecol. 2017, 51, 59–72. [Google Scholar] [CrossRef]
- Tix, J.A.; Cupp, A.R.; Smerud, J.R.; Erickson, R.A.; Fredricks, K.T.; Amberg, J.J.; Suski, C.D. Temperature Dependent Effects of Carbon Dioxide on Avoidance Behaviors in Bigheaded Carps. Biol. Invasions 2018, 20, 3095–3105. [Google Scholar] [CrossRef]
- Cupp, A.R.; Woiak, Z.; Erickson, R.A.; Amberg, J.J.; Gaikowski, M.P. Carbon Dioxide as an Under-Ice Lethal Control for Invasive Fishes. Biol. Invasions 2017, 19, 2543–2552. [Google Scholar] [CrossRef]
- Treanor, H.B.; Ray, A.M.; Layhee, M.; Watten, B.J.; Gross, J.A.; Gresswell, R.E.; Webb, M.A. Using Carbon Dioxide in Fisheries and Aquatic Invasive Species Management. Fisheries 2017, 42, 621–628. [Google Scholar] [CrossRef]
- Suski, C.D. Development of Carbon Dioxide Barriers to Deter Invasive Fishes: Insights and Lessons Learned from Bigheaded Carp. Fishes 2020, 5, 25. [Google Scholar] [CrossRef]
- Parker, A.; Rogers, P.; Finney, S.; Simmonds, R., Jr. Preliminary Results of Fixed DIDSON Evaluations at the Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal; US Fish and Wildlife Service: Carterville, IL, USA, 2013; Available online: https://www.researchgate.net/publication/259503266_Preliminary_Results_of_Fixed_DIDSON_Evaluations_at_the_Electric_Dispersal_Barrier_in_the_Chicago_Sanitary_and_Ship_Cana (accessed on 25 October 2023).
- Cupp, A.R.; Lopez, A.K.; Smerud, J.R.; Tix, J.A.; Rivera, J.M.; Swyers, N.M.; Brey, M.K.; Woodley, C.M.; Smith, D.L.; Gaikowski, M.P. Telemetry Evaluation of Carbon Dioxide as a Behavioral Deterrent for Invasive Carps. J. Gt. Lakes Res. 2021, 47, 59–68. [Google Scholar] [CrossRef]
- Cupp, A.R.; Smerud, J.R.; Tix, J.A.; Schleis, S.M.; Fredricks, K.T.; Erickson, R.A.; Amberg, J.J.; Morrow, W.S.; Koebel, C.; Murphy, E.A.; et al. Field Evaluation of Carbon Dioxide as a Fish Deterrent at a Water Management Structure along the Illinois River. Manag. Biol. Invasions 2018, 9, 299. [Google Scholar] [CrossRef]
- Dennis III, C.E.; Kates, D.F.; Noatch, M.R.; Suski, C.D. Molecular Responses of Fishes to Elevated Carbon Dioxide. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2015, 187, 224–231. [Google Scholar] [CrossRef]
- Zolper, T.J.; Cupp, A.R.; Smith, D.L. Investigating the Mixing Efficiencies of Liquid-to-Liquid Chemical Injection Manifolds for Aquatic Invasive Species Management. J. Fluids Eng. 2019, 141, 031302. [Google Scholar] [CrossRef]
- Tucker, E.K.; Suski, C.D.; Philipp, M.A.; Jeffrey, J.D.; Hasler, C.T. Glucocorticoid and Behavioral Variation in Relation to Carbon Dioxide Avoidance across Two Experiments in Freshwater Teleost Fishes. Biol. Invasions 2019, 21, 505–517. [Google Scholar] [CrossRef]
- Buley, R.P.; Hasler, C.T.; Tix, J.A.; Suski, C.D.; Hubert, T.D. Can Ozone Be Used to Control the Spread of Freshwater Aquatic Invasive Species? Manag. Biol. Invasions 2017, 8, 13. [Google Scholar] [CrossRef]
- Schreier, T.M.; Dawson, V.K.; Larson, W. Effectiveness of Piscicides for Controlling Round Gobies (Neogobius Melanostomus). J. Gt. Lakes Res. 2008, 34, 253–264. [Google Scholar] [CrossRef]
- Mu, X.; Cao, P.; Gong, L.; Baiyin, B.; Li, X. A Classification Method for Fish Swimming Behaviors under Incremental Water Velocity for Fishway Hydraulic Design. Water 2019, 11, 2131. [Google Scholar] [CrossRef]
- Cao, P.; Mu, X.; Li, X.; Baiyin, B.; Wang, X.; Zhen, W. Relationship between Upstream Swimming Behaviors of Juvenile Grass Carp and Characteristic Hydraulic Conditions of a Vertical Slot Fishway. Water 2021, 13, 1299. [Google Scholar] [CrossRef]
- Prada, A.F.; George, A.E.; Stahlschmidt, B.H.; Jackson, P.R.; Chapman, D.C.; Tinoco, R.O. Using Turbulence to Identify Preferential Areas for Grass Carp (Ctenopharyngodon idella) Larvae in Streams: A Laboratory Study. Water Resour. Res. 2021, 57, e2020WR028102. [Google Scholar] [CrossRef]
- Nico, L.; Williams, J.; Jelks, H. Black Carp: Biological Synopsis and Risk Assessment of an Introduced Fish.; American Fisheries Society, Special Publications: Bethesda, MD, USA, 2005; ISBN 1-888569-68-9. [Google Scholar]
- Tan, J.; Gao, Z.; Dai, H.; Yang, Z.; Shi, X. Effects of Turbulence and Velocity on the Movement Behaviour of Bighead Carp (Hypophthalmichthys nobilis) in an Experimental Vertical Slot Fishway. Ecol. Eng. 2019, 127, 363–374. [Google Scholar] [CrossRef]
- Hoover, J.J.; Southern, L.W.; Katzenmeyer, A.W.; Hahn, N.M. Swimming Performance of Bighead Carp and Silver Carp: Methodology, Metrics, and Management Applications. 2012. Available online: https://hdl.handle.net/11681/5101 (accessed on 30 October 2023).
- You, H.; Tinoco, R.O. Quantifying the Response of Grass Carp Larvae to Acoustic Stimuli Using Particle-Tracking Velocimetry. Water 2021, 13, 603. [Google Scholar] [CrossRef]
- Nissen, A. Hearing Thresholds and the Impact of Anthropogenic Noise in Four Invasive Fishes: Silver (Hypophthalmichthys molitrix), Bighead (H. nobilis), Black (Mylopharyngodon piceus), and Grass (Ctenopharyngodon idella) Carp. Master’s Thesis, Minneapolis, MN, USA, University of Minnesota, 2018. [Google Scholar]
- Feely, J.R.; Sorensen, P. Effects of an Ensonified Bubble Curtain and a Cyclic Sound on Blocking 10 Species of Fishes Including 4 Invasive Carps in a Laboratory Flume. Biol. Invasions 2023, 25, 1973–1989. [Google Scholar] [CrossRef]
- Murchy, K.A.; Vetter, B.J.; Brey, M.K.; Amberg, J.J.; Gaikowski, M.P.; Mensinger, A.F. Not All Carp Are Created Equal: Impacts of Broadband Sound on Common Carp Swimming Behavior. In Proceedings of the Fourth International Conference on the Effects of Noise on Aquatic Life, Dublin, Ireland, 10–16 July 2016. [Google Scholar]
- Vetter, B.J.; Cupp, A.R.; Fredricks, K.T.; Gaikowski, M.P.; Mensinger, A.F. Acoustical Deterrence of Silver Carp (Hypophthalmichthys molitrix). Biol. Invasions 2015, 17, 3383–3392. [Google Scholar] [CrossRef]
- Vetter, B.J.; Brey, M.K.; Mensinger, A.F. Reexamining the Frequency Range of Hearing in Silver (Hypophthalmichthys molitrix) and Bighead (H. nobilis) Carp. PLoS ONE 2018, 13, e0192561. [Google Scholar] [CrossRef]
- Murchy, K.; Cupp, A.R.; Amberg, J.J.; Vetter, B.J.; Fredricks, K.T.; Gaikowski, M.P.; Mensinger, A.F. Potential Implications of Acoustic Stimuli as a Non-Physical Barrier to Silver Carp and Bighead Carp. Fish. Manag. Ecol. 2017, 24, 208–216. [Google Scholar] [CrossRef]
- Wamboldt, J.J.; Murchy, K.A.; Stanton, J.C.; Blodgett, K.D.; Brey, M.K. Evaluation of an Acoustic Fish Deterrent System in Shallow Water Application at the Emiquon Preserve, Lewistown, IL. Manag. Biol. Invasions 2019, 10, 536. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, C.; Yin, Q.; Liu, X.; Shi, H.; Yang, Y.; Wu, Y. Effect of Total Dissolved Gas Supersaturation on the Survival of Common Carp (Cyprinus carpio) and Silver Carp (Hypophthalmichthys molitrix). J. Fish Biol. 2021, 99, 2008–2017. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Cao, C.; Liu, X.; Yuan, Q.; Feng, C.; Shi, H.; Yang, Y.; Wu, Y. Effect of Total Dissolved Gas Supersaturation on the Survival of Bighead Carp (Hypophthalmichthys nobilis). Animals 2020, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Fan, Z.; Wang, Y.; Liu, X.; Shi, H.; Yang, Y. Effects of Continuous Exposure to Total Dissolved Gas Supersaturation on Swimming Ability and Recovery in Grass Carp (Ctenopharyngodon idella). Ecol. Freshw. Fish 2021, 31, 401–409. [Google Scholar] [CrossRef]
- Xue, S.; Kefeng, L.; Liang, R.; Cao, L.; Wang, Y.; Li, Y.; Feng, J. In Situ Study on the Impact of Total Dissolved Gas Supersaturation on Endemic Fish in the Upper Yangtze River. River Res. Appl. 2019, 35, 1511–1519. [Google Scholar] [CrossRef]
- Fan, Z.; Deng, Y.; Yuan, Q.; Liu, X.; Shi, H.; Feng, C.; Yang, Y.; Xu, L. Effect of Total Dissolved Gas Supersaturation on the Tolerance of Grass Carp (Ctenopharyngodon idellus). Environ. Sci. Eur. 2020, 32, 1–10. [Google Scholar] [CrossRef]
- El-Fiky, N. The Influence of Water pH on the Embryonic Development of Grass Carp, Ctenopharyngodon idella. Egypt. J. Aquat. Biol. Fish. 2002, 6, 233–261. [Google Scholar] [CrossRef]
- Cao, S.; Zhao, D.; Huang, R.; Xiao, Y.; Xu, W.; Liu, X.; Gui, Y.; Li, S.; Xu, J.; Tang, J.; et al. The Influence of Acute Ammonia Stress on Intestinal Oxidative Stress, Histology, Digestive Enzymatic Activities and PepT1 Activity of Grass Carp (Ctenopharyngodon idella). Aquac. Rep. 2021, 20, 100722. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, J.; Xu, X.; Wang, Q.; Kong, Q.; Xu, F.; Du, Y. Organ-Specific Responses to Total Ammonia Nitrogen Stress on Juvenile Grass Carp (Ctenopharyngodon idellus). Environ. Sci. Pollut. Res. 2019, 26, 10826–10834. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, H.; Yang, W.; Yang, Z. Incubation and Oxidative Stress of Grass Carp (Ctenopharyngodon idella) Embryos Exposed to Different Un-Ionized Ammonia Levels. J. Freshw. Ecol. 2012, 27, 143–150. [Google Scholar] [CrossRef]
- Wang, H.-J.; Xiao, X.-C.; Wang, H.-Z.; Li, Y.; Yu, Q.; Liang, X.-M.; Feng, W.-S.; Shao, J.-C.; Rybicki, M.; Jungmann, D.; et al. Effects of High Ammonia Concentrations on Three Cyprinid Fish: Acute and Whole-Ecosystem Chronic Tests. Sci. Total Environ. 2017, 598, 900–909. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, P.; Zhou, R. The Acute and Subacute Toxicity to Ammonia on Grass Carp (Ctenopharyngodon idellus). Acta Hydrobiol. Sin. 1986, 10, 32–38. [Google Scholar]
- Shrivastava, J.; Sinha, A.K.; Datta, S.N.; Blust, R.; De Boeck, G. Pre-Acclimation to Low Ammonia Improves Ammonia Handling in Common Carp (Cyprinus carpio) When Exposed Subsequently to High Environmental Ammonia. Aquat. Toxicol. 2016, 180, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Li, M.; Yuan, L.; Song, M.; Ren, Q.; Shi, G.; Meng, F.; Wang, R. The Protective Effects of Taurine on Acute Ammonia Toxicity in Grass Carp Ctenopharynodon idellus. Fish Shellfish Immunol. 2016, 56, 517–522. [Google Scholar] [CrossRef]
- Opuszyński, K. Comparison of Temperature and Oxygen Tolerance in Grass Carp (Ctenopharyngodon idella Val. ), Silver Carp (Hypophthalmichthys molitrix Val.) and Mirror Carp (Cyprinus carpio L.). Ekol. Pol. 1967, 15, 385–400. [Google Scholar]
- Yeh, Y. A Preliminary Report on the Oxygen Consumption, Energy Requirements, Asphyxiation Point and Respiratory Quotient of Fish Fry and Young Fish. Acta Zool Sin 1959, 11, 117–137. [Google Scholar]
- Negonovskaya, I.; Ruderrico, G. The Oxygen Threshold and Characteristics of the Respiratory Metabolism of Young Herbivorous Fish, Grass Carp (Ctenopharyngodon idella) and the Bighead (Aristichthys Nobilis). J. Ichthyol. 1974, 14, 965–970. [Google Scholar]
- Zhou, Y.; Luo, W.; Yu, X.; Wang, J.; Feng, Y.; Tong, J. Cardiac Transcriptomics Reveals That MAPK Pathway Plays an Important Role in Hypoxia Tolerance in Bighead Carp (Hypophthalmichthys nobilis). Animals 2020, 10, 1483. [Google Scholar] [CrossRef] [PubMed]
- Adel, M.A. Effects of Stress on Spawners Reproductive Performance in Female Grass Carp (Ctenopharyngodon idella). J. Arab. Aquac. Soc. 2011, 6, 171–180. [Google Scholar]
- Shireman, J.; Colle, D.; Rottmann, R. Intensive Culture of Grass Carp, Ctenopharyngodon idella, in Circular Tanks. J. Fish Biol. 1977, 11, 267–272. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Ueno, S.; Mitsuda, H. Application of CO2-Anesthesia Combined with Low Temperature for Long-Term Anesthesia in Carp. Nippon Suisan Gakkaishi 1989, 55, 1203–1209. [Google Scholar] [CrossRef]
- Basu, S. Physiological Requirements of Eggs, Larvae, and Fry during Transportation. In Proceedings of the Indo-Pacific Fisheries Council, Madras, India, 1–16 February 1951; Food and Agriculture Organization of the United Nations: Rome, Italy, 1952; pp. 209–217. [Google Scholar]
- Saunders, R. Efficiency of Oxygen Uptake in Relation to Respiratory Flow Activity and Concentrations of Oxygen and Carbon Dioxide. Can. J. Zool. 1962, 40, 817–862. [Google Scholar] [CrossRef]
- Cupp, A.R.; Smerud, J.R.; Tix, J.A.; Rivera, J.M.; Kageyama, S.A.; Merkes, C.M.; Erickson, R.A.; Amberg, J.J.; Gaikowski, M.P. Assessment of Carbon Dioxide Piscicide Treatments. N. Am. J. Fish. Manag. 2018, 38, 1241–1250. [Google Scholar] [CrossRef]
- Chapman, D.C.; Deters, J.E. Effect of Water Hardness and Dissolved-Solid Concentration on Hatching Success and Egg Size in Bighead Carp. Trans. Am. Fish. Soc. 2009, 138, 1226–1231. [Google Scholar] [CrossRef]
- Maceina, M.J.; Shireman, J.V. Grass Carp: Effects of Salinity on Survival, Weight Loss, and Muscle Tissue Water Content. Progress. Fish-Cult. 1979, 41, 69–73. [Google Scholar] [CrossRef]
- Kilambi, R.; Zdinak, A. The Effects of Acclimation on the Salinity Tolerance of Grass Carp, Ctenopharyngodon idella (Cuv. and Val.). J. Fish Biol. 1980, 16, 171–175. [Google Scholar] [CrossRef]
- Cross, D. The Tolerance of Grass Carp Ctenopharyngodon idella (Val.) to Seawatert. J. Fish Biol. 1970, 2, 231–233. [Google Scholar] [CrossRef]
- Maceina, M.J.; Shireman, J.V. Effects of Salinity on Vegetation Consumption and Growth in Grass Carp. Progress. Fish-Cult. 1980, 42, 50–53. [Google Scholar] [CrossRef]
- Van Zon, J.; Van der Zweerde, W.; Hoogers, B. The Grass-Carp, Its Effects and Side-Effects. In Proceedings of the 4th International Symposium on Biological Control of Weeds, Gainesville, FL, USA, 30 August–2 September 1976; University of Georgia and USDA Forest Service: Tifton, GA, USA, 1978; pp. 251–256. Available online: https://www.invasive.org/proceedings/pdfs/4_251-256.pdf (accessed on 8 November 2023).
- Van Zon, J. Grass Carp (Ctenopharyngodon idella Val.) in Europe. Aquat. Bot. 1977, 3, 143–155. [Google Scholar] [CrossRef]
- Alcaraz, G.; Espina, S. Effect of Nitrite on the Survival of Grass Carp, Ctenopharyngodon idella (Val.), with Relation to Chloride. Bull. Environ. Contam. Toxicol. 1994, 52, 74–79. [Google Scholar] [CrossRef]
- Espina, S.; Alcaraz, G. Effect of Nitrite on the Respiratory Response of Grass Carp Ctenopharyngodon idella (Val.) with Relation to Chloride. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1993, 106, 761–764. [Google Scholar] [CrossRef]
- Rach, J.J.; Sass, G.G.; Luoma, J.A.; Gaikowski, M.P. Effects of Water Hardness on Size and Hatching Success of Silver Carp Eggs. N. Am. J. Fish. Manag. 2010, 30, 230–237. [Google Scholar] [CrossRef]
- Lu, J.; Shen, C. The Experiment of Acute Toxicity on Nitrite to Some Fry in Fresh. J. Dalian Fish. Coll. 1993, 1, 65–68. [Google Scholar]
- Xiao, C.; Liu, Z.; Li, D.; Refaey, M.M.; Tang, R.; Li, L.; Zhang, X. Acute Nitrite Exposure Alters the Metabolism of Thyroid Hormones in Grass Carp (Ctenopharyngodon idellus). Chemosphere 2017, 186, 798–804. [Google Scholar] [CrossRef]
- Alcaraz, G.; Espina, S. Scope for Growth of Juvenile Grass Carp Ctenopharyngodon idella Exposed to Nitrite. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1997, 116, 85–88. [Google Scholar] [CrossRef]
- Wallen, I.E. The Direct Effect of Turbidity on Fishes. Ph.D. Thesis, University of Michigan: Ann Arbor, Michigan, USA, 1951. [Google Scholar]
- George, A.E.; Chapman, D.C.; Deters, J.E.; Erwin, S.O.; Hayer, C.-A. Effects of Sediment Burial on Grass Carp, Ctenopharyngodon idella (Valenciennes, 1844), Eggs. J. Appl. Ichthyol. 2015, 31, 1120–1126. [Google Scholar] [CrossRef]
- Hatton, E.; Buckley, J.; Fera, S.; Henry, S.; Hunt, L.; Drake, D.; Johnson, T. Ecological Temperature Metrics for Invasive Fishes in Ontario and the Great Lakes Region. Sci. Res. Inf. Rep.-Ont. Minist. Nat. Resour. For. 2018. Available online: https://www.cabdirect.org/cabdirect/abstract/20193434123 (accessed on 30 October 2023).
- Mackey, T.E.; Hasler, C.T.; Enders, E.C. Summary of Temperature Metrics for Aquatic Invasive Fish Species in the Prairie Region; Canadian Technical Report of Fisheries and Aquatic Sciences: Winnipeg, Canada, 2019; p. 62. [Google Scholar]
- Leuven, R.; Hendriks, A.; Huijbregts, M.; Lenders, H.; Matthews, J.; Velde, G.V.D. Differences in Sensitivity of Native and Exotic Fish Species to Changes in River Temperature. Curr. Zool. 2011, 57, 852–862. [Google Scholar] [CrossRef]
- Vovk, P. Temperature and Food Adaptation of the Far East Herbivorous Fishes. In Proceedings of the XIV Pacific Science Congress, Khabarovsk, Russia, 2–7 August 1979; pp. 41–42. [Google Scholar]
- Bettoli, P.; Neill, W.; Kelsch, S. Temperature Preference and Heat Resistance of Grass Carp, Ctenopharyngodon idella (Valenciennes), Bighead Carp, Hypophthalmichthys nobilis (Gray), and Their F1 Hybrid. J. Fish Biol. 1985, 27, 239–247. [Google Scholar] [CrossRef]
- Chilton, E.W.; Muoneke, M.I. Biology and Management of Grass Carp (Ctenopharyngodon idella, Cyprinidae) for Vegetation Control: A North American Perspective. Rev. Fish Biol. Fish. 1992, 2, 283–320. [Google Scholar] [CrossRef]
- Wang, X.; Wu, D. Studies on the Criteria of Water Temperature for Major Cultured Freshwater Fishes. J. Fish. China 1994, 18, 93–100. [Google Scholar]
- Galloway, M.L.; Kilambi, R.V. Temperature Preference and Tolerance of Grass Carp (Ctenopharyngodon idella). J. Ark. Acad. Sci. 1984, 38, 36–37. [Google Scholar]
- Jiang, L.; Chao, C. Influences of Thermal Pollution on Behaviour of Fish. Chin. J. Ecol. 1989, 23–25. [Google Scholar]
- Lehtonen, H. Potential Effects of Global Warming on Northern European Freshwater Fish and Fisheries. Fish. Manag. Ecol. 1996, 3, 59–71. [Google Scholar] [CrossRef]
- Xu, J.; Ma, X.; Hou, W.; Han, X. Effects of Temperature and Ammonia on Silver Carp, Bighead Carp, Grass Carp and Common Carp. China Env. Sci 1994, 14, 214–218. [Google Scholar]
- Wu, C.-X.; Zhao, F.-Y.; Zhang, Y.; Zhu, Y.-J.; Ma, M.-S.; Mao, H.-L.; Hu, C.-Y. Overexpression of Hsp90 from Grass Carp (Ctenopharyngodon idella) Increases Thermal Protection against Heat Stress. Fish Shellfish Immunol. 2012, 33, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Korwin-Kossakowski, M. The Influence of Temperature during the Embryonic Period on Larval Growth and Development in Carp, Cyprinus carpio L., and Grass Carp, Ctenopharyngodon idella (Val.): Theoretical and Practical Aspects. Fish. Aquat. Life 2008, 16, 231–314. [Google Scholar] [CrossRef]
- Shireman, J.V.; Smith, C.R. Synopsis of Biological Data on the Grass Carp, Ctenopharyngodon idella (Cuvier and Valenciennes, 1844); Food and Agriculture Organization of the United Nations: Rome, Italy, 1983. [Google Scholar]
- Fedorenko, A.; Fraser, F. A Review of the Biology of Grass Carp (Ctenopharyngodon Idella, Val.) and Its Evaluation as a Potential Weed Control Agent in British Columbia. Tech. Rep. Fish. Mar. Serv. Can. Can. No 786 1978. [Google Scholar]
- Nico, L.G.; Williams, J.D. Risk Assessment on Black Carp (Pisces: Cyprinidae); US Geological Survey, Biological Resources Division: Gainesville, FL, USA, 1996. [Google Scholar]
- Diaz, F.; Espina, S.; Rodriguez, C.; Soto, F. Preferred Temperature of Grass Carp, Ctenopharyngodon idella (Valenciennes), and Brema Carp, Megalobrama amblycephala (Yih),(Pisces, Cyprinidae) in Horizontal and Vertical Gradients. Aquac. Res. 1998, 29, 643–648. [Google Scholar] [CrossRef]
- Jezierska, B.; Lugowska, K.; Witeska, M. The Effect of Temperature and Heavy Metals on Heart Rate Changes in Common Carp Cyprinus carpio L. and Grass Carp Ctenopharyngodon idella (Val.) during Embryonic Development. Fish. Aquat. Life 2002, 10, 153–165. [Google Scholar]
- Yan, G.-J.; He, X.-K.; Cao, Z.-D.; Fu, S.-J. The Trade-off between Steady and Unsteady Swimming Performance in Six Cyprinids at Two Temperatures. J. Therm. Biol. 2012, 37, 424–431. [Google Scholar] [CrossRef]
- Kuo, C.; Hsieh, S. Comparisons of Physiological and Biochemical Responses between Milkfish (Chanos chanos) and Grass Carp (Ctenopharyngodon idella) to Cold Shock. Aquaculture 2006, 251, 525–536. [Google Scholar] [CrossRef]
- Chen, B.-J.; Fu, S.-J.; Cao, Z.-D.; Wang, Y.-X. Effect of Temperature on Critical Oxygen Tension (Pcrit) and Gill Morphology in Six Cyprinids in the Yangtze River, China. Aquaculture 2019, 508, 137–146. [Google Scholar] [CrossRef]
- Wang, J.; Mao, L. Lethal Time and Histological Changes in Starved Common Carp, Silver Carp, Bighead Carp and Grass Carp Fry and Fingerlings. J. Dalian Fish. Univ. 1993, 8, 59–65. [Google Scholar]
- Kilambi, R.; Robison, W. Effects of Temperature and Stocking Density on Food Consumption and Growth of Grass Carp Ctenopharyngodon idella, Val. J. Fish Biol. 1979, 15, 337–342. [Google Scholar] [CrossRef]
- Cai, Z.; Curtis, L.R. Effects of Diet and Temperature on Food Consumption, Growth Rate and Tissue Fatty-Acid Composition of Triploid Grass Carp. Aquaculture 1990, 88, 313–327. [Google Scholar] [CrossRef]
- Osborne, J.A.; Riddle, R.D. Feeding and Growth Rates for Triploid Grass Carp as Influenced by Size and Water Temperature. J. Freshw. Ecol. 1999, 14, 41–45. [Google Scholar] [CrossRef]
- Sanders, L.; Hoover, J.; Killgore, K. Triploid Grass Carp as a Biological Control of Aquatic Vegetation. US Army Engineers Waterways Experiment Station, Aquatic Plant Control Research Program A-91-2, Vicksburg, Mississippi. 1991. Available online: https://www.researchgate.net/publication/334045700_Aquatic_Plant_Control_Research_Program_Triploid_Grass_Carp_as_a_Biological_Control_of_Aquatic_Vegetation (accessed on 30 October 2023).
- Kristan, J.; Blecha, M.; Policar, T. Survival and Growth Rates of Juvenile Grass Carp Ctenopharyngodon idella Overwintered in Ponds and Recirculating Aquaculture Systems Including a Comparison of Production Economics. Turk. J. Fish. Aquat. Sci. 2018, 19, 261–266. [Google Scholar] [CrossRef]
- Stevenson, J.H. Observations on Grass Carp in Arkansas. Progress. Fish-Cult. 1965, 27, 203–206. [Google Scholar] [CrossRef]
- Fredricks, K.T.; Hubert, T.D.; Amberg, J.J.; Cupp, A.R.; Dawson, V.K. Chemical Controls for an Integrated Pest Management Program. N. Am. J. Fish. Manag. 2021, 41, 289–300. [Google Scholar] [CrossRef]
- Kolar, C.S.; Courtenay, W.R., Jr.; Nico, L.G.; Hubert, W. Managing Undesired and Invading Fishes. In Inland Fisheries Management in North America, 3rd ed.; American Fisheries Society: Bethesda, MD, USA, 2010; pp. 213–259. [Google Scholar] [CrossRef]
- Chadderton, L.; Kelleher, S.; Brow, A.; Shaw, T.; Studholme, B.; Barrier, R. Testing the Efficacy of Rotenone as a Piscicide for New Zealand Pest Fish Species. Proceedings of Managing Invasive Freshwater Fish in New Zealand: A Workshop Hosted by Department of Conservation, Hamilton, New Zealand, 10–12 May 2001; 2001; pp. 10–12. Available online: http://www.doc.govt.nz/documents/science-and-technical/pf11chadderton2.pdf (accessed on 8 November 2023).
- Oregon State University. Pesticide Information Profiles: Rotenone; Extension Toxicology Network; Oregon State University: Corvallis, OR, USA, 1996. [Google Scholar]
- Britton, J.; Gozlan, R.E.; Copp, G.H. Managing Non-Native Fish in the Environment. Fish Fish. 2011, 12, 256–274. [Google Scholar] [CrossRef]
- Marking, L.L.; Bills, T.D. Toxicity of Rotenone to Fish in Standardized Laboratory Tests; US Fish and Wildlife Service: Washington, DC, USA, 1976. Available online: https://pubs.usgs.gov/ifc/072/report.pdf (accessed on 25 October 2023).
- Fajt, J.R.; Grizzle, J.M. Oral Toxicity of Rotenone for Common Carp. Trans. Am. Fish. Soc. 1993, 122, 302–304. [Google Scholar] [CrossRef]
- Dalu, T.; Wasserman, R.J.; Jordaan, M.; Froneman, W.P.; Weyl, O.L. An Assessment of the Effect of Rotenone on Selected Non-Target Aquatic Fauna. PLoS ONE 2015, 10, e0142140. [Google Scholar] [CrossRef] [PubMed]
- Illinois Natural History Survey. An Evaluation of Fish Toxicants. In Chemicals Used to Control Fish and Aquatic Plants in Illinois; Illinois Institute for Environmental Quality: Chicago, IL, USA, 1975; pp. 1–26. Available online: https://inhs.illinois.edu/ (accessed on 30 October 2023).
- Vinson, M. Aquatic Invertebrate Assemblages of the Virgin River in the Vicinity of the Webb Hill Barrier near St. George, Utah; Washington County Water Conservancy District: St. George, Utah, USA, 2003. [Google Scholar]
- Wydoski, R.; Wiley, R. Management of Undesirable Fish Species. In Inland fisheries management in North America, 2nd ed.; American Fisheries Society: Bethesda, MD, USA, 1999; pp. 403–430. [Google Scholar]
- Finlayson, B.J.; Schnick, R.A.; Cailteux, R.L.; DeMong, L.; Horton, W.D.; McClay, W.; Thompson, C.W. Assessment of Antimycin A Use in Fisheries and Its Potential for Reregistration. Fisheries 2002, 27, 10–18. [Google Scholar] [CrossRef]
- Moore, S.; Kulp, M.; Rosenlund, B.; Brooks, J.; Propst, D. A Field Manual for the Use of Antimycin A for Restoration of Native Fish Populations.; US National Park Service: Fort Collins, CO, USA, 2008. [Google Scholar]
- Baudoin, B.A.; Brown, B.L.; Calfee, R.D.; Jenkins, J.A. Amino Acid Variation at the Mitochondrial Binding Site of Antimycin A Is Proposed to Reflect Sensitivity and Toxicity Differences among Fish Species. Fishes 2023, 8, 381. [Google Scholar] [CrossRef]
- Lennon, R.E.; Berger, B.L.; Leslie, L. A Resume on Field Applications of Antimycin A to Control Fish; Investigations in Fish Control; U.S. Department of the Interior: Washington, D.C., USA, 1970. [Google Scholar]
- Wittmann, V.J.; Kalk, M. Über Den Energiestoffwechsel Der Karpfen-Erythrocyten (Cyprinus Carpio). J. Appl. Ichthyol. 1992, 8, 271–277. [Google Scholar] [CrossRef]
- Poole, J.R.; Sauey, B.W.; Amberg, J.J.; Bajer, P.G. Assessing the Efficacy of Corn-Based Bait Containing Antimycin-a to Control Common Carp Populations Using Laboratory and Pond Experiments. Biol. Invasions 2018, 20, 1809–1820. [Google Scholar] [CrossRef]
- Kroboth, P.; Chapman, D.; Steevens, J.; Byrd, C. Ingested Toxicity of Antimycin A to Grass Carp Ctenopharyngodon idella and Black Carp Mylopharyngodon piceus in Two Carriers. Manag. Biol. Invasions 2022, 13, 737–749. [Google Scholar] [CrossRef]
- Berger, B.L.; Lennon, R.E.; Hogan, J.W. Laboratory Studies on Antimycin A as a Fish Toxicant; U.S. Department of the Interior: Washington, D.C., USA, 1969. [Google Scholar]
- Lee, T.H.; Derse, P.H.; Morton, S.D. Effects of Physical and Chemical Conditions on the Detoxification of Antimycin. Trans. Am. Fish. Soc. 1971, 100, 13–17. [Google Scholar] [CrossRef]
- Marking, L.L.; Dawson, V.K. The Half-Life of Biological Activity of Antimycin Determined by Fish Bioassay. Trans. Am. Fish. Soc. 1972, 101, 100–105. [Google Scholar] [CrossRef]
- Marking, L.L. Methods of Estimating the Half-Life of Biological Activity of Toxic Chemicals in Water; US Fish and Wildlife Service: La Crosse, WI, USA, 1972. [Google Scholar]
- Fajt, J.R. Method of Fish Management by Poison Fish Bait Method of Making the Bait, and Formulation of Bait. U.S. Patent 5,674,518, 7 October 1997. Available online: https://patentimages.storage.googleapis.com/42/a7/1d/4130fd3abdfe64/US5674518.pdf (accessed on 30 October 2023).
- Rytwinski, T.; Taylor, J.J.; Donaldson, L.A.; Britton, J.R.; Browne, D.R.; Gresswell, R.E.; Lintermans, M.; Prior, K.A.; Pellatt, M.G.; Vis, C.; et al. The Effectiveness of Non-Native Fish Removal Techniques in Freshwater Ecosystems: A Systematic Review. Environ. Rev. 2019, 27, 71–94. [Google Scholar] [CrossRef]
- Dawson, V.K.; Bills, T.D.; Boogaard, M.A. Avoidance Behavior of Ruffe Exposed to Selected Formulations of Piscicides. J. Gt. Lakes Res. 1998, 24, 343–350. [Google Scholar] [CrossRef]
- Rach, J.J.; Luoma, J.A.; Marking, L.L. Development of an Antimycin-Impregnated Bait for Controlling Common Carp. N. Am. J. Fish. Manag. 1994, 14, 442–446. [Google Scholar] [CrossRef]
- Gilderhus, P.A. Exposure Times Necessary for Antimycin and Rotenone to Eliminate Certain Freshwater Fish. J. Fish. Board Can. 1972, 29, 199–202. [Google Scholar] [CrossRef]
- Bettoli, P.W.; Maceina, M.J. Sampling with Toxicants. In Fisheries techniques, 2nd ed.; American Fisheries Society: Bethesda, MD, USA, 1996; pp. 303–333. [Google Scholar]
- Chapman, D.; Fairchild, J.; Carollo, B.; Deters, J.; Feltz, K.; Witte, C. An Examination of the Sensitivity of Bighead Carp and Silver Carp to Antimycin A and Rotenone; US Geological Survey: Columbia, MO, USA, 2003. [Google Scholar]
- Amberg, J.J.; Schreier, T.M.; Gaikowski, M.P. Molecular Responses Differ between Sensitive Silver Carp and Tolerant Bighead Carp and Bigmouth Buffalo Exposed to Rotenone. Fish Physiol. Biochem. 2012, 38, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Buck, E.; Upton, H.; Stern, C.; Nicols, J.E. Asian Carp and the Great Lakes Region; University of Nebraska Lincoln: Lincoln, NE, USA, 2010. [Google Scholar]
- Marking, L.L.; Bills, T.D. Sensitivity of Four Species of Carp to Selected Fish Toxicants. N. Am. J. Fish. Manag. 1981, 1, 51–54. [Google Scholar] [CrossRef]
- Marking, L.L. Sensitivity of the White Amur to Fish Toxicants. Progress. Fish-Cult. 1972, 34, 26. [Google Scholar] [CrossRef]
- Henderson, S. Tolerance of the Silver and Bighead Carp to Often Used Pond Treatment Chemicals; Arkansas Game and Fish Commission: Little Rock, AR, USA, 1975; p. 5. Available online: https://www.agfc.com/en/ (accessed on 30 October 2023).
- Gilderhus, P.A. Effects of an Aquatic Plant and Suspended Clay on the Activity of Fish Toxicants. N. Am. J. Fish. Manag. 1982, 2, 301–306. [Google Scholar] [CrossRef]
- Rach, J.J.; Boogaard, M.; Kolar, C. Toxicity of Rotenone and Antimycin to Silver Carp and Bighead Carp. N. Am. J. Fish. Manag. 2009, 29, 388–395. [Google Scholar] [CrossRef]
- Brown, P.J.; Johnson, H.; Zale, A.V. Effect of Rainbow Trout Size on Response to Rotenone and Antimycin. N. Am. J. Fish. Manag. 2011, 31, 1146–1152. [Google Scholar] [CrossRef]
- Cumming, K.B.; Burress, R.M.; Gilderhus, P.A. Controlling Grass Carp (Ctenopharyngodon idella) with Antimycin, Rotenone, and Thanite and by Electrofishing. Progress. Fish-Cult. 1975, 37, 81–84. [Google Scholar] [CrossRef]
- Schneider, J.C.; Lockwood, R.N. Use of Walleye Stocking, Antimycin Treatments, and Catch-and-Release Angling Regulations to Increase Growth and Length of Stunted Bluegill Populations in Michigan Lakes. N. Am. J. Fish. Manag. 2002, 22, 1041–1052. [Google Scholar] [CrossRef]
- Tiffan, K.E.; Bergersen, E.P. Performance of Antimycin in High-Gradient Streams. N. Am. J. Fish. Manag. 1996, 16, 465–468. [Google Scholar] [CrossRef]
- Schultz, D.P.; Harman, P.D. Antimycin: Uptake, Distribution, and Elimination in Brown Bullheads (Ictalurus nebulosus). J. Fish. Board Can. 1976, 33, 1121–1129. [Google Scholar] [CrossRef]
- Jacobi, G.Z.; Degan, D.J. Aquatic Macroinvertebrates in a Small Wisconsin Trout Stream before, during, and Two Years after Treatment with the Fish Toxicant Antimycin; US Fish and Wildlife Service: La Crosse, WI, USA, 1977. Available online: https://pubs.usgs.gov/publication/2001126 (accessed on 24 October 2023).
- Turner, L.; Jacobson, S.; Shoemaker, L. Risk Assessment for Piscicidal Formulations of Antimycin; Services International for the Washington Department of Fish Wildlife: Lakewood, WA, USA, 2007; 74p. [Google Scholar]
- U.S. Environmental Protection Agency (USEPA). U.S. Environmental Fate and Ecological Risk Assessment for the Reregistration of Antimycin A; Environtmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances: Washington DC, USA, 2006; pp. 1–118. Available online: https://corpora.tika.apache.org/base/docs/govdocs1/543/543398.pdf (accessed on 30 October 2023).
- U.S. Environmental Protection Agency (USEPA). Alternatives Analysis for Antimycin A and Rotenone in Lakes and Streams (DP#310753 and 307400); Docket # EPA-HQ-OPP-2006-1002-0006; U.S. Environmental Protection Agency (USEPA): Washington DC, USA, 2006; pp. 1–9. [Google Scholar]
- Mayer, F.L.; Ellersieck, M.R. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals; US Department of the Interior, Fish and Wildlife Service: Washington, D.C, 1986; 86p, Available online: https://books.google.com/books?hl=en&lr=&id=9O4UAQAAIAAJ&oi=fnd&pg=PA33&dq=Manual+of+Acute+Toxicity:+Interpretation+and+Data+Base+for+410+Chemicals+and+66+Species+of+Freshwater+Animals&ots=Du1iDBTEct&sig=vX1BwKYiFcN3oJox8qEM86pjuA8#v=onepage&q=Manual%20of%20Acute%20Toxicity%3A%20Interpretation%20and%20Data%20Base%20for%20410%20Chemicals%20and%2066%20Species%20of%20Freshwater%20Animals&f=false (accessed on 30 October 2023).
- Sanger, A.C.; Koehn, J.D. Use of Chemicals for Carp Control. In Controlling Carp: Exploring the Options for Australia; Roberts, J., Tilzey, R., Eds.; CSIRO and Murray–Darling Basin Commission: Albury, Australia, 1997; pp. 37–57. ISBN 0 643 05883 4. [Google Scholar]
- Boogaard, M.A.; Bills, T.D.; Selgeby, J.H.; Johnson, D.A. Evaluation of Piscicides for Control of Ruffe. N. Am. J. Fish. Manag. 1996, 16, 600–607. [Google Scholar] [CrossRef]
- Marking, L.; Bills, T.; Rach, J.; Grabowski, S. Chemical Control of Fish and Fish Eggs in the Garrison Diversion Unit, North Dakota. N. Am. J. Fish. Manag. 1983, 3, 410–418. [Google Scholar] [CrossRef]
- Houf, L.J.; Campbell, R.S. Effects of Antimycin A and Retenone on Macrobenthos in Ponds; Investigations in Fish Control; US Fish and Wildlife Service: Washington, DC, USA, 1977. Available online: https://pubs.usgs.gov/ifc/080/report.pdf (accessed on 25 October 2023).
- Chandler, J.H., Jr.; Marking, L.L. Toxicity of Fishery Chemicals to the Asiatic Clam, Corbicula Manilensis. Progress. Fish-Cult. 1979, 41, 148–151. [Google Scholar] [CrossRef]
- Kroon, F.J.; Gehrke, P.C.; Kurwie, T. Palatability of Rotenone and Antimycin Baits for Carp Control. Ecol. Manag. Restor. 2005, 6, 228–229. [Google Scholar] [CrossRef]
- Prentiss Incorporated Prentox® PrenfishTM Grass Carp Management Bait. In Prentox EPA; 2001. Available online: https://www3.epa.gov/pesticides/chem_search/ppls/000655-00795-20010420.pdf (accessed on 30 October 2023).
- Rowe, D.K. Aquatic Weed Control. Prentox®: A Method for Removal of Grass Carp from Lakes. Water Atmosphere 1999, 7, 15–17. [Google Scholar]
- Gehrke, P.C. Preliminary Assessment of Oral Rotenone Baits for Carp Control in New South Wales. In Proceedings of the Managing Invasive Freshwater Fish in New Zealand: A Workshop Hosted by Department of Conservation, Hamilton, New Zealand, 10–12 May 2001; pp. 143–154. [Google Scholar]
- Mallison, C.T.; Hestand, R.S., III; Thompson, B.Z. Removal of Triploid Grass Carp Using Fish Management Bait (FMB). In Proceedings of the Grass Carp Symposium; Decell, J.L., Ed.; U.S. Army Engineers Waterways Experiment Station: Vicksburg, MI, USA, 1994; pp. 65–71. 90p, Available online: https://books.google.com/books?hl=en&lr=&id=GcYQAQAAMAAJ&oi=fnd&pg=PA65&dq=Removal+of+Triploid+Grass+Carp+Using+Fish+Management+Bait+(FMB)&ots=hg_zdKlRt3&sig=fDdW90pvlpdX_IN2QYYId3BtAtw#v=onepage&q=Removal%20of%20Triploid%20Grass%20Carp%20Using%20Fish%20Management%20Bait%20(FMB)&f=false (accessed on 30 October 2023).
- Mallison, C.T.; Hestand, R.S.; Thompson, B.Z. Removal of Triploid Grass Carp with an Oral Rotenone Bait in Two Central Florida Lakes. Lake Reserv. Manag. 1995, 11, 337–342. [Google Scholar] [CrossRef]
- Bonneau, J.L.; Scarnecchia, D.L. Tests of a Rotenone-Impregnated Bait for Controlling Common Carp. J. Iowa Acad. Sci. JIAS 2001, 108, 6–7. [Google Scholar]
- Mangan, B.P. A Field Evaluation of the Efficacy of Rotenone-Laced Fish Food for Removing Fish from a Small Artificial Impoundment. J. Freshw. Ecol. 2003, 18, 299–303. [Google Scholar] [CrossRef]
- Thomas, R.M.; Miranda, L.; Kirk, J. Feasibility of an Implantable Capsule for Limiting Lifespan of Grass Carp. Biologia (Bratisl.) 2006, 457, 177–185. [Google Scholar]
- Evans, J.A.; Miranda, L.E.; Kirk, J.P. “Implant and Forget” Mechanism to Interact with Biota, in Particular Fauna That May Outgrow Available Habitat. U.S. Patent No. 2006/0191489 A1, 31 August 2006. [Google Scholar]
- Xu, S.; Li, J.; Zou, Y.; Liu, L.; Gong, C.; Cao, G.; Xue, R.; Chen, H. Development and Efficacy of a Grass Carp Reovirus (GCRV) Outer Capsid Protein VP7 Subunit Vaccine. J. Hunan Agric. Univ. 2011, 37, 659–664. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, G.; Zhang, Y.; Yuan, J.; An, L. Generation of Biotechnology-Derived Flavobacterium columnare Ghosts by PhiX174 Gene E-Mediated Inactivation and the Potential as Vaccine Candidates against Infection in Grass Carp. J. Biomed. Biotechnol. 2012, 2012, 760730. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Liu, L.; Cao, G.; Xu, S.; Li, J.; Zou, Y.; Chen, H.; Gong, C. Oral Vaccination of BacFish-Vp6 against Grass Carp Reovirus Evoking Antibody Response in Grass Carp. Fish Shellfish Immunol. 2013, 34, 348–355. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, Q.; Wang, Y.; Zhao, C.; Li, Y.; Shi, C.; Wu, S.; Song, X.; Huang, Q.; Li, S. Immunogenicity of a Cell Culture-Derived Inactivated Vaccine against a Common Virulent Isolate of Grass Carp Reovirus. Fish Shellfish Immunol. 2016, 54, 473–480. [Google Scholar] [CrossRef]
- Gao, Y.; Pei, C.; Sun, X.; Zhang, C.; Li, L.; Kong, X. Novel Subunit Vaccine Based on Grass Carp Reovirus VP35 Protein Provides Protective Immunity against Grass Carp Hemorrhagic Disease. Fish Shellfish Immunol. 2018, 75, 91–98. [Google Scholar] [CrossRef]
- Pei, C.; Gao, Y.; Sun, X.; Li, L.; Kong, X. A Developed Subunit Vaccine Based on Fiber Protein VP56 of Grass Carp Reovirus Providing Immune Protection against Grass Carp Hemorrhagic Disease. Fish Shellfish Immunol. 2019, 90, 12–19. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, M.; Chen, H.; Wei, Y.; Ning, D. Germination-Arrest Bacillus Subtilis Spores as an Oral Delivery Vehicle of Grass Carp Reovirus (GCRV) Vp7 Antigen Augment Protective Immunity in Grass Carp (Ctenopharyngodon idella). Genes 2020, 11, 1351. [Google Scholar] [CrossRef]
- Qiu, D.-K.; Zhao, Z.; Ma, R.; Guo, Z.-R.; Jia, Y.-J.; Zhang, C.; Wang, G.-X.; Zhu, B. Antigen Epitope Screening of Grass Carp Reovirus and Its Protectively Immunity Assessment for Grass Carp. Aquaculture 2020, 515, 734550. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, G.; Ma, R.; Qi, X.; Wang, G.; Zhu, B.; Ling, F. The Immunoprotective Effect of Whole-Cell Lysed Inactivated Vaccine with SWCNT as a Carrier against Aeromonas hydrophila Infection in Grass Carp. Fish Shellfish Immunol. 2020, 97, 336–343. [Google Scholar] [CrossRef]
- Qiu, D.-K.; Jia, Y.-J.; Gong, Y.-M.; Zheng, Y.-Y.; Wang, G.-X.; Zhu, B. Optimizing the Immunization Procedure of Single-Walled Carbon Nanotubes Based Vaccine against Grass Carp Reovirus for Grass Carp. Aquaculture 2021, 533, 736152. [Google Scholar] [CrossRef]
- Gong, Y.-M.; Zhang, C.; Li, Y.; Chen, G.; Wang, G.-X.; Zhu, B. Optimization of Immunization Procedure for SWCNTs-Based Subunit Vaccine with Mannose Modification against Spring Viraemia of Carp Virus in Common Carp. J. Fish Dis. 2021, 44, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Bian, Q.; Zeng, W.; Ren, P.; Sun, H.; Lin, Z.; Tang, Z.; Zhou, X.; Wang, Q.; Wang, Y.; et al. Oral Delivery of Bacillus subtilis Spores Expressing Grass Carp Reovirus VP4 Protein Produces Protection against Grass Carp Reovirus Infection. Fish Shellfish Immunol. 2019, 84, 768–780. [Google Scholar] [CrossRef]
- Liu, L.; Gong, Y.-X.; Liu, G.-L.; Zhu, B.; Wang, G.-X. Protective Immunity of Grass Carp Immunized with DNA Vaccine against Aeromonas hydrophila by Using Carbon Nanotubes as a Carrier Molecule. Fish Shellfish Immunol. 2016, 55, 516–522. [Google Scholar] [CrossRef]
- Jensen, N.R.; Amberg, J.J.; Luoma, J.A.; Walleser, L.R.; Gaikowski, M.P. Assessing Consumption of Bioactive Micro-Particles by Filter-Feeding Asian Carp. J Aquac Res Dev. 2012, 3, 2. [Google Scholar] [CrossRef]
- Dong, S.; Li, D. Comparative Studies on the Feeding Selectivity of Silver Carp Hypophthalmichthys molitrix and Bighead Carp Aristichthys nobilis. J. Fish Biol. 1994, 44, 621–626. [Google Scholar] [CrossRef]
- Hasan, M.; Macintosh, D. Optimum Food Particle Size in Relation to Body Size of Common Carp, Cyprinus carpio L., Fry. Aquac. Res. 1992, 23, 315–325. [Google Scholar] [CrossRef]
- Roch, S.; Ros, A.F.; Friedrich, C.; Brinker, A. Microplastic Evacuation in Fish Is Particle Size-Dependent. Freshw. Biol. 2021, 66, 926–935. [Google Scholar] [CrossRef]
- McCarter, N.H.; James, M.R. A Method to Observe Particle Ingestion by Fish Larvae. Trans. Am. Fish. Soc. 1993, 122, 642–644. [Google Scholar] [CrossRef]
- Petrache, S.N.; Stanca, L.; Serban, A.I.; Sima, C.; Staicu, A.C.; Munteanu, M.C.; Costache, M.; Burlacu, R.; Zarnescu, O.; Dinischiotu, A. Structural and Oxidative Changes in the Kidney of Crucian Carp Induced by Silicon-Based Quantum Dots. Int. J. Mol. Sci. 2012, 13, 10193–10211. [Google Scholar] [CrossRef]
- Ahmed, M.; Ahmed, K.; Mehmood, R.; Ali, H.; Khan, W. Low Dose Effects of Cadmium and Lead on Growth in Fingerlings of a Vegetarian Fish, Grass Carp (Ctenopharyngodon idella). J. Anim. Plant Sci. 2012, 22, 902–907. [Google Scholar]
- Jiang, L.F.; Huang, M.G. Heavy metals effect on Grass Carp and Silver Carp embryonic developments. J. Env.-Ment. Sci. 1979, 1, 6–11. [Google Scholar]
- Mekkawy, I.A.; Lashein, F. The Effect of Lead and Cadmium on LDH and G-6-PDH Isoenzyme Patterns Exhibited during the Early Embryonic Development of the Teleost Fish, Ctenopharyngodon idellus with Emphasis on the Corresponding Morphological Variations. In Proceedings of the 26th annual fish larva conference, Bergen, Norway, 22–26 July 2003; pp. 22–26. [Google Scholar]
- Kaoud, H.A.; Elgheit, S.; Eldahshan, A.R.; Saeid, S. The Bioremediation Potential of Spirulina platensis and Lemna gibba L in Grass Carp, Ctenopharyngodon idella Exposed to Cadmium Toxicity. J Vet Sci 2013, 114, 218–226. [Google Scholar]
- Santschi, P. Factors Controlling the Biogeochemical Cycles of Trace Elements in Fresh and Coastal Marine Waters as Revealed by Artificial Radioisotopes. Limnol. Oceanogr. 1988, 33, 848–866. [Google Scholar] [CrossRef]
- Liu, L.; Luo, Y.; Hou, H.; Pan, J.; Zhang, W. Partial Replacement of Monocalcium Phosphate with Neutral Phytase in Diets for Grass Carp, Ctenopharyngodon idellus. J. Appl. Ichthyol. 2013, 29, 520–525. [Google Scholar] [CrossRef]
- Huang, X.; Xiong, G.; Feng, Y.; Fan, W.; Yang, S.; Duan, J.; Duan, Y.; Wang, K.; Ou, Y.; Rehman, T.; et al. Protective Effects of Metallothionein and Vitamin E in the Trunk Kidney and Blood of Cadmium Poisoned Ctenopharyngodon idellus. Fish Physiol. Biochem. 2020, 46, 1053–1061. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, R.; Lin, Y. Allograft Inflammatory Factor-1 in Grass Carp (Ctenopharynogodon idella): Expression and Response to Cadmium Exposure. Fish Shellfish Immunol. 2015, 47, 444–449. [Google Scholar] [CrossRef]
- Mu, W.-N.; Li, Z.-H.; Zhong, L.-Q.; Wu, Y.-H. Effect of Tributyltin, Cadmium, and Their Combination on Physiological Responses in Juvenile Grass Carp. J. Aquat. Anim. Health 2016, 28, 181–186. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, Z.; Yuan, L.; Hu, M.; Song, W.; Zhang, Z.; Zhang, A. Toxicity and Accumulation of Three Heavy Metals in Larval Carps. J. Nanchang Univ. Nat. Sci. 2005, 3, 292–295. [Google Scholar]
- Zhang, T.; Zhang, Y.; Li, D.; Xiao, T.; Li, J. Exposure of Silver Carp (Hypophthalmichthys molitrix) to Environmentally Relevant Levels of Cadmium: Hematology, Muscle Physiology, and Implications for Stock Enhancement in the Xiangjiang River (Hunan, China). Sci. China Life Sci. 2013, 56, 66–72. [Google Scholar] [CrossRef]
- Yu, Y.; Tong, B.; Liu, Y.; Liu, H.; Yu, H. Bioaccumulation, Histopathological and Apoptotic Effects of Waterborne Cadmium in the Intestine of Crucian Carp Carassius auratus gibelio. Aquac. Rep. 2021, 20, 100669. [Google Scholar] [CrossRef]
- Szczerbik, P.; Mikolajczyk, T.; Sokolowska-Mikolajczyk, M.; Socha, M.; Chyb, J.; Epler, P. The Influence of Cadmium on Prussian Carp Oocyte Maturation, Development of Eggs and Hatching. Czech J. Anim. Sci. 2008, 53, 36. [Google Scholar] [CrossRef]
- Sarnowski, P. The Effects of Metals on Swimbladder Inflation of Common Carp (Cyprinus carpio l.) Larvae. Electron. J. Pol. Agric. Univ. Fish. 2004, Volume 7. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f7f489aa862039a6d7cb0aa031ccdc80c51d3dda (accessed on 24 October 2023).
- Jezierska, B.; Lugowska, K.; Witeska, M. The Effects of Heavy Metals on Embryonic Development of Fish (a Review). Fish Physiol. Biochem. 2009, 35, 625–640. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Khisroon, M.; Shah, S.S.A. Metals Distribution, Histopathological Alterations, and Health Risk Assessment in Different Tissues of Fish (Ctenopharyngodon idella). Biol. Trace Elem. Res. 2020, 199, 2730–2752. [Google Scholar] [CrossRef]
- Wang, H.; Liang, Y.; Li, S.; Chang, J. Acute Toxicity, Respiratory Reaction, and Sensitivity of Three Cyprinid Fish Species Caused by Exposure to Four Heavy Metals. PloS One 2013, 8, e65282. [Google Scholar] [CrossRef]
- Zhu, Q.-L.; Luo, Z.; Zhuo, M.-Q.; Tan, X.-Y.; Zheng, J.-L.; Chen, Q.-L.; Hu, W. In Vitro Effects of Selenium on Copper-Induced Changes in Lipid Metabolism of Grass Carp (Ctenopharyngodon idellus) Hepatocytes. Arch. Environ. Contam. Toxicol. 2014, 67, 252–260. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, R.; Nin, Y. Acute Toxicity of Copper to the Grass Carp, Silver Carp and Loach under Different Water Hardness. J. Jinan Univ. 1992, 13, 62–66. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Hogstrand, C.; Xu, Y.-C.; Zhao, T.; Zheng, H.; Luo, Z. Environmentally Relevant Concentrations of Oxytetracycline and Copper Increased Liver Lipid Deposition through Inducing Oxidative Stress and Mitochondria Dysfunction in Grass Carp Ctenopharyngodon Idella. Environ. Pollut. 2021, 283, 117079. [Google Scholar] [CrossRef]
- El-Fiky, N. Toxic and Teratogenic Effects of Copper Sulphate on the Developing Embryos and Larvae of Silver Carp, Hypophthalmichthys molitrix Val. at Two Temperatures. Egypt. J. Aquat. Biol. Fish. 2001, 5, 227–261. [Google Scholar] [CrossRef]
- Jezierska, B.; Slominska, I. The Effect of Copper on Common Carp [Cyprinus carpio L.] during Embryonic and Postembryonic Development. Pol. Arch. Hydrobiol. 1997, 44, 261–272. [Google Scholar]
- Lugowska, K.; Jezierska, B. Effect of Copper and Lead on Common Carp Embryos and Larvae at Two Temperatures. Folia Univ. Agric. Stetin. Piscaria 2000, 26, 29–38. [Google Scholar]
- Jezierska, B.; Lugowska, K.; Witeska, M.; Sarnowski, P. Malformations of Newly Hatched Common Carp Larvae. Electron. J. Pol. Agric. Univ. 2000, 3, 1–10. [Google Scholar]
- Eyckmans, M.; Celis, N.; Horemans, N.; Blust, R.; De Boeck, G. Exposure to Waterborne Copper Reveals Differences in Oxidative Stress Response in Three Freshwater Fish Species. Aquat. Toxicol. 2011, 103, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Eyckmans, M.; Tudorache, C.; Darras, V.M.; Blust, R.; De Boeck, G. Hormonal and Ion Regulatory Response in Three Freshwater Fish Species Following Waterborne Copper Exposure. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2010, 152, 270–278. [Google Scholar] [CrossRef]
- Johari, S.A.; Sarkheil, M.; Asghari, S.; Haghighat, F.; Dekani, L.; Keyvanshokooh, S. Comparative Toxicity of Nanoparticulate and Ionic Copper Following Dietary Exposure to Common Carp (Cyprinus carpio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 229, 108680. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Khan, A.; Ali, R.; Marimuthu, K.; Uddin, M.N.; Rizwan, M.; Rahman, K.U.; Alam, M.; Adnan, M.; Jawad, S.M.; et al. Monitoring Bioaccumulation (in Gills and Muscle Tissues), Hematology, and Genotoxic Alteration in Ctenopharyngodon idella Exposed to Selected Heavy Metals. BioMed Res. Int. 2020, 2020, 6185231. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, P.; Shang, X.; Lu, Y.; Li, Y. Exposure of Lead on Intestinal Structural Integrity and the Diversity of Gut Microbiota of Common Carp. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 239, 108877. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Y.; Ma, M.; Wang, L.; Hu, C. Up-Regulation of Grass Carp GRP78 Gene Expression under Heat Shock and Poly I: C Stress. Chin. J. Appl. Environ. Biol. 2009, 6, 814–818. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, Q.; Mao, H.; Liu, Y.; Hu, C. GRP78 from Grass Carp (Ctenopharyngodon idella) Provides Cytoplasm Protection against Thermal and Pb2+ Stress. Fish Shellfish Immunol. 2013, 34, 617–622. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Qiu, M.; Wang, A.; Ye, J.; Fu, S. Garlic (Allium sativum) and Fu-Ling (Poria cocos) Mitigate Lead Toxicity by Improving Antioxidant Defense Mechanisms and Chelating Ability in the Liver of Grass Carp (Ctenopharyngodon idella). Ecotoxicology 2021, 30, 885–898. [Google Scholar] [CrossRef] [PubMed]
- Ling, Q.; Hong, F. Antioxidative Role of Cerium against the Toxicity of Lead in the Liver of Silver Crucian Carp. Fish Physiol. Biochem. 2010, 36, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Athikeshvan, S.; Vincent, S.; Velmurugan, B. Genotoxic Effect of Nickel Chloride and Zinc Sulphate on Fish Hypophthalmichthys molitrix. J. Indian Fish. Assoc. 2005, 32, 111–117. [Google Scholar]
- Blaylock, B.; Frank, M. A Comparison of the Toxicity of Nickel to the Developing Eggs and Larvae of Carp (Cyprinus carpio). Bull. Environ. Contam. Toxicol. 1979, 21, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Naveed, M.; Afzal, M.; Ashraf, S.; Ahmad, S.R.; Rehman, K.; Zahir, Z.A.; Núñez-Delgado, A. Evaluation of Toxicity on Ctenopharyngodon idella Due to Tannery Effluent Remediated by Constructed Wetland Technology. Processes 2020, 8, 612. [Google Scholar] [CrossRef]
- Haghighat, F.; Kim, Y.; Sourinejad, I.; Yu, I.J.; Johari, S.A. Titanium Dioxide Nanoparticles Affect the Toxicity of Silver Nanoparticles in Common Carp (Cyprinus carpio). Chemosphere 2021, 262, 127805. [Google Scholar] [CrossRef]
- Fernández-Dávila, M.L.; Razo-Estrada, A.C.; García-Medina, S.; Gómez-Oliván, L.M.; Piñón-López, M.J.; Ibarra, R.G.; Galar-Martínez, M. Aluminum-Induced Oxidative Stress and Neurotoxicity in Grass Carp (Cyprinidae—Ctenopharingodon idella). Ecotoxicol. Environ. Saf. 2012, 76, 87–92. [Google Scholar] [CrossRef]
- Lee, B.C.; Kim, K.T.; Cho, J.G.; Lee, J.W.; Ryu, T.K.; Yoon, J.H.; Lee, S.H.; Duong, C.N.; Eom, I.C.; Kim, P.J.; et al. Oxidative Stress in Juvenile Common Carp (Cyprinus carpio) Exposed to TiO 2 Nanoparticles. Mol. Cell. Toxicol. 2012, 8, 357–366. [Google Scholar] [CrossRef]
- Kaloyianni, M.; Dimitriadi, A.; Ovezik, M.; Stamkopoulou, D.; Feidantsis, K.; Kastrinaki, G.; Gallios, G.; Tsiaoussis, I.; Koumoundouros, G.; Bobori, D. Magnetite Nanoparticles Effects on Adverse Responses of Aquatic and Terrestrial Animal Models. J. Hazard. Mater. 2020, 383, 121204. [Google Scholar] [CrossRef]
- Pillet, M.; Castaldo, G.; Rodgers, E.; Poleksić, V.; Rašković, B.; Bervoets, L.; Blust, R.; De Boeck, G. Physiological Performance of Common Carp (Cyprinus carpio, L., 1758) Exposed to a Sublethal Copper/Zinc/Cadmium Mixture. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 242, 108954. [Google Scholar] [CrossRef]
- Jiang, W.-D.; Qu, B.; Feng, L.; Jiang, J.; Kuang, S.-Y.; Wu, P.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Zhou, X.-Q.; et al. Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella). PLoS ONE 2016, 11, e0157001. [Google Scholar] [CrossRef] [PubMed]
- Wen, R.; Zheng, Q.; Fang, Z.; Zhen, H. Acute Toxicity of Mercury and Lead to Grass Carps and Safety Assessment. J. Anhui Agric. Sci. 2007, 35, 4863. [Google Scholar]
- Li, Z.-H.; Li, P.; Wu, Y. Effects of Temperature Fluctuation on Endocrine Disturbance of Grass Carp Ctenopharyngodon idella under Mercury Chloride Stress. Chemosphere 2021, 263, 128137. [Google Scholar] [CrossRef] [PubMed]
- Salah El-Deen, M.; Saleh, R.; El-Razik, A.; Abo-Hegab, E.S. Recorded Changes in Some Biochemical Indicators of Grasscarp Ctenopharyngodon idella Exposed to Mercury and Zinc. Egypt. J. Aquat. Biol. Fish. 2001, 5, 57–81. [Google Scholar] [CrossRef]
- Salah El-Deen, M.; Sharada, H.; Abu El-Ella, S. Some Metabolic Alterations in Grass Carp Ctenophatryngodon idella Reduced by Exposure to Cadmium. J. Egypt. Ger. Soc. Zool. 1996, 21, 441–458. [Google Scholar]
- Xiang, Q.-Q.; Yan, H.; Luo, X.-W.; Kang, Y.-H.; Hu, J.-M.; Chen, L.-Q. Integration of Transcriptomics and Metabolomics Reveals Damage and Recovery Mechanisms of Fish Gills in Response to Nanosilver Exposure. Aquat. Toxicol. 2021, 237, 105895. [Google Scholar] [CrossRef]
- Zeng, Z.-Z.; Jiang, W.-D.; Wu, P.; Liu, Y.; Zeng, Y.-Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q.; Feng, L. Dietary Aflatoxin B1 Decreases Growth Performance and Damages the Structural Integrity of Immune Organs in Juvenile Grass Carp (Ctenopharyngodon idella). Aquaculture 2019, 500, 1–17. [Google Scholar] [CrossRef]
- Rustom, I.Y. Aflatoxin in Food and Feed: Occurrence, Legislation and Inactivation by Physical Methods. Food Chem. 1997, 59, 57–67. [Google Scholar] [CrossRef]
- Anater, A.; Manyes, L.; Meca, G.; Ferrer, E.; Luciano, F.B.; Pimpao, C.T.; Font, G. Mycotoxins and Their Consequences in Aquaculture: A Review. Aquaculture 2016, 451, 1–10. [Google Scholar] [CrossRef]
- Huang, C.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Zeng, Y.-Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Deoxynivalenol Decreased Intestinal Immune Function Related to NF-κB and TOR Signalling in Juvenile Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2019, 84, 470–484. [Google Scholar] [CrossRef]
- Khan, H.; Khan, F.A.; Sadique, U.; Ahmad, S.; Hassan, Z.U. Genotoxic and Toxicopathological Effect of Aflatoxin B1 in Grass Carp (Ctenopharyngodon Idella). Kafkas Univ. Vet. Fak. Derg. 2019, 25, 841–848. [Google Scholar] [CrossRef]
- Huang, Y.; Han, D.; Xiao, X.; Zhu, X.; Yang, Y.; Jin, J.; Chen, Y.; Xie, S. Effect of Dietary Aflatoxin B1 on Growth, Fecundity and Tissue Accumulation in Gibel Carp during the Stage of Gonad Development. Aquaculture 2014, 428, 236–242. [Google Scholar] [CrossRef]
- Huang, C.; Wu, P.; Jiang, W.-D.; Liu, Y.; Zeng, Y.-Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhang, Y.-A.; Zhou, X.-Q.; et al. Deoxynivalenol Decreased the Growth Performance and Impaired Intestinal Physical Barrier in Juvenile Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2018, 80, 376–391. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Wang, Y.-L.; Zhou, X.-Q.; Jiang, W.-D.; Wu, P.; Liu, Y.; Zhang, L.; Mi, H.-F.; Jiang, J.; Kuang, S.-Y.; et al. Zearalenone Induces Immuno-Compromised Status via TOR/NF/κB Pathway and Aggravates the Spread of Aeromonas hydrophila to Grass Carp Gut (Ctenopharyngodon idella). Ecotoxicol. Environ. Saf. 2021, 225, 112786. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-L.; Zhou, X.-Q.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Wang, S.-W.; Kuang, S.-Y.; Tang, L.; Feng, L. Effects of Dietary Zearalenone on Oxidative Stress, Cell Apoptosis, and Tight Junction in the Intestine of Juvenile Grass Carp (Ctenopharyngodon idella). Toxins 2019, 11, 333. [Google Scholar] [CrossRef]
- Liu, X.; Wu, P.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q.; Feng, L. Effects of Dietary Ochratoxin a on Growth Performance and Intestinal Apical Junctional Complex of Juvenile Grass Carp (Ctenopharyngodon idella). Toxins 2020, 13, 11. [Google Scholar] [CrossRef]
- Smith, P.T. Cyanobacterial Toxins in Aquaculture. In Seafood and Freshwater Toxins; CRC Press: Boca Raton, FL, USA, 2008; pp. 805–824. ISBN 978-1-4665-0514-8. [Google Scholar]
- Ha, K.; Takamura, N.; Jang, M.-H. Microcystin Production by Microcystis aeruginosa Exposed to Phytoplanktivorous and Omnivorous Fish at Different Kairomone Concentrations. Bull. Environ. Contam. Toxicol. 2009, 83, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Swierczynski, M.; Czerniawska, I. Impact of Blue-Greens from Genera of Microcystis on Some Aquatic Animals. Acta Ichthyol. Piscat. 1992, 22, 163–180. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Meng, F.; Yao, L. Hepatotoxicity and Immunotoxicity of MC-LR on Silver Carp. Ecotoxicol. Environ. Saf. 2019, 169, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.F.N.; Oliveira, V.M.; Oliveira, R.; da Cunha, P.V.; Grisolia, C.K.; Júnior, O.R.P. Histopathological Effects of [D-Leu1] Microcystin-LR Variants on Liver, Skeletal Muscle and Intestinal Tract of Hypophthalmichthys molitrix (Valenciennes, 1844). Toxicon 2010, 55, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xie, P.; Chen, J. In Vivo Studies on Toxin Accumulation in Liver and Ultrastructural Changes of Hepatocytes of the Phytoplanktivorous Bighead Carp Ip-Injected with Extracted Microcystins. Toxicon 2005, 46, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, H.; Yang, W.; Zhou, Y. Oxidative Stress Responses of Grass Carp Ctenopharyngodon idella Larvae Exposed to Purified Microcystin under Different Ammonia Concentrations. Fresenius Environ. Bull. 2011, 20, 2869–2874. [Google Scholar]
- Shen, Q.; Hu, J.; Li, D.-H.; Wang, G.-H.; Liu, Y.-D. Investigation on Intake, Accumulation and Toxicity of Microcystins to Silver Carp. Fresenius Environ. Bull. 2005, 14, 1124–1128. [Google Scholar]
- Osswald, J.; Carvalho, A.; Claro, J.; Vasconcelos, V. Effects of Cyanobacterial Extracts Containing Anatoxin-a and of Pure Anatoxin-a on Early Developmental Stages of Carp. Ecotoxicol. Environ. Saf. 2009, 72, 473–478. [Google Scholar] [CrossRef]
- Issam, E.G.; Saqrane, S.; Carvalho, A.P.; Ouahid, Y.; Del Campo, F.F.; Oudra, B.; Vasconcelos, V. Effect of Different Microcystin Profiles on Toxin Bioaccumulation in Common Carp (Cyprinus carpio) Larvae via Artemia Nauplii. Ecotoxicol. Environ. Saf. 2010, 73, 762–770. [Google Scholar] [CrossRef]
- Al-Ali, A.A.; Al-Sultan, E.Y.; AL-Sultan, F.A. Histopathological Effects of Toxic Alga Nostoc muscurum on Juvenile Grass Carp Fish (Ctenopharyngodon idella Val. 1844). J Marsh Bull 2011, 6, 32–61. [Google Scholar]
- Haynie, R.S.; Bowerman, W.W.; Williams, S.K.; Morrison, J.R.; Grizzle, J.M.; Fischer, J.M.; Wilde, S.B. Triploid Grass Carp Susceptibility and Potential for Disease Transfer When Used to Control Aquatic Vegetation in Reservoirs with Avian Vacuolar Myelinopathy. J. Aquat. Anim. Health 2013, 25, 252–259. [Google Scholar] [CrossRef]
- Lewis, J.; Morley, N.; Ahmad, M.; Challis, G.; Wright, R.; Bicker, R.; Morritt, D. Structural Changes in Freshwater Fish and Chironomids Exposed to Bacterial Exotoxins. Ecotoxicol. Environ. Saf. 2012, 80, 37–44. [Google Scholar] [CrossRef]
- Hajek, G.J. The Anaesthetic-like Effect of Tea Tree Oil in Common Carp Cyprinus carpio L. Aquac. Res. 2011, 42, 296–300. [Google Scholar] [CrossRef]
- Velisek, J.; Svobodova, Z.; Piackova, V.; Groch, L.; Nepejchalova, L. Effects of Clove Oil Anaesthesia on Common Carp (Cyprinus carpio L.). Vet Med 2005, 50, 269–275. [Google Scholar] [CrossRef]
- Hajek, G.; Klyszejko, B.; Dziaman, R. The Anaesthetic Effects of Clove Oil on Common Carp, Cyprinus carpio L. Acta Ichthyol. Piscat. 2006, 2, 93–97. [Google Scholar] [CrossRef]
- Chantong, B.; Buranasinsup, S.; Toniti, P.; Suttiyotin, P.; Sirimanapong, W.; Nusuetrong, P. Efficacy of Extracts of Thai Medicinal Plants as an Anesthetics on Carp Fish (Cyprinus carpio). Planta Med. 2010, 76, P593. [Google Scholar] [CrossRef]
- Balanda, O.; Zin’kovskiy, O.; Potrokhov, A. Effect of Alkaloids of Spatterdock, Nuphar lutea (L.) Smith, on Spawn and Spermatozoa of Carp and Grass Carp. Hydrobiol. J. 2005, 41, 69–75. [Google Scholar] [CrossRef]
- Kumar, V.; Makkar, H.P.; Amselgruber, W.; Becker, K. Physiological, Haematological and Histopathological Responses in Common Carp (Cyprinus carpio L.) Fingerlings Fed with Differently Detoxified Jatropha curcas Kernel Meal. Food Chem. Toxicol. 2010, 48, 2063–2072. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.; Martinez-Herrera, J.; Becker, K. Variations in Seed Number per Fruit, Seed Physical Parameters and Contents of Oil, Protein and Phorbol Ester in Toxic and Non-Toxic Genotypes of Jatropha curcas. J. Plant Sci. 2008, 3, 260–265. [Google Scholar] [CrossRef]
- Makkar, H.; Becker, K. Jatropha curcas Toxicity: Identification of Toxic Principle (s). In Toxic Plants and Other Natural Toxicants; CAB International: Wallingford, England, 1998; pp. 554–588. ISBN 978-0-85199-263-1. [Google Scholar]
- Liu, L.; Liang, X.-F.; Li, J.; Yuan, X.; Zhou, Y.; He, Y. Feed Intake, Feed Utilization and Feeding-Related Gene Expression Response to Dietary Phytic Acid for Juvenile Grass Carp (Ctenopharyngodon idellus). Aquaculture 2014, 424, 201–206. [Google Scholar] [CrossRef]
- Zhong, J.-R.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Phytic Acid Disrupted Intestinal Immune Status and Suppressed Growth Performance in On-Growing Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2019, 92, 536–551. [Google Scholar] [CrossRef]
- Zhong, J.-R.; Wu, P.; Feng, L.; Jiang, W.-D.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Dietary Phytic Acid Weakened the Antimicrobial Activity and Aggravated the Inflammatory Status of Head Kidney, Spleen and Skin in on-Growing Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2020, 103, 256–265. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Duan, X.-D.; Jiang, W.-D.; Feng, L.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N. Soybean Glycinin Decreased Growth Performance, Impaired Intestinal Health, and Amino Acid Absorption Capacity of Juvenile Grass Carp (Ctenopharyngodon idella). Fish Physiol. Biochem. 2019, 45, 1589–1602. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, X.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Soybean Glycinin Impaired Immune Function and Caused Inflammation Associated with PKC-ζ/NF-Κb and mTORC1 Signaling in the Intestine of Juvenile Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2020, 106, 393–403. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Duan, X.-D.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Soybean Glycinin Disrupted Intestinal Structural Integrity Related to Aggravation of Apoptosis and Downregulated Transcription of Tight Junction Proteins in the Intestine of Juvenile Grass Carp (Ctenopharyngodon idella). Aquaculture 2021, 531, 735909. [Google Scholar] [CrossRef]
- Gan, L.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Erucic Acid Impairs Intestinal Immune Function of On-Growing Grass Carp (Ctenopharyngodon idella). Aquaculture 2020, 519, 734916. [Google Scholar] [CrossRef]
- Gan, L.; Wu, P.; Feng, L.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Erucic Acid Inhibits Growth Performance and Disrupts Intestinal Structural Integrity of On-Growing Grass Carp (Ctenopharyngodon idella). Aquaculture 2019, 513, 734437. [Google Scholar] [CrossRef]
- Fu, Y.-W.; Guo, S.-Q.; Luo, J.-J.; Sang, C.-G.; Lin, D.-J.; Liu, Y.-M.; Zhang, Q.-Z. Effectiveness Assessment of Plant Mixtures against Ichthyophthirius multifiliis in Grass Carp Ctenopharyngodon idella. Aquaculture 2021, 530, 735742. [Google Scholar] [CrossRef]
- Liang, J.-H.; Fu, Y.-W.; Zhang, Q.-Z.; Xu, D.-H.; Wang, B.; Lin, D.-J. Identification and Effect of Two Flavonoids from Root Bark of Morus alba against Ichthyophthirius multifiliis in Grass Carp. J. Agric. Food Chem. 2015, 63, 1452–1459. [Google Scholar] [CrossRef]
- Ramah, K. Histopathological Study on the Effect of Rice Herbicides on Grass Carp (Ctenopharyngodon idella). Afr. J. Biotechnol. 2011, 10, 1112–1116. [Google Scholar]
- Velisek, J.; Stara, A.; Machova, J.; Dvorak, P.; Zuskova, E.; Prokes, M.; Svobodova, Z. Effect of Terbutryn at Environmental Concentrations on Early Life Stages of Common Carp (Cyprinus carpio L.). Pestic. Biochem. Physiol. 2012, 102, 102–108. [Google Scholar] [CrossRef]
- Mahmood, Y.; Ghaffar, A.; Hussain, R. New Insights into Hemato-Biochemical and Histopathological Effects of Acetochlor in Bighead Carp (Aristichthys nobilis). Pak. Vet. J. 2021, 41, 538–544. [Google Scholar] [CrossRef]
- Velisek, J.; Koutnik, D.; Zuskova, E.; Stara, A. Effects of the Terbuthylazine Metabolite Terbuthylazine-Desethyl on Common Carp Embryos and Larvae. Sci. Total Environ. 2016, 539, 214–220. [Google Scholar] [CrossRef]
- Štěpánová, S.; Plhalová, L.; Doleželová, P.; Prokeš, M.; Maršálek, P.; Škorič, M.; Svobodová, Z. The Effects of Subchronic Exposure to Terbuthylazine on Early Developmental Stages of Common Carp. Sci. World J. 2012, 2012, 615920. [Google Scholar] [CrossRef]
- Liu, X.-M.; Shao, J.-Z.; Xiang, L.-X.; Chen, X.-Y. Cytotoxic Effects and Apoptosis Induction of Atrazine in a Grass Carp (Ctenopharyngodon idellus) Cell Line. Environ. Toxicol. Int. J. 2006, 21, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Blahova, J.; Dobsikova, R.; Enevova, V.; Modra, H.; Plhalova, L.; Hostovsky, M.; Marsalek, P.; Mares, J.; Skoric, M.; Vecerek, V.; et al. Comprehensive Fitness Evaluation of Common Carp (Cyprinus carpio L.) after Twelve Weeks of Atrazine Exposure. Sci. Total Environ. 2020, 718, 135059. [Google Scholar] [CrossRef] [PubMed]
- Putnam, J.G.; Nelson, J.E.; Leis, E.M.; Erickson, R.A.; Hubert, T.D.; Amberg, J.J. Using Silver and Bighead Carp Cell Lines for the Identification of a Unique Metabolite Fingerprint from Thiram-Specific Chemical Exposure. Chemosphere 2017, 168, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, S.; Takagaki, M.; Kaku, K.; Shimizu, T. Mechanism of Action and Selectivity of a Novel Fungicide, Pyribencarb. J. Pestic. Sci. 2010, 35, 99–106. [Google Scholar] [CrossRef]
- Stoyanova, S.; Nyeste, K.; Georgieva, E.; Uchikov, P.; Velcheva, I. Toxicological Impact of a Neonicotinoid Insecticide and an Organophosphorus Fungicide on Bighead Carp (Hypophthalmichthys nobilis Richardson, 1845) Gills: A Comparative Study. North-West. J. Zool. 2020, 16, 1–10. [Google Scholar]
- Matei, A.-M.; Trombetta, L.D. Exposure of Rat Hippocampal Astrocytes to Ziram Increases Oxidative Stress. Toxicol. Ind. Health 2016, 32, 579–588. [Google Scholar] [CrossRef]
- Kemble, N.; Grabner, K.; Whites, D.; Walters, D.; Hooper, M.; Steevens, J. Evaluation of Ziram as an Oral Toxic Bait Chemical for Control of Grass Carp Ctenopharyngodon idella. Manag. Biol. Invasions 2023, 14, 477–491. [Google Scholar] [CrossRef]
- Murussi, C.R.; Costa, M.D.; Leitemperger, J.W.; Flores-Lopes, F.; Menezes, C.C.; Loebens, L.; de Avila, L.A.; Rizzetti, T.M.; Adaime, M.B.; Zanella, R.; et al. Acute Exposure to the Biopesticide Azadirachtin Affects Parameters in the Gills of Common Carp (Cyprinus carpio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2016, 180, 49–55. [Google Scholar] [CrossRef]
- Hassanein, H.; Okail, H.A. Biochemical Changes in Proteins and DNA in Ctenopharyngodon idella in Response to Treatment with the Biopesticide. Egypt. Acad. J. Biol. Sci. Entomol. 2008, 1, 51–64. [Google Scholar] [CrossRef]
- Hu, K.; Li, H.-R.; Ou, R.-J.; Li, C.-Z.; Yang, X.-L. Tissue Accumulation and Toxicity of Isothiazolinone in Ctenopharyngodon idellus (Grass Carp): Association with P-Glycoprotein Expression and Location within Tissues. Environ. Toxicol. Pharmacol. 2014, 37, 529–535. [Google Scholar] [CrossRef]
- Velisek, J.; Stara, A.; Koutnik, D.; Machova, J. Effects of Prometryne on Early Life Stages of Common Carp (Cyprinus carpio L.). Pestic. Biochem. Physiol. 2015, 118, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Lugowska, K. The Effects of Roundup on Gametes and Early Development of Common Carp (Cyprinus carpio L). Fish Physiol. Biochem. 2018, 44, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Şişman, T. Dichlorvos-Induced Developmental Toxicity in Zebrafish. Toxicol. Ind. Health 2010, 26, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Yamane, S.; Kino, A.; Teshima, S.-I. Histochemical Demonstration of Cholinesterase Activity in Tissues of the Carp and Effect of DDVP on Its Activity In Situ. Acta Histochem. Cytochem. 1974, 7, 167–174. [Google Scholar] [CrossRef]
- Ahmad, F.; Ali, S.S.; Shakoori, A.R. Sublethal Effects of Danitol (Fenpropathrin), a Synthetic Pyrethroid, on Chinese Grass Carp, Ctenopharyngodon idella. Folia Biol. 1995, 43, 151–160. [Google Scholar]
- Zhao, H.; Wang, Y.; Guo, M.; Mu, M.; Yu, H.; Xing, M. Grass Carps Co-Exposed to Environmentally Relevant Concentrations of Cypermethrin and Sulfamethoxazole Bear Immunodeficiency and Are Vulnerable to Subsequent Aeromonas hydrophila Infection. Environ. Pollut. 2020, 266, 115–156. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Zhao, H.; Yin, K.; Liu, Y.; Wang, D.; Zong, H.; Xing, M. Oxidative Stress Is Involved in the Activation of NF-κB Signal Pathway and Immune Inflammatory Response in Grass Carp Gill Induced by Cypermethrin and/or Sulfamethoxazole. Environ. Sci. Pollut. Res. 2022, 29, 19594–19607. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Guo, M.; Liu, Y.; Yu, H.; Xing, M. Environmentally Relevant Concentration of Cypermethrin or/and Sulfamethoxazole Induce Neurotoxicity of Grass Carp: Involvement of Blood-Brain Barrier, Oxidative Stress and Apoptosis. Sci. Total Environ. 2021, 762, 143054. [Google Scholar] [CrossRef]
- Kapur, K.; Kamaldeep, K.; Toort, H. The Effect of Fenitrothion on Reproduction of a Teleost Fish, Cyprinus carpio communis Linn: A Biochemical Study. Bull. Environ. Contam. Toxicol. 1978, 20, 438–442. [Google Scholar] [CrossRef]
- Ullah, S.; Li, Z.; Arifeen, M.Z.U.; Khan, S.U.; Fahad, S. Multiple Biomarkers Based Appraisal of Deltamethrin Induced Toxicity in Silver Carp (Hypophthalmichthys molitrix). Chemosphere 2019, 214, 519–533. [Google Scholar] [CrossRef]
- Mani, A.; Santhamoorthy, R.K.; Kumar, K.P.R.; Sultana, M. Methyl Parathion Insecticide Induced Morphological and Behavioural and Haematological Changes in the Freshwater Fish, H. molitrix (Silver Carp). East Afr. Sch. J Agri Life Sci 2020, 3, 243–249. [Google Scholar] [CrossRef]
- Hasan, Z.; Ghayyur, S.; Hassan, Z.U.; Rafique, S. Histomorphometric and Hematological Profile of Grass Carp (Ctenopharyngodon idella) during Acute Endosulfan Toxicity. Pak. Vet. J. 2015, 35, 23–27. [Google Scholar]
- Batoye, S.; Jindal, R.; Verma, S. Ameliorating Effect of Ascorbic Acid on Fenvalerate Induced Ultrastructural Changes in Scales, Erythrocytes and Gills of Ctenopharyngodon idella (Valenciennes, 1844). Environ. Sci. Pollut. Res. 2021, 28, 36472–36492. [Google Scholar] [CrossRef] [PubMed]
- Khisroon, M.; Hassan, N.; Khan, A.; Farooqi, J. Assessment of DNA Damage Induced by Endosulfan in Grass Carp (Ctenopharyngodon idella Valenciennes, 1844). Environ. Sci. Pollut. Res. 2021, 28, 15551–15555. [Google Scholar] [CrossRef]
- Ambreen, F.; Javed, M. Assessment of Acute Toxicity of Pesticides Mixtures for Cyprinus carpio and Ctenopharyngodon idella. Pak. J. Zool. 2015, 47, 133–139. [Google Scholar]
- Guimarães, A.T.B.; Sobjak, T.M.; Melo Favalesso, M.; Pereira Boeger, W.A. Effects of Trichlorfon Used in the Treatment of Parasitosis on Biological Metrics of Farmed Ctenopharyngodon idella (Valenciennes, 1844). Arch. Vet. Sci. 2019, 24, 61–72. [Google Scholar] [CrossRef]
- Chen, X.; Shao, J.; Xiang, L.; Liu, X. Involvement of Apoptosis in Malathion-Induced Cytotoxicity in a Grass Carp (Ctenopharyngodon idellus) Cell Line. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2006, 142, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Levina, I.; Fedorova, E.; Kuznetsova, L.Y.; Zinchuk, O. Dynamics of Antioxidant Protection and Detoxication Processes Affected by Strobilurin Fungicides in the Liver of Cyprinids. Inland Water Biol. 2012, 5, 222–228. [Google Scholar] [CrossRef]
- Abdali, S.; Yousefi Jourdehi, A.; Kazemi, R.; Yazdani, M.A. Effects of Atrazine (Herbicide) on Blood Biochemical Indices of Grass Carp (Ctenopharhyngoden idella). J. Persian Gulf 2011, 2, 51–56. [Google Scholar]
- Maryam, P.; Mehdi, M.; Morteza, S.; Masood, F.; Abbasali, Z.; Firouz, A. Determination of the Acute Toxicity of Pretilachlor on Liver and Gill Issues as Well as Glucose and Cortisol Levels in Fingerling Grass Carps (Ctenopharhyngoden idella). J. Fish. Aquat. Sci. 2013, 8, 721. [Google Scholar] [CrossRef]
- Gholami, R.; Davoodi, R.; Oujifard, A.; Nooryazdan, H. Chronic Effects of NeemAzal on Biochemical Parameters of Grass Carp, Ctenopharhyngoden idella. Aquac. Res. 2016, 47, 3867–3872. [Google Scholar] [CrossRef]
- Kaur, M.; Jindal, R. SEM Study of Ultrastructural Changes in Branchial Architecture of Ctenopharyngodon idella (Cuvier & Valenciennes) Exposed to Chlorpyrifos. Arch. Biol. Sci. 2016, 68, 393–398. [Google Scholar] [CrossRef]
- Neelima, P.; Govinda Rao, K.; Krishna Ch, S.M.; Chandra Sekhara Rao, J. Haematotoxicity of Cypermethrin (25% EC) to White Carp (Cirrhinus mrigala). Int. J Life Sci. 2016, 4, 207–213. [Google Scholar]
- Golombieski, J.I.; Marchesan, E.; Camargo, E.R.; Salbego, J.; Baumart, J.S.; Loro, V.L.; Machado, S.L. de O.; Zanella, R.; Baldisserotto, B. Acetylcholinesterase Enzyme Activity in Carp Brain and Muscle after Acute Exposure to Diafuran. Sci. Agric. 2008, 65, 340–345. [Google Scholar] [CrossRef]
- Chen, J.-W.; Ke, C.-L.; GAN, J.-L. Acute Toxicity of Dicofol to Grass Carp (Ctenopharyngodon idellus) and White Shrimp (Penaeus vannamei). Acta Hydrobiol. Sin. 2010, 4, 877–879. [Google Scholar] [CrossRef]
- Paul, D.; Raut, S. Comparative Studies on the Toxicity of Endosulphan in Some Freshwater Fisher under Different pH and Hardness of Water. Curr. Sci. Bangalore 1987, 56, 318–320. [Google Scholar]
- Abou El Ella, S. Toxicity of Malathion and Its Effect on the Activity of Acetylcholinesterase in Various Tissues of the Grass Carp, Ctenopharyngodon idella Val. Egypt. J. Aquat. Biol. Fish. 2008, 12, 109–117. [Google Scholar] [CrossRef]
- Tilak, K.; Kumari, R.S. Acute Toxicity of Nuvan®, an Organophosphate to Freshwater Fish Ctenopharyngodon idella and Its Effect on Oxygen Consumption. J. Environ. Biol. 2009, 30, 1031–1033. [Google Scholar]
- Muttappa, K.; Reddy, H.; Rajesh, M.; Padmanabha, A. Quinalphos Induced Alteration in Respiratory Rate and Food Consumption of Freshwater Fish Cyprinus carpio. J. Environ. Biol. 2014, 35, 395. [Google Scholar]
- Hedayati, A. Effects of 2-Phenoxyethanol (2-PE) Anesthesia on Some Haematological and Biochemical Indices of Silver Carp (Hypophthalmichthys molitrix). Iran. J. Fish. Sci. 2018, 17, 1–10. [Google Scholar]
- Mitchell, A.J.; Hobbs, M.S. The Acute Toxicity of Praziquantel to Grass Carp and Golden Shiners. N. Am. J. Aquac. 2007, 69, 203–206. [Google Scholar] [CrossRef]
- Pool, D.; Ryder, K.; Andrews, C. The Control of Bothriocephalus acheilognathi in Grass Carp, Ctenopharyngodon idella, Using Praziquantel. Aquac. Res. 1984, 15, 31–33. [Google Scholar] [CrossRef]
- Li, Z.-H.; Li, P.; Rodina, M.; Randak, T. Effect of Human Pharmaceutical Carbamazepine on the Quality Parameters and Oxidative Stress in Common Carp (Cyprinus carpio L.) Spermatozoa. Chemosphere 2010, 80, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, D.; Schnell, S.; Porte, C. Can Pharmaceuticals Interfere with the Synthesis of Active Androgens in Male Fish? An in Vitro Study. Mar. Pollut. Bull. 2011, 62, 2250–2253. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Pan, L.; Zhou, X.; Zhao, L.; Mou, X.; Zhou, H.; Liu, J.; Wang, X. Evaluation of Ibuprofen Contamination in Local Urban Rivers and Its Effects on Immune Parameters of Juvenile Grass Carp. Fish Physiol. Biochem. 2021, 47, 1405–1413. [Google Scholar] [CrossRef]
- Xie, Z.; Lu, G.; Li, S.; Nie, Y.; Ma, B.; Liu, J. Behavioral and Biochemical Responses in Freshwater Fish Carassius auratus Exposed to Sertraline. Chemosphere 2015, 135, 146–155. [Google Scholar] [CrossRef]
- Valenti, T.W., Jr.; Perez-Hurtado, P.; Chambliss, C.K.; Brooks, B.W. Aquatic Toxicity of Sertraline to Pimephales promelas at Environmentally Relevant Surface Water pH. Environ. Toxicol. Chem. 2009, 28, 2685–2694. [Google Scholar] [CrossRef]
- Xie, Z.; Lu, G.; Hou, K.; Qin, D.; Yan, Z.; Chen, W. Bioconcentration, Metabolism and Effects of Diphenhydramine on Behavioral and Biochemical Markers in Crucian Carp (Carassius auratus). Sci. Total Environ. 2016, 544, 400–409. [Google Scholar] [CrossRef]
- Sehonova, P.; Plhalova, L.; Blahova, J.; Berankova, P.; Doubkova, V.; Prokes, M.; Tichy, F.; Vecerek, V.; Svobodova, Z. The Effect of Tramadol Hydrochloride on Early Life Stages of Fish. Environ. Toxicol. Pharmacol. 2016, 44, 151–157. [Google Scholar] [CrossRef]
- Liu, B.; Cui, Y.; Brown, P.B.; Ge, X.; Xie, J.; Xu, P. Cytotoxic Effects and Apoptosis Induction of Enrofloxacin in Hepatic Cell Line of Grass Carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2015, 47, 639–644. [Google Scholar] [CrossRef]
- Fan, X.; Hou, T.; Jia, J.; Tang, K.; Wei, X.; Wang, Z. Discrepant Dose Responses of Bisphenol A on Oxidative Stress and DNA Methylation in Grass Carp Ovary Cells. Chemosphere 2020, 248, 126110. [Google Scholar] [CrossRef] [PubMed]
- Akram, R.; Iqbal, R.; Hussain, R.; Jabeen, F.; Ali, M. Evaluation of Oxidative Stress, Antioxidant Enzymes and Genotoxic Potential of Bisphenol A in Fresh Water Bighead Carp (Aristichthys nobils) Fish at Low Concentrations. Environ. Pollut. 2021, 268, 115896. [Google Scholar] [CrossRef] [PubMed]
- Battaglin, W.; Duncker, J.; Terrio, P.; Bradley, P.; Barber, L.; DeCicco, L. Evaluating the Potential Role of Bioactive Chemicals on the Distribution of Invasive Asian Carp Upstream and Downstream from River Mile 278 in the Illinois Waterway. Sci. Total Environ. 2020, 735, 139458. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ma, G. Effects of Ozone on Gpx Activity and Content of Gsh and Mda in Blood of Grass Carp (Ctenopharygodon idellus) Fingerling. J. South China Norm. Univ. Nat. Sci. 2004, 2, 110–113. [Google Scholar]
- Leynen, M.; Duvivier, L.; Girboux, P.; Ollevier, F. Toxicity of Ozone to Fish Larvae and Daphnia magna. Ecotoxicol. Environ. Saf. 1998, 41, 176–179. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Zhou, A.; Ye, Q.; Feng, Y.; Wang, Z.; Wang, S.; Xu, G.; Zou, J. Species-Specific Effect of Microplastics on Fish Embryos and Observation of Toxicity Kinetics in Larvae. J. Hazard. Mater. 2021, 403, 123948. [Google Scholar] [CrossRef]
- Ouyang, M.-Y.; Feng, X.-S.; Li, X.-X.; Wen, B.; Liu, J.-H.; Huang, J.-N.; Gao, J.-Z.; Chen, Z.-Z. Microplastics Intake and Excretion: Resilience of the Intestinal Microbiota but Residual Growth Inhibition in Common Carp. Chemosphere 2021, 276, 130144. [Google Scholar] [CrossRef]
- Xia, X.; Sun, M.; Zhou, M.; Chang, Z.; Li, L. Polyvinyl Chloride Microplastics Induce Growth Inhibition and Oxidative Stress in Cyprinus carpio Var. Larvae. Sci. Total Environ. 2020, 716, 136479. [Google Scholar] [CrossRef]
- Guimarães, A.T.B.; Estrela, F.N.; de Lima Rodrigues, A.S.; Chagas, T.Q.; Pereira, P.S.; Silva, F.G.; Malafaia, G. Nanopolystyrene Particles at Environmentally Relevant Concentrations Causes Behavioral and Biochemical Changes in Juvenile Grass Carp (Ctenopharyngodon idella). J. Hazard. Mater. 2021, 403, 123864. [Google Scholar] [CrossRef]
- Chen, J.; Cao, J.; Wang, J.; Jia, R.; Xue, W.; Xie, L. Fluoride-Induced Apoptosis and Expressions of Caspase Proteins in the Kidney of Carp (Cyprinus carpio). Environ. Toxicol. 2015, 30, 769–781. [Google Scholar] [CrossRef]
- Loeb, H.A.; Kelly, W.H. Acute Oral Toxicity of 1,496 Chemicals Force-Fed to Carp; US Department of the Interior, Fish and Wildlife Service: Washington, DC, USA, 1963. Available online: https://spo.nmfs.noaa.gov/content/acute-oral-toxicity-1496-chemicals-force-fed-carp (accessed on 24 October 2023).
- Song, Y.; Wu, N.; Tao, H.; Tan, Y.; Gao, M.; Han, J.; Shen, H.; Liu, K.; Lou, J. Thyroid Endocrine Dysregulation and Erythrocyte DNA Damage Associated with PBDE Exposure in Juvenile Crucian Carp Collected from an E-Waste Dismantling Site in Zhejiang Province, China. Environ. Toxicol. Chem. 2012, 31, 2047–2051. [Google Scholar] [CrossRef] [PubMed]
- Faheem, M.; Zahid, Z.; Ferreira, N.G. Toxicity Assessment of Dibutyl Phthalate in Grass Carp: An Integrated Biomarker Approach. Pak. Vet. J. 2021, 41, 365–371. [Google Scholar] [CrossRef]
- Li, Z.-H.; Li, P.; Shi, Z.-C. Chronic Exposure to Tributyltin Induces Brain Functional Damage in Juvenile Common Carp (Cyprinus carpio). PLoS ONE 2015, 10, e0123091. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Majumder, S.; Gupta, S.; Dutta, S.; Mukherjee, D. Effects of Phenol on Ovarian P450arom Gene Expression and Aromatase Activity in Vivo and Antioxidant Metabolism in Common Carp Cyprinus carpio. Fish Physiol. Biochem. 2016, 42, 275–286. [Google Scholar] [CrossRef]
- Fernandes, D.; Porte, C. Hydroxylated PAHs Alter the Synthesis of Androgens and Estrogens in Subcellular Fractions of Carp Gonads. Sci. Total Environ. 2013, 447, 152–159. [Google Scholar] [CrossRef]
- Blaylock, B.; Griffith, N. Effects of Acute Beta and Gamma Radiation on Developing Embryos of Carp (Cyprinus carpio). Radiat. Res. 1971, 46, 99–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Sun, H.; Yao, T.; Zhu, H.; Xu, J.; Liu, X. Impacts of Loach Bioturbation on the Selective Bioaccumulation of HBCDD Diastereoisomers and Enantiomers by Mirror Carp in a Microcosm. Chemosphere 2016, 163, 471–479. [Google Scholar] [CrossRef]
- Jeffrey, J.D.; Jeffries, K.M.; Suski, C.D. Physiological Status of Silver Carp (Hypophthalmichthys molitrix) in the Illinois River: An Assessment of Fish at the Leading Edge of the Invasion Front. Comp. Biochem. Physiol. Part D Genomics Proteomics 2019, 32, 100614. [Google Scholar] [CrossRef]
- Gutiérrez-Noya, V.M.; Gómez-Oliván, L.M.; del Carmen Ramírez-Montero, M.; Islas-Flores, H.; Galar-Martínez, M.; García-Medina, S. Survival and Malformations Rates, Oxidative Status in Early Life Stages of Cyprinus carpio Due to Exposure to Environmentally Realistic Concentrations of Paracetamol. Sci. Total Environ. 2021, 768, 144585. [Google Scholar] [CrossRef]
- Kavitha, C.; Malarvizhi, A.; Kumaran, S.S.; Ramesh, M. Toxicological Effects of Arsenate Exposure on Hematological, Biochemical and Liver Transaminases Activity in an Indian Major Carp, Catla catla. Food Chem. Toxicol. 2010, 48, 2848–2854. [Google Scholar] [CrossRef]
- Ye, S.; Yu, Z. Acute Toxicity of Six Fishery Drugs to Grass Carp Juveniles J. Fish. Sci. 2007, 10, 564–566. [Google Scholar]
- Seegert, G.L.; Brooks, A.S.; Castle, J.R.V.; Gradall, K. The Effects of Monochloramine on Selected Riverine Fishes. Trans. Am. Fish. Soc. 1979, 108, 88–96. [Google Scholar] [CrossRef]
- Hemalatha, D.; Nataraj, B.; Rangasamy, B.; Shobana, C.; Ramesh, M. DNA Damage and Physiological Responses in an Indian Major Carp Labeo rohita Exposed to an Antimicrobial Agent Triclosan. Fish Physiol. Biochem. 2019, 45, 1463–1484. [Google Scholar] [CrossRef] [PubMed]
- Cassani, J.; Caton, W. Efficient Production of Triploid Grass Carp (Ctenopharyngodon idella) Utilizing Hydrostatic Pressure. Aquaculture 1986, 55, 43–50. [Google Scholar] [CrossRef]
- Clugston, J.P.; Shireman, J.V. Triploid Grass Carp for Aquatic Plant Control; US Department of the Interior, Fish and Wildlife Service: Washington D.C., USA, 1987; Available online: https://apps.dtic.mil/sti/pdfs/ADA322967.pdf (accessed on 24 October 2023).
- Papoulias, D.M.; Candrl, J.; Jenkins, J.A.; Tillitt, D.E. Verification of Ploidy and Reproductive Potential in Triploid Black Carp and Grass Carp. In Proceedings of the American Fisheries Society Symposium 74: Invasive Asian Carps in North America, Peoria, IL, USA, 2011, 22–23 August 2006; American Fisheries Society: Bethesda, MD, USA, 2011; pp. 251–266. [Google Scholar]
- Jenkins, J.A.; Chauvin, M.D.; Johnson, D.; Brown, B.L.; Bailey, J.; Kelly, A.M.; Kinter, B.T. Defensible Standardized Ploidy Assessments for Grass Carp (Ctenopharyngodon idella, Cyprinidae) Intercepted from the Commercial Supply Chain. J. Gt. Lakes Res. 2019, 45, 371–383. [Google Scholar] [CrossRef]
- Clemens, B.J.; Spangler, J.J.; Robertson, P.L.; Galovich, G.M.; Banner, C.R.; Gunckel, S.L.; Ketchum, L.L.; Bowden, R.K.; Spagnoli, S.T.; Kent, M.L.; et al. Persistence of Triploid Grass Carp in Devils Lake, Oregon. J. Fish Wildl. Manag. 2016, 7, 153–161. [Google Scholar] [CrossRef]
- Chapman, D.C.; Davis, J.J.; Jenkins, J.A.; Kocovsky, P.M.; Miner, J.G.; Farver, J.; Jackson, P.R. First Evidence of Grass Carp Recruitment in the Great Lakes Basin. J. Gt. Lakes Res. 2013, 39, 547–554. [Google Scholar] [CrossRef]
- Cudmore, B.; Mandrak, N. Assessing the Biological Risk of Asian Carps to Canada. In Proceedings of the American Fisheries Society Symposium 74: Invasive Asian Carps in North America, Peoria, IL, USA, 22–23 August 2006; American Fisheries Society: Bethesda, MD, USA, 2011; pp. 15–30. [Google Scholar] [CrossRef]
- Zajicek, P.; Goodwin, A.E.; Weier, T. Triploid Grass Carp: Triploid Induction, Sterility, Reversion, and Certification. N. Am. J. Fish. Manag. 2011, 31, 614–618. [Google Scholar] [CrossRef]
- Jenkins, J.A.; Thomas, R.G. Use of Eyeballs for Establishing Ploidy of Asian Carp. N. Am. J. Fish. Manag. 2007, 27, 1195–1202. [Google Scholar] [CrossRef]
- Thomas, R.G.; Jenkins, J.A.; David, J. Occurrence and Distribution of Asian Carps in Louisiana. In Proceedings of the American Fisheries Society Symposium 74: Invasive Asian Carps in North America, Peoria, IL, USA, 22–23 August 2006; American Fisheries Society: Bethesda, MD, USA, 2011; pp. 239–250. [Google Scholar] [CrossRef]
- Harrell, R.M.; Van Heukelem, W.; Kerby, J.H. A Comparison of Triploid Induction Validation Techniques. Progress. Fish-Cult. 1998, 60, 221–226. [Google Scholar] [CrossRef]
- Rothbard, S. A Review of Ploidy Manipulations in Aquaculture: The Israeli Experience. Isr. J. Aquac.-Bamidgeh 2006, 58, 266–279. [Google Scholar] [CrossRef]
- Cassani, J.; Maloney, D.; Allaire, H.; Kerby, J. Problems Associated with Tetraploid Induction and Survival in Grass Carp, Ctenopharyngodon idella. Aquaculture 1990, 88, 273–284. [Google Scholar] [CrossRef]
- Dana, G.V.; Cooper, A.M.; Pennington, K.M.; Sharpe, L.S. Methodologies and Special Considerations for Environmental Risk Analysis of Genetically Modified Aquatic Biocontrol Organisms. Biol. Invasions 2014, 16, 1257–1272. [Google Scholar] [CrossRef]
- Kapuscinski, A.R.; Sharpe, L.M. Introduction: Genetic Biocontrol of Invasive Fish Species; Springer: Berlin/Heidelberg, Germany,, 2014. [Google Scholar]
- Thresher, R.E.; Hayes, K.; Bax, N.J.; Teem, J.; Benfey, T.J.; Gould, F. Genetic Control of Invasive Fish: Technological Options and Its Role in Integrated Pest Management. Biol. Invasions 2014, 16, 1201–1216. [Google Scholar] [CrossRef]
- Beaty, P.; Fuller, R.; Hallerman, E.; Thiery, R.; Reger, S. Environmental Impact of Hybrid Carp (Grass Carp × Bighead Carp) in Two California Irrigation Canals—1980 Progress Report: Physicochemical and Faunal Baseline Investigations. Coachella Valley Water District: Coachella, CA, USA. 1981. Available online: https://worldcat.org/title/24037933 (accessed on 30 October 2023).
- Wiley, M.J.; Gorden, R.W.; Waite, S.W. Effects of Using Hybrid Carp to Control Aquatic Vegetation; INHS Aquatic Biology Section: Champaign, IL, USA, 1983. [Google Scholar]
- Harberg, M.C.; Modde, T. Feeding Behavior, Food Consumption, Growth, and Survival of Hybrid Grass Carp in Two South Dakota Ponds. N. Am. J. Fish. Manag. 1985, 5, 457–464. [Google Scholar] [CrossRef]
- Young, L.M.; Monaghan, J.P., Jr.; Heidinger, R.C. Food Preferences, Food Intake, and Growth of the F1 Hybrid of Grass Carp♀ X Bighead Carp♂. Trans. Am. Fish. Soc. 1983, 112, 661–664. [Google Scholar] [CrossRef]
- Kilambi, R.; Zdinak, A. Comparison of Early Developmental Stages and Adults of Grass Carp, Ctenopharyngodon idella, and Hybrid Carp (Female Grass Carp X Male Bighead Aristichthys nobilis). J. Fish Biol. 1981, 19, 457–465. [Google Scholar] [CrossRef]
- Jackson, U.T.; Nibling, F.L.; Thullen, J.S. Time-Lapse Analysis of Feeding Behavior of Hybrid Grass Carp, Ctenopharyngodon idella Val. X Hypophthalmichthys nobilis Rich., in Relation to Aquatic Plant Species and Age.; U.S. Fish and Wildlife Service National Fisheries Contaminant Research Center: La Crosse, WI, 1986. [Google Scholar]
- Shireman, J.; Rottmann, R.; Aldridge, F. Consumption and Growth of Hybrid Grass Carp Fed Four Vegetation Diets and Trout Chow in Circular Tanks. J. Fish Biol. 1983, 22, 685–693. [Google Scholar] [CrossRef]
- Duthu, G.S.; Kilgen, R.H. Aquarium Studies on the Selectivity of 16 Aquatic Plants as Food by Fingerling Hybrids of the Cross between Ctenopharyngodon idella♂ and Cyprinus carpio♀. J. Fish Biol. 1975, 7, 203–208. [Google Scholar] [CrossRef]
- McCormick, J.L.; Schill, D.J.; Meyer, K.A. Simulated Use of YY Male Stocking and Suppression for Eradicating Common Carp Populations. N. Am. J. Fish. Manag. 2020, 41, 366–382. [Google Scholar] [CrossRef]
- Teem, J.L.; Gutierrez, J.B. A Theoretical Strategy for Eradication of Asian Carps Using a Trojan Y Chromosome to Shift the Sex Ratio of the Population. In Proceedings of the American Fisheries Society Symposium 74: Invasive Asian Carps in North America, Peoria, IL, USA, 22–23 August 2006; American Fisheries Society: Bethesda, MD, USA, 2011; pp. 1–12. [Google Scholar] [CrossRef]
- Stanley, J.G.; Martin, J.M.; Jones, J.B. Gynogenesis as a Possible Method for Producing Monosex Grass Carp (Ctenopharyngodon idella). Progress. Fish-Cult. 1975, 37, 25–26. [Google Scholar] [CrossRef]
- Harvey-Samuel, T.; Ant, T.; Alphey, L. Towards the Genetic Control of Invasive Species. Biol. Invasions 2017, 19, 1683–1703. [Google Scholar] [CrossRef]
- Thresher, R. Autocidal Technology for the Control of Invasive Fish. Fisheries 2008, 33, 114–121. [Google Scholar] [CrossRef]
- Hayes, K.R.; Leung, B.; Thresher, R.; Dambacher, J.M.; Hosack, G.R. Meeting the Challenge of Quantitative Risk Assessment for Genetic Control Techniques: A Framework and Some Methods Applied to the Common Carp (Cyprinus carpio) in Australia. Biol. Invasions 2014, 16, 1273–1288. [Google Scholar] [CrossRef]
- Patil, J.G.; Purser, J.; Nicholson, A. Development and Deployment of Sterile “Judas Fish” to Assist Carp Eradication in Lake Sorell, Tasmania: Surgical and Chemical Sterilisation; Tasmanian Government-Inland Fisheries Service: New Norfolk, Tasmania, 2014. [Google Scholar]
- Chapman, D.C.; Milardi, M.; Mann, F.A. Ligation and Division of Ductus Deferens Does Not Produce Long Term Sterility in Most Bighead Carp or Grass Carp. Manag. Biol. Invasions 2019, 10, 285–295. [Google Scholar] [CrossRef]
- Underwood, J.L.; Hestand III, R.S.; Thompson, B.Z. Gonad Regeneration in Grass Carp Following Bilateral Gonadectomy. Progress. Fish-Cult. 1986, 48, 54–56. [Google Scholar] [CrossRef]
- Gasaway, R.D. Predation on Introduced Grass Carp (Ctenopharyngodon idella) in a Florida Lake. Fla. Sci. 1977, 40, 167–173. [Google Scholar]
- Shireman, J.V.; Colle, D.E.; Rottmann, R.W. Size Limits to Predation on Grass Carp by Largemouth Bass. Trans. Am. Fish. Soc. 1978, 107, 213–215. [Google Scholar] [CrossRef]
- Snow, R.A.; Stewart, D.R.; Porta, M.J.; Long, J.M. Feeding Ecology of Age-0 Gar at Texoma Reservoir Inferred from Analysis of Stable Isotopes. N. Am. J. Fish. Manag. 2020, 40, 638–650. [Google Scholar] [CrossRef]
- Anderson, C.A. Juvenile Silver Carp and Bighead Carp as Forage for Predatory Fish in the LaGrange Reach of the Illinois River. N. Am. J. Fish. Manag. 2021, 43, 164–175. [Google Scholar] [CrossRef]
- Sanft, E.; Parkos, J.J.; Collins, S.F.; Porreca, A.P.; Wahl, D.H. Vulnerability of Juvenile Bighead and Silver Carps to Predation by Largemouth Bass. Trans. Am. Fish. Soc. 2018, 14, 1207–1214. [Google Scholar] [CrossRef]
- Wolf, M.C.; Phelps, Q.E. Prey Selectivity of Common Predators on Silver Carp (Hypophthalmichthys molitrix): Controlled Laboratory Experiments Support Field Observations. Environ. Biol. Fishes 2017, 100, 1139–1143. [Google Scholar] [CrossRef]
- Silbernagel, J.J. Field and Laboratory Studies Suggest That Recruitment of the Invasive Common Carp Is Controlled by Native Fish in Stable Lakes of the Upper Mississippi Basin. Master’s Thesis, University of Minnesota: Minneapolis, MN, USA, 2011. [Google Scholar]
- Michaels, N.N. Biomanipulation of the Largemouth Bass Micropterus Salmoides Population to Control Invasive Species and Eutrophication at the Nature Conservancy’s Emiquon Preserve. Master’s Thesis, Western Illinois University, Macomb, IL, USA, 2011. [Google Scholar]
- Wilson, J.C.; Detmer, T.M.; White, D.; Wahl, D.H. Social Influence on Anti-Predatory Behaviors of Juvenile Bighead Carp (Hypophthalmichthys nobilis) Are Influences by Conspecific Experience and Shaol Composition. Hydrobiologia 2021, 848, 5087–5101. [Google Scholar] [CrossRef]
- Tang, Z.-H.; Huang, Q.; Wu, H.; Kuang, L.; Fu, S.-J. The Behavioral Response of Prey Fish to Predators: The Role of Predator Size. PeerJ 2017, 5, e3222. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.; Pojmanska, T. Richness and Diversity of Helminth Parasite Communities in the Common Carp and in Three More Recently Introduced Carp Species. J. Fish Biol. 1996, 48, 89–100. [Google Scholar] [CrossRef]
- Lin, W.; Li, L.; Chen, J.; Li, D.; Hou, J.; Guo, H.; Shen, J. Long-Term Crowding Stress Causes Compromised Nonspecific Immunity and Increases Apoptosis of Spleen in Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2018, 80, 540–545. [Google Scholar] [CrossRef]
- Hossain, M.; Rahman, M.; Amin, A.; Ahmed, S.; Shahjahan, M. Effects of Sumithion on Growth and Production of Phytoplankton and Zooplankton in Aquaculture Ponds. Iran. J. Fish. Sci. 2019, 18, 307–318. [Google Scholar] [CrossRef]
- Phan, V.T.; Le, K.V.; Dang, L.T.; Kim, V.V.; Nguyen, H.T. The Impacts of Red Spot Disease on Small-Scale Aquaculture in Northern Viet Nam. In Proceedings of the Asia Regional Scoping Workshop on Primary Aquatic Animal Health Care in Rural-scale, Aquaculture Development; Arthur, J.R., Phillips, M.J., Subasinghe, R.P., Reantaso, M.B., MacRae, I.H., Eds.; Food and Agriculture Organization of the United Nations: Dhaka, Bangledesh, 2001; pp. 165–176. Available online: https://www.fao.org/3/y3610e/y3610e16.htm (accessed on 30 October 2023).
- Mahmud, R.; Purser, J.; Patil, J.G. A Novel Testicular Degenerative Condition in a Wild Population of the Common Carp Cyprinus carpio (L). J. Fish Dis. 2020, 43, 1065–1076. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Zhu, Y.; Zhu, T.; Wu, X.; Yang, D. Microbial Community Structure and Its Driving Environmental Factors in Black Carp (Mylopharyngodon piceus) Aquaculture Pond. Water 2021, 13, 3089. [Google Scholar] [CrossRef]
- Marcos-López, M.; Gale, P.; Oidtmann, B.; Peeler, E. Assessing the Impact of Climate Change on Disease Emergence in Freshwater Fish in the United Kingdom. Transbound. Emerg. Dis. 2010, 57, 293–304. [Google Scholar] [CrossRef]
- Joehnk, K.D.; Graham, K.; Sengupta, A.; Chen, Y.; Aryal, S.K.; Merrin, L.; Durr, P.A. The Role of Water Temperature Modelling in the Development of a Release Strategy for Cyprinid Herpesvirus 3 (CyHV-3) for Common Carp Control in Southeastern Australia. Water 2020, 12, 3217. [Google Scholar] [CrossRef]
- Shahi, N.; Mallik, S.K.; Kala, K.; Joshi, N.; Patiyal, R.S.; Chandra, S.; Singh, S.; Sarma, D. Seasonal Emergence of Benign Epidermal Tumor in Farm-Reared Adult Grass Carp (Ctenopharyngodon Idella) Caused by Lymphocystis Disease Virus at Uttarakhand, India. Aquaculture 2020, 526, 735408. [Google Scholar] [CrossRef]
- Jiang, Y. Hemorrhagic Disease of Grass Carp: Status of Outbreaks, Diagnosis, Surveillance, and Research. Isr. J. Aquac.-Bamidgeh 2009, 61, 188–197. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Z.; Li, H.; Tan, S.; Yu, H.; Hui, Y. Epidemiological Survey of Grass Carp (Ctenopharyngodon Idella) Reovirus in South China, and Genetic Variations of VP6 Gene. Isr. J. Aquac.-Bamidgeh 2017, 69, 21049. [Google Scholar]
- Wang, Q.; Zeng, W.; Liu, C.; Zhang, C.; Wang, Y.; Shi, C.; Wu, S. Complete Genome Sequence of a Reovirus Isolated from Grass Carp, Indicating Different Genotypes of GCRV in China. J. Virol. 2012, 86, 124661. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, Y.; Wu, S.; Yin, J.; Zhou, W.; Gao, T.; Li, Y.; Bergmann, S.M.; Gao, C.; Wang, Y.; et al. An iTRAQ-Based Comparative Proteomic Analysis of Grass Carp Infected with Virulent and Avirulent Isolates of Grass Carp Reovirus Genotype II. Aquaculture 2021, 535, 736426. [Google Scholar] [CrossRef]
- Chi, Y.-Y.; Tian, Y.-Y.; Ye, X.; Deng, G.-C.; Li, J.; Wang, H.-J. Molecular Properties of Grass Carp Reovirus in Southern China and Establishment of a Duplex PCR Detection Method. Bing Xue Bao Chin. J. Virol. 2011, 27, 358–365. [Google Scholar]
- Chao, P.; Fei, K.; Chen, Z.Y.; Zhang, Q.Y. Complete Genome Sequence and Comparative Analysis of Grass Carp Reovirus Strain 109 (GCReV-109) with Other Grass Carp Reovirus Strains Reveals No Significant Correlation with Regional Distribution. Arch. Virol. 2014, 159, 2435–2440. [Google Scholar] [CrossRef]
- Ye, X.; Tian, Y.; Deng, G.; Chi, Y.; Jiang, X. Complete Genomic Sequence of a Reovirus Isolated from Grass Carp in China. Virus Res. 2012, 163, 275–283. [Google Scholar] [CrossRef]
- Zeng, W.; Bergmannc, S.M.; Dong, H.; Yang, Y.; Wu, M.; Liu, H.; Chen, Y.; Li, H. Identification, Virulence, and Molecular Characterization of a Recombinant Isolate of Grass Carp Reovirus Genotype I. Viruses 2021, 13, 807. [Google Scholar] [CrossRef]
- Gao, T.; Gao, C.; Wu, S.; Wang, Y.; Yin, J.; Li, Y.; Zeng, W.; Bergmann, S.M.; Wang, Q. Recombinant Baculovirus-Produced Grass Carp Reovirus Virus-Like Particles as Vaccine Candidate That Provides Protective Immunity against GCRV Genotype II Infection in Grass Carp. Vaccines 2021, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhu, D.; Liang, X.; Li, Y.; Liao, L.; Yang, C.; Huang, R.; Zhu, Z.; Wang, Y. Multi-Omics Sequencing Provides Insights into Age-Dependent Susceptibility of Grass Carp (Ctenopharyngodon idellus) to Reovirus. Front. Immunol. 2021, 12, 2396. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xiong, L.; Wang, Y.; He, L.; Huang, R.; Liao, L.; Zhu, Z.; Wang, Y. Different Responses in One-Year-Old and Three-Year-Old Grass Carp Reveal the Mechanism of Age Restriction of GCRV Infection. Fish Shellfish Immunol. 2019, 86, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.; He, L.; Huang, R.; Liao, L.; Li, Y.; Zhu, Z.; Hu, W.; Wang, Y. Autophagy Inhibits Grass Carp Reovirus (GCRV) Replication and Protects Ctenopharyngodon idella Kidney (CIK) Cells from Excessive Inflammatory Responses after GCRV Infection. Biomolecules 2020, 10, 1296. [Google Scholar] [CrossRef]
- Du, F.; Su, J.; Huang, R.; Liao, L.; Zhu, Z.; Wang, Y. Cloning and Preliminary Functional Studies of the JAM-A Gene in Grass Carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2013, 34, 1476–1484. [Google Scholar] [CrossRef]
- Ma, J.; Fan, Y.; Zhou, Y.; Liu, W.; Jiang, N.; Zhang, J.; Zeng, L. Efficient Resistance to Grass Carp Reovirus Infection in JAM-A Knockout Cells Using CRISPR/Cas9. Fish Shellfish Immunol. 2018, 76, 206–215. [Google Scholar] [CrossRef]
- Wang, H.; Ding, C.; Wang, J.; Zhao, X.; Jin, S.; Liang, J.; Luo, H.; Li, D.; Li, R.; Li, Y.; et al. Molecular Cloning and Expression Analysis of Coagulation Factor VIII and Plasminogen Involved in Immune Response to GCRV, and Immunity Activity Comparison of Grass Carp Ctenopharyngodon idella with Different Viral Resistance. Fish Shellfish Immunol. 2019, 86, 794–804. [Google Scholar] [CrossRef]
- Ju, C.; He, L.; Pei, Y.; Jiang, Y.; Huang, R.; Li, Y.; Liao, L.; Jang, S.; Wang, Y. Differential Expression of Two C-Type Lectins in Grass Carp Ctenopharyngodon idella and Their Response to Grass Carp Reovirus. J. Fish Biol. 2016, 88, 787–793. [Google Scholar] [CrossRef]
- Liu, F.; Li, J.; Fu, J.; Shen, Y.; Xu, X. Two Novel Homologs of Simple C-Type Lectin in Grass Carp (Ctenopharyngodon idellus): Potential Role in Immune Response to Bacteria. Fish Shellfish Immunol. 2011, 31, 765–773. [Google Scholar] [CrossRef]
- Huang, W.-J.; Shen, Y.; Xu, X.-Y.; Hu, M.-Y.; Li, J.-L. Identification and Characterization of the TLR18 Gene in Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2015, 47, 681–688. [Google Scholar] [CrossRef]
- He, L.; Wang, H.; Luo, L.; Jiang, S.; Liu, L.; Li, Y.; Huang, R.; Liao, L.; Zhu, Z.; Wang, Y. Characterization, Expression Analysis and Localization Pattern of Toll-like Receptor 1 (Tlr1) and Toll-like Receptor 2 (Tlr2) Genes in Grass Carp Ctenopharyngodon idella. J. Fish Biol. 2016, 89, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shang, N.; Feng, H.; Guo, Q.; Dai, H. Molecular Cloning of Grass Carp (Ctenopharyngodon idellus) T-Bet and GATA-3, and Their Expression Profiles with IFN-γ in Response to Grass Carp Reovirus (GCRV) Infection. Fish Physiol. Biochem. 2013, 39, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Xu, D.; Li, J.; Lu, L. Molecular Cloning and Immune Responsive Expression of a Ribonuclease III Orthologue Involved in RNA Interference, Dicer, in Grass Carp Ctenopharyngodon idella. J. Fish Biol. 2013, 83, 1234–1248. [Google Scholar] [CrossRef]
- Huang, R.; Lv, J.; Luo, D.; Liao, L.; Zhu, Z.; Wang, Y. Identification, Characterization and the Interaction of Tollip and IRAK-1 in Grass Carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2012, 33, 459–467. [Google Scholar] [CrossRef]
- Su, J.; Dong, J.; Huang, T.; Zhang, R.; Yang, C.; Heng, J. Myeloid Differentiation Factor 88 Gene Is Involved in Antiviral Immunity in Grass Carp Ctenopharyngodon idella. J. Fish Biol. 2011, 78, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Huang, T.; Yang, C.; Zhang, R. Molecular Cloning, Characterization and Expression Analysis of Interferon-β Promoter Stimulator 1 (IPS-1) Gene from Grass Carp Ctenopharyngodon idella. Fish Shellfish Immunol. 2011, 30, 317–323. [Google Scholar] [CrossRef]
- Pandit, N.; Shen, Y.; Chen, Y.; Wang, W.; Li, J. Molecular Characterization, Expression, and Immunological Response Analysis of the TWEAK and APRIL Genes in Grass Carp, Ctenopharyngodon idella. Genet Mol Res 2014, 13, 10105–10120. [Google Scholar] [CrossRef]
- Pandit, N.; Shen, Y.; Xu, X.; Yu, H.; Wang, W.; Wang, R.; Xuan, Y.; Li, J. Differential Expression of Interleukin-12 P35 and P40 Subunits in Response to Aeromonas hydrophila and Aquareovirus Infection in Grass Carp, Ctenopharyngodon Idella. Genet Mol Res 2015, 10, 2015. [Google Scholar] [CrossRef]
- Li, Y.; Huang, R.; Chen, L.; Li, Y.; Li, Y.; Liao, L.; He, L.; Zhu, Z.; Wang, Y. Characterization of SR-B2a and SR-B2b Genes and Their Ability to Promote GCRV Infection in Grass Carp (Ctenopharyngodon idellus). Dev. Comp. Immunol. 2021, 124, 104202. [Google Scholar] [CrossRef]
- Rao, Y.; Su, J. Insights into the Antiviral Immunity against Grass Carp (Ctenopharyngodon idella) Reovirus (GCRV) in Grass Carp. J. Immunol. Res. 2015, 2015, 670437. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, J.; Fan, Y. Epidemiology of the Grass Carp Reovirus. In Aquareovirus; Springer: Berlin/Heidelberg, Germany,, 2021; pp. 133–148. [Google Scholar]
- Adamek, M.; Heling, M.; Bauer, J.; Teitge, F.; Bergmann, S.M.; Kleingeld, D.W.; Welzel, A.; Scuda, N.; Bachmann, J.; Louis, C.S.; et al. It Is Everywhere–A Survey on the Presence of Carp Edema Virus in Carp Populations in Germany. Transbound. Emerg. Dis. 2021, 69, 2227–2247. [Google Scholar] [CrossRef] [PubMed]
- Lü, A.; Wei, Z.; Hu, X.; Sun, J.; Pei, C.; Zhang, C.; Li, L.; Li, A. Isolation and Characterization of Acinetobacter lwoffii from the Intestine of Grass Carp (Ctenopharyngodon idella). Isr. J. Aquac. Bamidgeh 2017, 69, 1–7. [Google Scholar]
- McColl, K.A.; Sunarto, A.; Holmes, E.C. Cyprinid Herpesvirus 3 and Its Evolutionary Future as a Biological Control Agent for Carp in Australia. Virol. J. 2016, 13, 1–4. [Google Scholar] [CrossRef]
- Kopf, R.K.; Boutier, M.; Finlayson, C.; Hodges, K.; Humphries, P.; King, A.; Kingsford, R.; Marshall, J.; McGinness, H.; Thresher, R.; et al. Biocontrol in Australia: Can a Carp Herpesvirus (CyHV-3) Deliver Safe and Effective Ecological Restoration? Biol. Invasions 2019, 21, 1857–1870. [Google Scholar] [CrossRef]
- Perelberg, A.; Smirnov, M.; Hutoran, M.; Diamant, A.; Bejerano, Y.; Kotler, M. Epidemilogical Description of a New Viral Disease Afflicting Cultured Cyprinus carpio in Israel. Isr. J. Aquac.-Bamidgeh 2003, 55, 5–12. [Google Scholar]
- McColl, K.A.; Sunarto, A. Biocontrol of the Common Carp (Cyprinus carpio) in Australia: A Review and Future Directions. Fishes 2020, 5, 17. [Google Scholar] [CrossRef]
- Yang, Y.; Miao, P.; Li, H.; Tan, S.; Yu, H.; Yu, H. Antibiotic Susceptibility and Molecular Characterization of Aeromonas hydrophila from Grass Carp. J. Food Saf. 2018, 38, e12393. [Google Scholar] [CrossRef]
- Huang, X.; Xiong, G.; Feng, Y.; Wang, K.; Liu, Y.; Zhong, L.; Liu, S.; Geng, Y.; Ouyang, P.; Chen, D.; et al. Ulcerative Disease Emergence in Grass Carp (Ctenopharyngodon idellus) Aquaculture in China: Possible Impact of Temperature Abnormality. Aquaculture 2020, 517, 734811. [Google Scholar] [CrossRef]
- Qin, L.; Xiang, J.; Xiong, F.; Wang, G.; Zou, H.; Li, W.; Li, M.; Wu, S. Effects of Bacillus Licheniformis on the Growth, Antioxidant Capacity, Intestinal Barrier and Disease Resistance of Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2020, 97, 344–350. [Google Scholar] [CrossRef]
- Wu, Z.; Qi, X.; Qu, S.; Ling, F.; Wang, G. Dietary Supplementation of Bacillus Velezensis B8 Enhances Immune Response and Resistance against Aeromonas veronii in Grass Carp. Fish Shellfish Immunol. 2021, 115, 14–21. [Google Scholar] [CrossRef]
- Mayrhofer, R.; Menanteau-Ledouble, S.; Pucher, J.; Focken, U.; El-Matbouli, M. Aeromonas spp. Suggested as the Causative Agents of Red Spot Disease in Northern Vietnamese Grass Carp Ctenopharyngodon idella. Dis. Aquat. Organ. 2020, 139, 113–119. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, X.-Q.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Impaired Intestinal Immune Barrier and Physical Barrier Function by Phosphorus Deficiency: Regulation of TOR, NF-κB, MLCK, JNK and Nrf2 Signalling in Grass Carp (Ctenopharyngodon idella) after Infection with Aeromonas hydrophila. Fish Shellfish Immunol. 2018, 74, 175–189. [Google Scholar] [CrossRef]
- Sugita, H.; Tokuyama, K.; Deguchi, Y. The Intestinal Microflora of Carp Cyprinus carpio, Grass Carp Ctenopharyngodon idella and Tilapia Sarotherodon niloticus. Bull. Jap. Soc. Sci. Fish. 1985, 51, 1325–1329. [Google Scholar] [CrossRef]
- Li, X.; Yu, Y.; Li, C.; Yan, Q. Comparative Study on the Gut Microbiotas of Four Economically Important Asian Carp Species. Sci. China Life Sci. 2018, 61, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Zhang, J.; Ji, X.; Zhou, F.; Fu, Y.; Chen, W.; Zeng, Y.; Li, T.; Wang, H. Molecular Cloning, Characterization and Expression of Cathepsin D from Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2012, 33, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, J.; Xu, X.; Fu, J.; Li, J. Expression of Complement Component C7 and Involvement in Innate Immune Responses to Bacteria in Grass Carp. Fish Shellfish Immunol. 2012, 33, 448–454. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, J.; Xu, X.; Fu, J.; Liu, F.; Li, J. Molecular Cloning, Characterization and Expression of the Complement Component Bf/C2 Gene in Grass Carp. Fish Shellfish Immunol. 2012, 32, 789–795. [Google Scholar] [CrossRef]
- Song, X.-H.; Tang, J.; Gao, T.-T.; Xu, X.-F.; Yang, H.-X.; Wu, K.; Yang, C.-G.; Cheng, Z.-Q.; Sun, B.-Y. Interleukin-12 Receptor Β2 from Grass Carp: Molecular Characterization and Its Involvement in Aeromonas hydrophila-Induced Intestinal Inflammation. Fish Shellfish Immunol. 2019, 87, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.-D.; Xu, J.; Zhou, X.-Q.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Dietary Protein Levels Regulated Antibacterial Activity, Inflammatory Response and Structural Integrity in the Head Kidney, Spleen and Skin of Grass Carp (Ctenopharyngodon idella) after Challenged with Aeromonas hydrophila. Fish Shellfish Immunol. 2017, 68, 154–172. [Google Scholar] [CrossRef]
- Dash, S.; Das, S.K.; Samal, J.; Ojha, P.K.; Patra, J.K.; Thatoi, H. Dose Dependence Specific and Non-Specific Immune Responses of Indian Major Carp (L. rohita Ham) to Intraperitoneal Injection of Formalin Killed Aeromonas hydrophila Whole Cell Vaccine. Vet. Res. Commun. 2011, 35, 541–552. [Google Scholar] [CrossRef]
- Liu, L.; Gong, Y.-X.; Zhu, B.; Liu, G.-L.; Wang, G.-X.; Ling, F. Effect of a New Recombinant Aeromonas hydrophila Vaccine on the Grass Carp Intestinal Microbiota and Correlations with Immunological Responses. Fish Shellfish Immunol. 2015, 45, 175–183. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Q.; Qiao, Z.; Bai, D.; Sun, J.; Qiao, X. Effect of Lipopolysaccharide (LPS) and Outer Membrane Protein (OMP) Vaccines on Protection of Grass Carp (Ctenopharyngodon idella) against Aeromonas hydrophila. Israeli J. Aquaculture-Bamidgeh 2011, 64, 1–8. [Google Scholar] [CrossRef]
- Abasali, H.; Mohamad, S. Immune Response of Common Carp (Cyprinus carpio) Fed with Herbal Immunostimulants Diets. J. Anim. Vet. Adv. 2010, 9, 1839–1847. [Google Scholar]
- Kong, W.; Huang, C.; Tang, Y.; Zhang, D.; Wu, Z.; Chen, X. Effect of Bacillus Subtilis on Aeromonas hydrophila-Induced Intestinal Mucosal Barrier Function Damage and Inflammation in Grass Carp (Ctenopharyngodon idella). Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Declercq, A.M.; Haesebrouck, F.; Van den Broeck, W.; Bossier, P.; Decostere, A. Columnaris Disease in Fish: A Review with Emphasis on Bacterium-Host Interactions. Vet. Res. 2013, 44, 1–17. [Google Scholar] [CrossRef]
- Lu, Z.; Gao, R.; Duan, Y.; Han, R.; Guo, W.; Dan, X.; Li, Y. Isolation and Genetic Characterization of Flavobacterium columnare from Grass Carp, Ctenopharyngodon idellus, in China. Aquaculture 2021, 541, 736762. [Google Scholar] [CrossRef]
- Noga, E.J. Fish Disease: Diagnosis and Treatment, 2nd ed.; John Wiley & Sons: Ames, IA, USA, 2010; ISBN 978-0-8138-0697-6. [Google Scholar]
- Li, L.; Chang, M.; Nie, P. Molecular Cloning, Promoter Analysis and Induced Expression of the Complement Component C9 Gene in the Grass Carp Ctenopharyngodon idella. Vet. Immunol. Immunopathol. 2007, 118, 270–282. [Google Scholar] [CrossRef]
- Xu, J.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Effects of Dietary Protein Levels on the Disease Resistance, Immune Function and Physical Barrier Function in the Gill of Grass Carp (Ctenopharyngodon idella ) after Challenged with Flavobacterium columnare. Fish Shellfish Immunol. 2016, 57, 1–16. [Google Scholar] [CrossRef]
- Wei, X.; Babu, V.S.; Lin, L.; Hu, Y.; Zhang, Y.; Liu, X.; Su, J.; Li, J.; Zhao, L.; Yuan, G. Hepcidin Protects Grass Carp (Ctenopharyngodon idellus) against Flavobacterium columnare Infection via Regulating Iron Distribution and Immune Gene Expression. Fish Shellfish Immunol. 2018, 75, 274–283. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, J.; Qu, Z.; Zou, Q.; Liu, X.; Su, J.; Fu, X.; Yuan, G. Administration of Dietary Recombinant Hepcidin on Grass Carp (Ctenopharyngodon idella) against Flavobacterium columnare Infection under Cage Aquaculture Conditions. Fish Shellfish Immunol. 2020, 99, 27–34. [Google Scholar] [CrossRef]
- Li, N.; Lin, Q.; Fu, X.; Guo, H.; Liu, L.; Wu, S. Development and Efficacy of a Novel Streptomycin-Resistant Flavobacterium johnsoniae Vaccine in Grass Carp (Ctenopharyngodon idella ). Aquaculture 2015, 448, 93–97. [Google Scholar] [CrossRef]
- Liu, R.; Lian, Z.; Hu, X.; Lü, A.; Sun, J.; Chen, C.; Liu, X.; Song, Y.; Yiksung, Y. First Report of Vibrio vulnificus Infection in Grass Carp Ctenopharyngodon idellus in China. Aquaculture 2019, 499, 283–289. [Google Scholar] [CrossRef]
- Cao, J.; Huang, A.-L.; Zhu, X.-C.; Li, L.; Li, J.-N. Construction of Vibrio Mimicus Ghosts as a Novel Inactivated Vaccine Candidate and Its Protective Efficacy against Ascites Disease in Grass Carps (Ctenopharyngodon idella). Aquaculture 2018, 485, 147–153. [Google Scholar] [CrossRef]
- Xianghua, L. Population Dynamics of Bothriocephalus acheilognathi (Eucestoda: Bothriocephalidae) in Juvenile Grass Carp Ctenopharyngodon idellus in Pond Culture in South China. Chin. J. Zool. 2002, 48, 154–166. [Google Scholar]
- Yukhimenko, S.S. Parasitic Fauna of Silver Carp Hypophthalmichthys molitrix (Val.), and Grass Carp Ctenopharyngodon idella (Val.) in the Amur River. Fisheries and Marine Service Translation Series No. 2968; Department of the Environment: Nanaimo, BC, Canada, 1972. [Google Scholar]
- Zhao, F.; Li, Y.-W.; Pan, H.-J.; Wu, S.-Q.; Shi, C.-B.; Luo, X.-C.; Li, A.-X. Grass Carp (Ctenopharyngodon idella) TRAF6 and TAK1: Molecular Cloning and Expression Analysis after Ichthyophthirius multifiliis Infection. Fish Shellfish Immunol. 2013, 34, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.-Y.; Shen, J.-Y.; Li, X.-L.; Xu, Y.; Hao, G.-J.; Pan, X.-Y.; Wang, G.-X.; Yin, W.-L. Effect of Sanguinarine from the Leaves of Macleaya Cordata against Ichthyophthirius multifiliis in Grass Carp (Ctenopharyngodon idella). Parasitol. Res. 2010, 107, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Popescu, A.; Cristea, V.; Docan, A.; Ion, S.; Dicu, M.D.; Enache, I. Assessment of the Stress Induced by Decays within a System of Intensive Rearing of the Asian Cyprinids. Aquac. Aquar. Conserv. Legis. 2011, 4, 193–198. [Google Scholar]
- Nitta, M.; Nagasawa, K. Alien Gill Parasites of the Silver Carp Hypophthalmichthys molitrix (Cypriniformes: Cyprinidae) in Tochigi Prefecture, Central Japan. Species Divers. 2020, 25, 61–73. [Google Scholar] [CrossRef]
- Duszynski, D.; Couch, L.; Upton, S. Coccidia (Eimeriidae) of Cypriniformes (Cyprinids). Kansas State University, Manhattan, KS, USA. 2000. Available online: https://www.k-state.edu/parasitology/worldcoccidia/CYPRINIFORMES (accessed on 27 October 2023).
- Hemaprasanth, R.; Raghavendra, A.; Sridhar, N.; Raghunath, M.; Eknath, A. Comparative Susceptibility of Carp Fingerlings to Lernaea cyprinacea Infection. Vet. Parasitol. 2011, 178, 156–162. [Google Scholar] [CrossRef]
- Abbas, F.; Ashraf, M.; Hafeez-ur-Rehman, M.; Iqbal, K.J.; Abbas, S.; Javid, A. Lernaea Susceptibility, Infestation and Its Treatment in Indigenous Major and Exotic Chinese Carps under Polyculture System. Pak. J. Zool. 2014, 46, 1215–1222. [Google Scholar]
- Cross, D.; Stott, B. The Effect of Argulus Foliaceus L. on the Growth and Mortality of a Grass Carp Population. J. Institutional Fish. Manag. 1974, 5, 39–42. [Google Scholar]
- Arthur, J.R.; Lumanlan-Mayo, S. Checklist of the Parasites of Fishes of the Philippines; Food & Agriculture Org.: Rome, Italy, 1997; Available online: https://www.fao.org/3/w6598e/W6598E00.htm (accessed on 24 October 2023).
- Cao, H.; Ou, R.; Li, G.; Yang, X.; Zheng, W.; Lu, L. S Aprolegnia australis R. F. Elliott 1968 Infection in Prussian Carp Carassius gibelio (Bloch, 1782) Eggs and Its Control with Herb Extracts. J. Appl. Ichthyol. 2014, 30, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-T.; Meng, X.-Z.; Li, L.-S.; Dang, Y.-F.; Fang, Y.; Shen, Y.; Xu, X.-Y.; Wang, R.-Q.; Li, J.-L. Biological Parameters, Immune Enzymes, and Histological Alterations in the Livers of Grass Carp Infected with Aeromonas hydrophila. Fish Shellfish Immunol. 2017, 70, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Wang, X.; Zhang, S.; Feng, S.; Yin, L.; Zhou, H. Lipopolysaccharide-Induced Autophagy Participates in the Control of pro-Inflammatory Cytokine Release in Grass Carp Head Kidney Leukocytes. Fish Shellfish Immunol. 2016, 59, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Tang, J.; Liao, J.; Chen, B.; Song, P.; Luo, W.; Xiong, D.; Liu, T.; Gao, Q.; Lu, S.; et al. Mitogen-Activated Protein Kinase Kinase 6 Is Involved in the Immune Response to Bacterial Di-/Tripeptide Challenge in Grass Carp Ctenopharyngodon idella. Fish Shellfish Immunol. 2019, 84, 795–801. [Google Scholar] [CrossRef]
- Buchtíková, S.; Šimková, A.; Rohlenová, K.; Flajšhans, M.; Lojek, A.; Lilius, E.-M.; Hyršl, P. The Seasonal Changes in Innate Immunity of the Common Carp (Cyprinus carpio). Aquaculture 2011, 318, 169–175. [Google Scholar] [CrossRef]
- Ran, X.; Liu, C.; Weng, P.; Xu, X.; Lin, G.; Qi, G.; Yu, N.; Xu, K.; Wu, Z.; Hu, C. Activated Grass Carp STAT6 Up-Regulates the Transcriptional Level and Expression of CCL20 and Bcl-Xl. Fish Shellfish Immunol. 2018, 80, 214–222. [Google Scholar] [CrossRef]
- Lai, Q.; Lin, G.; Ma, M.; Huang, S.; Li, W.; Li, D.; Gu, M.; Mao, H.; Hu, C. IRF-1 Acts as a Positive Regulator in the Transcription of Grass Carp (Ctenopharyngodon idella) IFN Gene. Fish Shellfish Immunol. 2013, 34, 1432–1438. [Google Scholar] [CrossRef]
- Pei, C.; Sun, X.; Zhang, Y.; Li, L.; Gao, Y.; Wang, L.; Kong, X. Molecular Cloning, Expression Analyses of Polymeric Immunoglobulin Receptor Gene and Its Variants in Grass Carp (Ctenopharyngodon idellus) and Binding Assay of the Recombinant Immunoglobulin-like Domains. Fish Shellfish Immunol. 2019, 88, 472–479. [Google Scholar] [CrossRef]
- Chu, P.; He, L.; Yang, C.; Li, Y.; Huang, R.; Liao, L.; Li, Y.; Zhu, Z.; Wang, Y. Characterisation and Function of TRIM23 in Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2019, 88, 627–635. [Google Scholar] [CrossRef]
- Morgans, L.F.; Heidt, G.A. Microscopic Anatomy of the Digestive Tract of the White Amur, Ctenopharyngodon idella Val. J. Ark. Acad. Sci. 1974, 28, 47–49. [Google Scholar]
- Trevisan, P. Histomorphological and Histochemical Researches on the Digestive Tract of the Freshwater Grass Carp, Ctenopharyngodon idella (Cypriniformes). Anat. Anz. 1979, 145, 237–248. [Google Scholar] [PubMed]
- Stroband, H. Growth and Diet Dependant Structural Adaptations of the Digestive Tract in Juvenile Grass Carp (Ctenopharyngodon idella, Val.). J. Fish Biol. 1977, 11, 167–174. [Google Scholar] [CrossRef]
- Bailey, W.M.; Boyd, R.L. Some Observations on the White Amur in Arkansas. Hyacinth Control J. 1972, 10, 20–22. [Google Scholar]
- Hofer, R. Cyprinid Fishes. In Cyprinid Fishes - Systematics, Biology, and Exploitation; Winfield, I.J., Nelson, J.S., Eds.; Springer: Dordrecht, The Netherlands, 1991; ISBN 978-94-010-5369-3. [Google Scholar]
- Liu, Z.-Y.; Wang, Z.; Xu, S.-Y.; Xu, L.-N. Partial Characterization and Activity Distribution of Proteases along the Intestine of Grass Carp, Ctenopharyngodon idella (Val.). Aquac. Nutr. 2008, 14, 31–39. [Google Scholar] [CrossRef]
- Du, Z.-Y.; Tian, L.-X.; Liang, G.-Y.; Lan, H.-B.; Liu, Y.-J. The Intestinal Evacuation and Maximum Daily Consumption of Purified Formulated Diets by Juvenile Grass Carp (Ctenopharyngodon idella). Open Fish Sci. J. 2009, 2. [Google Scholar] [CrossRef]
- Stroband, H.W. Structure and Function of the Digestive Tract of the Grasscarp. PhD Thesis, Wageningen University and Research, Wageningen, The Netherlands, 1980. [Google Scholar]
- Dasgupta, M. Adaptation of the Alimentary Tract to Feeding Habits in the Weed Eating Fish (Grass Carp) Ctenopharyngodon idella (Val.). J. Crop Weed 2009, 5, 197–202. [Google Scholar]
- Becker, A.G.; Gonçalves, J.F.; Garcia, L.O.; Behr, E.R.; Graça, D.L.; Kurtz Filho, M.; Martins, T.; Baldisserotto, B. Morphometric Parameters Comparisons of the Digestive Tract of Four Teleosts with Different Feeding Habits. Ciênc. Rural 2010, 40, 862–866. [Google Scholar] [CrossRef]
- Stroganov, N.S. The Food Selectivity of the Amur Fishes. In Symposium Problems of Fisheries: Exploitation of Plant-Eating Fishes in Water Bodies of USSR; Ashkhabad Academy of Sciences: Turkman, Russia, 1963; pp. 181–191. [Google Scholar]
- Noaillac-Depeyre, J.; Gas, N. Absorption of Protein Macromolecules by the Enterocytes of the Carp (Cyprinus carpio L.). Z. Für Zellforsch. Mikrosk. Anat. 1973, 146, 525–541. [Google Scholar] [CrossRef]
- Stroband, H.; Timmermans, L.P. Meer, HVD Regional Functional Differentiation in the Gut of the Grasscarp, Ctenopharyngodon idella (Val.). Histochemistry 1979, 64, 235–249. [Google Scholar] [CrossRef]
- Stroband, H.; Debets, F. The Ultrastructure and Renewal of the Intestinal Epithelium of the Juvenile Grasscarp, Ctenopharyngodon idella (Val.). Cell Tissue Res. 1978, 187, 181–200. [Google Scholar] [CrossRef]
- Pan, Q.-S.; Fang, Z.-P.; Zhao, Y.-X. Immunocytochemical Identification and Localization of APUD Cells in the Gut of Seven Stomachless Teleost Fishes. World J. Gastroenterol. 2000, 6, 96. [Google Scholar] [CrossRef]
- He, S.; Liang, X.-F.; Li, L.; Sun, J.; Shen, D. Differential Gut Growth, Gene Expression and Digestive Enzyme Activities in Young Grass Carp (Ctenopharyngodon idella) Fed with Plant and Animal Diets. Aquaculture 2013, 410, 18–24. [Google Scholar] [CrossRef]
- Kuang, X.; Ye, Y.; Cai, C.; Wang, Y. Study on the Absorption and Utilization of L-Leucine and L-Tyrosine by the Intestine of Grass Carp (Ctenopharyngodon idellus) in Vitro. ACTA Hydrobiol. Sin. 2005, 29, 429. [Google Scholar]
- Ye, Y.; Cai, C.; Wang, Y. Effects of Starving on Protein Metabolism of Tissues and Organs in the Grass Carp. Chin. J. Zool. 2006, 41, 13. [Google Scholar]
- Tang, L.; Jiang, H.; Cheng, J.; Xu, C. An Review: Digestive Enzymes in Fishery Animals. Sch. Life Sci. Technol. Dalian Fish. Univ. 1998, 167, 68–71. [Google Scholar]
- Das, K.; Tripathi, S. Studies on the Digestive Enzymes of Grass Carp, Ctenopharyngodon idella (Val.). Aquaculture 1991, 92, 21–32. [Google Scholar] [CrossRef]
- Wu, T.-T.; Zhu, X. Studies on the Activity of Digestive Enzymes in Mandarin Fish, Black Carp, Grass Carp, Common Carp, Crucian Carp and Silver Carp. J. Fish. Sci. China 1994, 1, 10–17. [Google Scholar]
- Liu, S.; Feng, L.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Wu, P.; Zeng, Y.-Y.; Xu, S.-D.; Kuang, S.-Y.; Tang, L.; et al. Impact of Exogenous Lipase Supplementation on Growth, Intestinal Function, Mucosal Immune and Physical Barrier, and Related Signaling Molecules mRNA Expression of Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016, 55, 88–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Luo, Y.; Liang, X.-F.; Wang, W.; Wu, J.; Pan, J. Effects of Neutral Phytase Supplementation on Biochemical Parameters in Grass Carp, Ctenopharyngodon idellus, and Gibel Carp, Carassius auratus gibelio, Fed Different Levels of Monocalcium Phosphate. J. World Aquac. Soc. 2013, 44, 56–65. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, Z.; Cao, Y.; Bai, Y.; Yao, B. High Yield Expression of an AHL-Lactonase from Bacillus Sp. B546 in Pichia pastoris and Its Application to Reduce Aeromonas hydrophila Mortality in Aquaculture. Microb. Cell Factories 2010, 9, 1–10. [Google Scholar] [CrossRef]
- Ma, G.; Xu, J.; Tang, M.; Fang, Z. Effects of Ozone on Activity of Proteinase and Amylase in Intestine Tissues in Crass Carp (Ctenopharyngodon idellus C. & V.) Fingerling. J. South China Norm. Univ. Nat. Sci. Ed. 2001, 1–4. [Google Scholar]
- Vasile, G.; Ciornea, E. On the Activity of Some Intestinal Enzymes in the Ctenopharyngodon idella Species. J. Exp. Mol. Biol. 2009, 10, 45–52. [Google Scholar]
- Tran, N.T.; Wang, G.-T.; Wu, S.-G. A Review of Intestinal Microbes in Grass Carp Ctenopharyngodon idellus (Valenciennes). Aquac. Res. 2017, 48, 3287–3297. [Google Scholar] [CrossRef]
- Fuller, R. Probiotics in Man and Animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Fooks, L.J.; Fuller, R.; Gibson, G.R. Prebiotics, Probiotics and Human Gut Microbiology. Int. Dairy J. 1999, 9, 53–61. [Google Scholar] [CrossRef]
- Uzar, T.; Andrzejewski, W.; Mazurkiewicz, J. Microbiome of the Digestive Tract and Probiotic Therapy in Cyprinids. Pol J Nat Sci 2019, 34, 157–170. [Google Scholar]
- Cahill, M.M. Bacterial Flora of Fishes: A Review. Microb. Ecol. 1990, 19, 21–41. [Google Scholar] [CrossRef]
- Trust, T.; Bull, L.; Currie, B.; Buckley, J. Obligate Anaerobic Bacteria in the Gastrointestinal Microflora of the Grass Carp (Ctenopharyngodon idella), Goldfish (Carassius auratus), and Rainbow Trout (Salmo gairdneri). J. Fish. Board Can. 1979, 36, 1174–1179. [Google Scholar] [CrossRef]
- Trust, T.; Sparrow, R. The Bacterial Flora in the Alimentary Tract of Freshwater Salmonid Fishes. Can. J. Microbiol. 1974, 20, 1219–1228. [Google Scholar] [CrossRef]
- Wu, S.; Wang, G.; Angert, E.R.; Wang, W.; Li, W.; Zou, H. Composition, Diversity, and Origin of the Bacterial Community in Grass Carp Intestine. PloS One 2012, 7, e30440. [Google Scholar] [CrossRef]
- Li, H.; Zhong, Q.; Wirth, S.; Wang, W.; Hao, Y.; Wu, S.; Zou, H.; Li, W.; Wang, G. Diversity of Autochthonous Bacterial Communities in the Intestinal Mucosa of Grass Carp (Ctenopharyngodon idellus)(Valenciennes) Determined by Culture-Dependent and Culture-Independent Techniques. Aquac. Res. 2015, 46, 2344–2359. [Google Scholar] [CrossRef]
- Wu, S.; Ren, Y.; Peng, C.; Hao, Y.; Xiong, F.; Wang, G.; Li, W.; Zou, H.; Angert, E.R. Metatranscriptomic Discovery of Plant Biomass-Degrading Capacity from Grass Carp Intestinal Microbiomes. FEMS Microbiol. Ecol. 2015, 91. [Google Scholar] [CrossRef]
- Yang, G.; Jian, S.Q.; Cao, H.; Wen, C.; Hu, B.; Peng, M.; Peng, L.; Yuan, J.; Liang, L. Changes in Microbiota along the Intestine of Grass Carp (Ctenopharyngodon idella): Community, Interspecific Interactions, and Functions. Aquaculture 2019, 498, 151–161. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Xu, W.; Tang, R.; Li, L. Microbiome of Co-Cultured Fish Exhibits Host Selection and Niche Differentiation at the Organ Scale. Front. Microbiol. 2019, 2576. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Roy, R.N.; Sen, S.K.; Ray, A.K. Characterization of Cellulase-Producing Bacteria from the Digestive Tract of Tilapia, Oreochromis mossambica (Peters) and Grass Carp, Ctenopharyngodon idella (Valenciennes). Aquac. Res. 2006, 37, 380–388. [Google Scholar] [CrossRef]
- Ganguly, S.; Prasad, A. Microflora in Fish Digestive Tract Plays Significant Role in Digestion and Metabolism. Rev. Fish Biol. Fish. 2012, 22, 11–16. [Google Scholar] [CrossRef]
- Garrity, G.M. A New Genomics-Driven Taxonomy of Bacteria and Archaea: Are We There Yet? J. Clin. Microbiol. 2016, 54, 1956–1963. [Google Scholar] [CrossRef]
- Han, S.; Liu, Y.; Zhou, Z.; He, S.; Cao, Y.; Shi, P.; Yao, B.; RingÖ, E. Analysis of Bacterial Diversity in the Intestine of Grass Carp (Ctenopharyngodon idellus) Based on 16S rDNA Gene Sequences. Aquac. Res. 2010, 42, 47–56. [Google Scholar] [CrossRef]
- Ni, J.; Yan, Q.; Yu, Y.; Zhang, T. Factors Influencing the Grass Carp Gut Microbiome and Its Effect on Metabolism. FEMS Microbiol. Ecol. 2014, 87, 704–714. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, C.; Yang, G.; Gong, X.; Chen, X.; Xu, L.; Bao, B. Cellulase-Producing Bacteria of Aeromonas Are Dominant and Indigenous in the Gut of Ctenopharyngodon idellus (Valenciennes). Aquac. Res. 2011, 42, 499–505. [Google Scholar] [CrossRef]
- Miller, K.I.; Gibson, S.A. Identification of an Aeromonad and a Homoacetogen from the Intestine of a Grass Carp (Ctenopharyngodon idella). In Proceedings of the 96th Annual Meeting of the South Dakota Academy of Science, Oacoma, SD, USA, 8 April 2011; Available online: https://sdaos.org/wp-content/uploads/pdfs/2011/83-91.pdf (accessed on 8 November 2023).
- Ming, H.; Cheng, L.-J.; Ding, C.-L.; Niu, M.-M.; Zhao, Z.-L.; Ji, W.-L.; Zhang, L.-Y.; Zhang, Y.-M.; Meng, X.-L.; Nie, G.-X. Paracoccus luteus Sp. Nov., Isolated from the Intestine of Grass Carp. Int. J. Syst. Evol. Microbiol. 2020, 70, 543–549. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zheng, Z.; Cong-xin, X.; Bo, H.; Chao-yuan, W.; Gang, H. Isolation of Cellulose—Producing Microbes from the Intestine of Grass Carp (Ctenopharyngodon idellus). In Chinese Fishes; Springer: Berlin/Heidelberg, Germany, 2008; pp. 131–135. [Google Scholar]
- Wang, S.-T.; Meng, X.-Z.; Dai, Y.-F.; Zhang, J.-H.; Shen, Y.; Xu, X.-Y.; Wang, R.-Q.; Li, J.-L. Characterization of the Intestinal Digesta and Mucosal Microbiome of the Grass Carp (Ctenopharyngodon idella). Comp. Biochem. Physiol. Part D Genomics Proteomics 2021, 37, 100789. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Hao, B.; Xie, C.; Luo, X.; Zhang, Z.; Zhu, X. Isolation and Identification of Major Cellulase-Producing Fungi in Intestines of Grass Carp. Chin J Appl Env. Biol 2009, 15, 414–418. [Google Scholar] [CrossRef]
- Lesel, R.; Fromageot, C.; Lesel, M. Cellulose Digestibility in Grass Carp, Ctenopharyngodon idella and in Goldfish, Carassius auratus. Aquaculture 1986, 54, 11–17. [Google Scholar] [CrossRef]
- Wang, S.-T.; Meng, X.-Z.; Zhang, J.-H.; Dai, Y.-F.; Shen, Y.; Xu, X.-Y.; Wang, R.-Q.; Li, J.-L. 16S rRNA Sequencing Analysis of the Correlation between the Intestinal Microbiota and Body-Mass of Grass Carp (Ctenopharyngodon idella). Comp. Biochem. Physiol. Part D Genomics Proteomics 2020, 35, 100699. [Google Scholar] [CrossRef]
- Lü, A.; Hu, X.; Zheng, L.; Zhu, A.; Cao, C.; Jiang, J. Isolation and Characterization of Citrobacter Spp. from the Intestine of Grass Carp Ctenopharyngodon idellus. Aquaculture 2011, 313, 156–160. [Google Scholar] [CrossRef]
- Roy, T.; Mondal, S.; Ray, A.K. Phytase-Producing Bacteria in the Digestive Tracts of Some Freshwater Fish. Aquac. Res. 2009, 40, 344–353. [Google Scholar] [CrossRef]
- Mandal, S.; Ghosh, K. Isolation of Tannase-Producing Microbiota from the Gastrointestinal Tracts of Some Freshwater Fish. J. Appl. Ichthyol. 2013, 29, 145–153. [Google Scholar] [CrossRef]
- Banerjee, S.; Mukherjee, A.; Dutta, D.; Ghosh, K. Evaluation of Chitinolytic Gut Microbiota in Some Carps and Optimization of Culture Conditions for Chitinase Production by the Selected Bacteria. J. Microbiol. Biotechnol. Food Sci. 2015, 2021, 12–19. [Google Scholar] [CrossRef]
- Ni, J.; Yu, Y.; Zhang, T.; Gao, L. Comparison of Intestinal Bacterial Communities in Grass Carp, Ctenopharyngodon idellus, from Two Different Habitats. Chin. J. Oceanol. Limnol. 2012, 30, 757–765. [Google Scholar] [CrossRef]
- Zou, S.; Gong, L.; Khan, T.A.; Pan, L.; Yan, L.; Li, D.; Cao, L.; Li, Y.; Ding, X.; Yi, G.; et al. Comparative Analysis and Gut Bacterial Community Assemblages of Grass Carp and Crucian Carp in New Lineages from the Dongting Lake Area. Microbiologyopen 2020, 9, e996. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Liao, L.; Xu, Q.; He, Z.; Xiao, T.; Wang, J.; Huang, J.; Yu, Y.; Wu, B.; Yan, Q. Host–Microbiota Interactions and Responses to Grass Carp Reovirus Infection in Ctenopharyngodon idellus. Environ. Microbiol. 2021, 23, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wei, J.; Lin, K.; Gan, L.; Wang, J.; Sun, J.; Xu, X.; Liu, L. Intestinal Microbial Profiling of Grass Carp (Ctenopharyngodon idellus) Challenged with Aeromonas hydrophila. Aquaculture 2020, 524, 735292. [Google Scholar] [CrossRef]
- Ke, F.; Gao, Y.; Liu, L.; Zhang, C.; Wang, Q.; Gao, X. Comparative Analysis of the Gut Microbiota of Grass Carp Fed with Chicken Faeces. Environ. Sci. Pollut. Res. 2020, 27, 32888–32898. [Google Scholar] [CrossRef]
- Li, H.; Wu, S.; Wirth, S.; Hao, Y.; Wang, W.; Zou, H.; Li, W.; Wang, G. Diversity and Activity of Cellulolytic Bacteria, Isolated from the Gut Contents of Grass Carp (Ctenopharyngodon idellus)(Valenciennes) Fed on Sudan Grass (Sorghum sudanense) or Artificial Feedstuffs. Aquac. Res. 2016, 47, 153–164. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, J.; Jakovlić, I.; Xiong, F.; Wu, S.; Zou, H.; Li, W.; Li, M.; Wang, G. Gut Segments Outweigh the Diet in Shaping the Intestinal Microbiota Composition in Grass Carp Ctenopharyngodon idellus. AMB Express 2019, 9, 44. [Google Scholar] [CrossRef]
- Tang, T.; Tong, F.; Zhao, S.; Bai, J.; Wei, Z.; Hu, Y.; Liu, S. Effects of Fermented Broussonetia papyrifera on Growth, Intestinal Antioxidant, Inflammation and Microbiota of Grass Carp (Ctenopharyngodon idella). Aquac. Rep. 2021, 20, 100673. [Google Scholar] [CrossRef]
- Li, Z.; Yu, E.; Wang, G.; Yu, D.; Zhang, K.; Gong, W.; Xie, J. Broad Bean (Vicia faba L.) Induces Intestinal Inflammation in Grass Carp (Ctenopharyngodon idellus C. et V) by Increasing Relative Abundances of Intestinal Gram-Negative and Flagellated Bacteria. Front. Microbiol. 2018, 9, 1913. [Google Scholar] [CrossRef]
- Feher, M.; Fauszt, P.; Tolnai, E.; Fidler, G.; Pesti-Asboth, G.; Stagel, A.; Szucs, I.; Biro, S.; Remenyik, J.; Paholcsek, M.; et al. Effects of Phytonutrient-Supplemented Diets on the Intestinal Microbiota of Cyprinus carpio. PloS One 2021, 16, e0248537. [Google Scholar] [CrossRef]
- Tran, N.T.; Xiong, F.; Hao, Y.-T.; Zhang, J.; Wu, S.-G.; Wang, G.-T. Starvation Influences the Microbiota Assembly and Expression of Immunity-Related Genes in the Intestine of Grass Carp (Ctenopharyngodon idellus). Aquaculture 2018, 489, 121–129. [Google Scholar] [CrossRef]
- Dawood, M.A.; Koshio, S. Recent Advances in the Role of Probiotics and Prebiotics in Carp Aquaculture: A Review. Aquaculture 2016, 454, 243–251. [Google Scholar] [CrossRef]
- Guo, X.; Chen, D.-D.; Peng, K.-S.; Cui, Z.-W.; Zhang, X.-J.; Li, S.; Zhang, Y.-A. Identification and Characterization of Bacillus subtilis from Grass Carp (Ctenopharynodon idellus) for Use as Probiotic Additives in Aquatic Feed. Fish Shellfish Immunol. 2016, 52, 74–84. [Google Scholar] [CrossRef]
- Shi, F.; Zi, Y.; Lu, Z.; Li, F.; Yang, M.; Zhan, F.; Li, Y.; Li, J.; Zhao, L.; Lin, L. Bacillus subtilis H2 Modulates Immune Response, Fat Metabolism and Bacterial Flora in the Gut of Grass Carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2020, 106, 8–20. [Google Scholar] [CrossRef]
- Luo, Y.-E.; Zhao, H.; Guo, D.-Y.; Wang, H.; Chen, X.-X.; Wu, Z.-X. Effects of Bacillus subtilis on the Hepatic Lipid Metabolism of Ctenopharyngodn idellus. Acta Hydrobiol. Sin. 2020, 44, 485–493. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, X.; Xie, L.; Peng, X.; Yuan, J.; Chen, X. Effect of Probiotic Bacillus subtilis Ch9 for Grass Carp, Ctenopharyngodon idella (Valenciennes, 1844), on Growth Performance, Digestive Enzyme Activities and Intestinal Microflora. J. Appl. Ichthyol. 2012, 28, 721–727. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, H.; Li, X.; Luo, Y.; Xie, M.; Wu, Z.; Chen, X. Regulatory Effect of Bacillus subtilis on Cytokines of Dendritic Cells in Grass Carp (Ctenopharyngodon idella). Int. J. Mol. Sci. 2019, 20, 389. [Google Scholar] [CrossRef]
- Tang, Z.; Sun, H.; Chen, T.; Lin, Z.; Jiang, H.; Zhou, X.; Shi, C.; Pan, H.; Chang, O.; Ren, P. Oral Delivery of Bacillus subtilis Spores Expressing Cysteine Protease of Clonorchis sinensis to Grass Carp (Ctenopharyngodon idellus): Induces Immune Responses and Has No Damage on Liver and Intestine Function. Fish Shellfish Immunol. 2017, 64, 287–296. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Zhang, J.; Zhu, X.; Zhang, J.; Chen, D.; Wang, K.; Hu, Y.; Chu, W. Effects of Dietary Bacillus natto Supplementation on Growth Performance and the Growth-Related Gene/Micro RNA Expression in the Skeletal Muscle of Grass Carp (Ctenopharyngodon idella). Aquac. Nutr. 2017, 23, 46–53. [Google Scholar] [CrossRef]
- Li, W.; Deng, B.; Cui, Z.; Fu, L.; Chen, N.; Zhou, X.; Shen, W.; Yu, D. Several Indicators of Immunity and Antioxidant Activities Improved in Grass Carp given a Diet Containing Bacillus Additive. J Anim Vet Adv 2012, 11, 2392–2397. [Google Scholar]
- Wu, Z.-Q.; Jiang, C.; Ling, F.; Wang, G.-X. Effects of Dietary Supplementation of Intestinal Autochthonous Bacteria on the Innate Immunity and Disease Resistance of Grass Carp (Ctenopharyngodon idellus). Aquaculture 2015, 438, 105–114. [Google Scholar] [CrossRef]
- Chen, X.; Xie, J.; Liu, Z.; Yin, P.; Chen, M.; Liu, Y.; Tian, L.; Niu, J. Modulation of Growth Performance, Non-Specific Immunity, Intestinal Morphology, the Response to Hypoxia Stress and Resistance to Aeromonas hydrophila of Grass Carp (Ctenopharyngodon idella) by Dietary Supplementation of a Multi-Strain Probiotic. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 231, 108724. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Use of Probiotics Bacillus coagulans, Rhodopseudomonas palustris and Lactobacillus acidophilus as Growth Promoters in Grass Carp (Ctenopharyngodon idella) Fingerlings. Aquac. Nutr. 2011, 17, e372–e378. [Google Scholar] [CrossRef]
- Chena, J.; Caoa, X.; Liua, L.; Cao, X. Immunomodulation with Probiotics Against Aeromonas veronii in Grass Carp (Ctenopharyngodon idellus). Israeli J. Aquaculture 2018, 70, 1–14. [Google Scholar] [CrossRef]
- Chen, X.; Yang, J.; Ling, Z.; Zhou, T.; Zhou, B.; Wang, H.; Li, X.; Liu, P. Gut Escherichia coli Expressing Pb2+-Adsorption Protein Reduces Lead Accumulation in Grass Carp, Ctenopharyngodon idellus. Environ. Pollut. 2021, 276, 116634. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; He, H.; Li, D.; Cao, L.; Khan, T.A.; Li, Y.; Pan, L.; Yan, L.; Ding, X.; Sun, Y.; et al. A New Isolate of Pediococcus pentosaceus (SL001) with Antibacterial Activity against Fish Pathogens and Potency in Facilitating the Immunity and Growth Performance of Grass Carps. Front. Microbiol. 2019, 1384. [Google Scholar] [CrossRef]
- Pan, H.; Li, Z.; Xie, J.; Liu, D.; Wang, H.; Yu, D.; Zhang, Q.; Hu, Z.; Shi, C. Berberine Influences Blood Glucose via Modulating the Gut Microbiome in Grass Carp. Front. Microbiol. 2019, 10, 1066. [Google Scholar] [CrossRef]
- Wang, N.; Guo, Z.; Zhang, Y.; Zhang, P.; Liu, J.; Cheng, Y.; Zhang, L.; Li, Y. Effect on Intestinal Microbiota, Bioaccumulation, and Oxidative Stress of Carassius auratus gibelio under Waterborne Cadmium Exposure. Fish Physiol. Biochem. 2020, 46, 2299–2309. [Google Scholar] [CrossRef]
- Xiong, F.; Wu, S.; Qin, L.; Shi, M.; Li, W.; Zou, H.; Li, M.; Wang, G. Transcriptome Analysis of Grass Carp Provides Insights into Disease-Related Genes and Novel Regulation Pattern of Bile Acid Feedback in Response to Lithocholic Acid. Aquaculture 2019, 500, 613–621. [Google Scholar] [CrossRef]
- Sun, B.-Y.; Yang, H.-X.; He, W.; Tian, D.-Y.; Kou, H.-Y.; Wu, K.; Yang, C.-G.; Cheng, Z.-Q.; Song, X.-H. A Grass Carp Model with an Antibiotic-Disrupted Intestinal Microbiota. Aquaculture 2021, 541, 736790. [Google Scholar] [CrossRef]
- Cao, S.-L.; Guo, J.-J.; Zhao, W.; Yang, W.-F.; Zhang, S.-L.; Tao, H.-Z.; Li, J.-N. Impacts of Oral Vibrio mimicus Double-Targeted DNA Vaccine on the Gut Microbiota in Grass Carps (Ctenopharyngodon idella) and Correlations with Intestinal Mucosa Innate Immunity. Aquaculture 2021, 533, 736201. [Google Scholar] [CrossRef]
- Xu, J.; Wu, P.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Zhou, X.-Q.; et al. Optimal Dietary Protein Level Improved Growth, Disease Resistance, Intestinal Immune and Physical Barrier Function of Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016, 55, 64–87. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.-W.; Jiang, W.-D.; Liu, Y.; Wu, P.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Zhou, X.-Q.; et al. Threonine Deficiency Decreased Intestinal Immunity and Aggravated Inflammation Associated with NF-κB and Target of Rapamycin Signalling Pathways in Juvenile Grass Carp (Ctenopharyngodon idella) after Infection with Aeromonas hydrophila. Br. J. Nutr. 2017, 118, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-J.; Yang, H.-J.; Liu, Y.-J.; Chen, S.-J.; Guo, D.-Q.; Yu, Y.; Tian, L.-X. Effects of Graded Levels of Threonine on Growth Performance, Biochemical Parameters and Intestine Morphology of Juvenile Grass Carp Ctenopharyngodon idella. Aquaculture 2014, 424, 113–119. [Google Scholar] [CrossRef]
- Jiang, W.-D.; Deng, Y.-P.; Liu, Y.; Qu, B.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Wu, P.; Zhang, Y.-A.; et al. Dietary Leucine Regulates the Intestinal Immune Status, Immune-Related Signalling Molecules and Tight Junction Transcript Abundance in Grass Carp (Ctenopharyngodon idella). Aquaculture 2015, 444, 134–142. [Google Scholar] [CrossRef]
- Wu, P.; Tang, L.; Jiang, W.; Hu, K.; Liu, Y.; Jiang, J.; Kuang, S.; Tang, W.; Zhang, Y.; Zhou, X.; et al. The Relationship between Dietary Methionine and Growth, Digestion, Absorption, and Antioxidant Status in Intestinal and Hepatopancreatic Tissues of Sub-Adult Grass Carp (Ctenopharyngodon idella). J. Anim. Sci. Biotechnol. 2017, 8, 1–14. [Google Scholar] [CrossRef]
- Su, Y.-N.; Wu, P.; Feng, L.; Jiang, W.-D.; Jiang, J.; Zhang, Y.-A.; Figueiredo-Silva, C.; Zhou, X.-Q.; Liu, Y. The Improved Growth Performance and Enhanced Immune Function by DL-Methionyl-DL-Methionine Are Associated with NF-κB and TOR Signalling in Intestine of Juvenile Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2018, 74, 101–118. [Google Scholar] [CrossRef]
- Luo, J.-B.; Feng, L.; Jiang, W.-D.; Liu, Y.; Wu, P.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhang, Y.-A.; Zhou, X.-Q. The Impaired Intestinal Mucosal Immune System by Valine Deficiency for Young Grass Carp (Ctenopharyngodon idella) Is Associated with Decreasing Immune Status and Regulating Tight Junction Proteins Transcript Abundance in the Intestine. Fish Shellfish Immunol. 2014, 40, 197–207. [Google Scholar] [CrossRef]
- Li, W.; Feng, L.; Liu, Y.; Jiang, W.-D.; Kuang, S.-Y.; Jiang, J.; Li, S.-H.; Tang, L.; Zhou, X.-Q. Effects of Dietary Phenylalanine on Growth, Digestive and Brush Border Enzyme Activities and Antioxidant Capacity in the Hepatopancreas and Intestine of Young Grass Carp (Ctenopharyngodon idella). Aquac. Nutr. 2015, 21, 913–925. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, Y.; Zhou, X.-Q.; Zeng, X.-Y.; Feng, L.; Liu, Y.; Jiang, W.-D.; Li, S.-H.; Li, D.-B.; Wu, X.-Q.; et al. Effects of Dietary Glutamate Supplementation on Growth Performance, Digestive Enzyme Activities and Antioxidant Capacity in Intestine of Grass Carp (Ctenopharyngodon idella). Aquac. Nutr. 2015, 21, 935–941. [Google Scholar] [CrossRef]
- Wen, H.; Feng, L.; Jiang, W.; Liu, Y.; Jiang, J.; Li, S.; Tang, L.; Zhang, Y.; Kuang, S.; Zhou, X. Dietary Tryptophan Modulates Intestinal Immune Response, Barrier Function, Antioxidant Status and Gene Expression of TOR and Nrf2 in Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2014, 40, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, X.; Han, D.; Jin, J.; Zhu, X.; Yang, Y.; Xie, S. Effects of Genetically Modified and Non-Genetically Modified Soybeans with Different Heat Treatments on Growth and Health of Cyprinidae Species with Different Feeding Habits. Aquac. Res. 2019, 50, 599–610. [Google Scholar] [CrossRef]
- Shi, L.; Feng, L.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Wu, P.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Immunity Decreases, Antioxidant System Damages and Tight Junction Changes in the Intestine of Grass Carp (Ctenopharyngodon idella) during Folic Acid Deficiency: Regulation of NF-κB, Nrf2 and MLCK mRNA Levels. Fish Shellfish Immunol. 2016, 51, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Li, S.-Q.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; et al. Deficiency of Dietary Niacin Impaired Intestinal Mucosal Immune Function via Regulating Intestinal NF-κB, Nrf2 and MLCK Signaling Pathways in Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016, 49, 177–193. [Google Scholar] [CrossRef]
- Li, S.-Q.; Feng, L.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Wu, P.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Deficiency of Dietary Niacin Impaired Gill Immunity and Antioxidant Capacity, and Changes Its Tight Junction Proteins via Regulating NF-κB, TOR, Nrf2 and MLCK Signaling Pathways in Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016, 55, 212–222. [Google Scholar] [CrossRef]
- Wen, L.-M.; Jiang, W.-D.; Liu, Y.; Wu, P.; Zhao, J.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Evaluation the Effect of Thiamin Deficiency on Intestinal Immunity of Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2015, 46, 501–515. [Google Scholar] [CrossRef]
- Chen, L.; Feng, L.; Jiang, W.-D.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Intestinal Immune Function, Antioxidant Status and Tight Junction Proteins mRNA Expression in Young Grass Carp (Ctenopharyngodon idella) Fed Riboflavin Deficient Diet. Fish Shellfish Immunol. 2015, 47, 470–484. [Google Scholar] [CrossRef]
- Jiang, W.-D.; Zhou, X.-Q.; Zhang, L.; Liu, Y.; Wu, P.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Vitamin A Deficiency Impairs Intestinal Physical Barrier Function of Fish. Fish Shellfish Immunol. 2019, 87, 546–558. [Google Scholar] [CrossRef]
- Jiang, W.-D.; Zhang, L.; Feng, L.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Inconsistently Impairment of Immune Function and Structural Integrity of Head Kidney and Spleen by Vitamin A Deficiency in Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2020, 99, 243–256. [Google Scholar] [CrossRef]
- Wei, S.-P.; Jiang, W.-D.; Wu, P.; Liu, Y.; Zeng, Y.-Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhang, Y.-A.; Zhou, X.-Q.; et al. Dietary Magnesium Deficiency Impaired Intestinal Structural Integrity in Grass Carp (Ctenopharyngodon idella). Sci. Rep. 2018, 8, 1–20. [Google Scholar] [CrossRef]
- Jiang, W.-D.; Tang, R.-J.; Liu, Y.; Kuang, S.-Y.; Jiang, J.; Wu, P.; Zhao, J.; Zhang, Y.-A.; Tang, L.; Tang, W.-N.; et al. Manganese Deficiency or Excess Caused the Depression of Intestinal Immunity, Induction of Inflammation and Dysfunction of the Intestinal Physical Barrier, as Regulated by NF-κB, TOR and Nrf2 Signalling, in Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2015, 46, 406–416. [Google Scholar] [CrossRef]
- Wu, P.; Zheng, X.; Zhou, X.-Q.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhang, Y.-A.; Feng, L. Deficiency of Dietary Pyridoxine Disturbed the Intestinal Physical Barrier Function of Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2018, 74, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Dietary Pyridoxine Deficiency Reduced Growth Performance and Impaired Intestinal Immune Function Associated with TOR and NF-κB Signalling of Young Grass Carp (Ctenopharyngodon Idella). Fish Shellfish Immunol. 2017, 70, 682–700. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-A.; Jiang, W.-D.; Feng, L.; Liu, Y.; Wu, P.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Dietary Myo-Inositol Deficiency Decreased the Growth Performances and Impaired Intestinal Physical Barrier Function Partly Relating to Nrf2, Jnk, E2f4 and Mlck Signaling in Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2017, 67, 475–492. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-A.; Jiang, W.-D.; Feng, L.; Liu, Y.; Wu, P.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Dietary Myo-Inositol Deficiency Decreased Intestinal Immune Function Related to NF-κB and TOR Signaling in the Intestine of Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2018, 76, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Cheng, S.; Xiang, X.; Liu, W.; Yu, D.; Yang, Y.; Zhou, J.; Huang, F.; Dong, G.-F. Dietary Conjugated Linoleic Acid Modulates Morphology, Selective Immune Parameters, and Gene Expressions in the Intestine of Grass Carp. Fish Shellfish Immunol. 2019, 86, 536–548. [Google Scholar] [CrossRef]
- Zeng, Y.-Y.; Jiang, W.-D.; Liu, Y.; Wu, P.; Zhao, J.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Dietary Alpha-Linolenic Acid/Linoleic Acid Ratios Modulate Intestinal Immunity, Tight Junctions, Anti-Oxidant Status and mRNA Levels of NF-κB P65, MLCK and Nrf2 in Juvenile Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016, 51, 351–364. [Google Scholar] [CrossRef]
- Tian, L.; Zhou, X.-Q.; Jiang, W.-D.; Liu, Y.; Wu, P.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Sodium Butyrate Improved Intestinal Immune Function Associated with NF-κB and p38MAPK Signalling Pathways in Young Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2017, 66, 548–563. [Google Scholar] [CrossRef]
- Sughra, F.; Hafeez-ur-Rehman, M.; Abbas, F.; Altaf, I.; Aslam, S.; Ali, A.; Khalid, M.; Mustafa, G.; Azam, S.M. Evaluation of Oil-Based Inactivated Vaccine against Aeromonas hydrophila Administered to Labeo rohita, Cirrhinus mrigala and Ctenopharyngodon idella at Different Concentrations: Immune Response, Immersion Challenge, Growth Performance and Histopathology. Aquac. Rep. 2021, 21, 100885. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Peng, Y.; Zhou, X.-Q. Cinnamaldehyde Improved Intestine Immune Function and Alleviated Inflammation Associated with NF-κB Pathways in Grass Carp (Ctenopharyngodon idella) after Infection with Aeromonas hydrophila. Aquac. Rep. 2021, 21, 100837. [Google Scholar] [CrossRef]
- Tie, H.-M.; Jiang, W.-D.; Feng, L.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Dietary Nucleotides in the Diets of On-Growing Grass Carp (Ctenopharyngodon idella) Suppress Aeromonas hydrophila Induced Intestinal Inflammation and Enhance Intestinal Disease-Resistance via NF-κB and TOR Signaling. Aquaculture 2021, 533, 736075. [Google Scholar] [CrossRef]
- Shi, F.; Lu, Z.; Yang, M.; Li, F.; Zhan, F.; Zhao, L.; Li, Y.; Li, Q.; Li, J.; Li, J.; et al. Astragalus Polysaccharides Mediate the Immune Response and Intestinal Microbiota in Grass Carp (Ctenopharyngodon idellus). Aquaculture 2021, 534, 736205. [Google Scholar] [CrossRef]
- Duan, X.-D.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Tan, B.-P.; Yang, Q.-H.; Kuang, S.-Y.; Tang, L.; et al. The Dynamic Process of Dietary Soybean β-Conglycinin in Digestion, Absorption, and Metabolism among Different Intestinal Segments in Grass Carp (Ctenopharyngodon idella). Fish Physiol. Biochem. 2020, 46, 1361–1374. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.-D.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Tan, B.-P.; Yang, Q.-H.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q.; et al. Soybean β-Conglycinin Caused Intestinal Inflammation and Oxidative Damage in Association with NF-κB, TOR and Nrf2 in Juvenile Grass Carp (Ctenopharyngodon idella): Varying among Different Intestinal Segments. Fish Shellfish Immunol. 2019, 95, 105–116. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, W.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.; Tang, L.; Zhang, Y.; Zhou, X.; Feng, L. Gossypol Reduced the Intestinal Amino Acid Absorption Capacity of Young Grass Carp (Ctenopharyngodon idella). Aquaculture 2018, 492, 46–58. [Google Scholar] [CrossRef]
- Wang, K.-Z.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhang, Y.-A.; Zhou, X.-Q. Dietary Gossypol Reduced Intestinal Immunity and Aggravated Inflammation in On-Growing Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2019, 86, 814–831. [Google Scholar] [CrossRef]
- Liu, S.; Yan, L.; Zhang, Y.; Junaid, M.; Wang, J. Polystyrene Nanoplastics Exacerbated the Ecotoxicological and Potential Carcinogenic Effects of Tetracycline in Juvenile Grass Carp (Ctenopharyngodon idella). Sci. Total Environ. 2021, 803, 150027. [Google Scholar] [CrossRef]
- Al-Ali, A.A.; Al-Sultan, E.Y.; AL-Sultan, F.A. Histopathological Effects of Toxic Alga Nostoc Muscurum on Juvenile Grass Carp Fish (Ctenopharyngodon idella Val. 1844). J Marsh Bull 2011, 6, 32–61. [Google Scholar]
- Qu, F.; Tang, J.; Peng, X.; Zhang, H.; Shi, L.; Huang, Z.; Xu, W.; Chen, H.; Shen, Y.; Yan, J.; et al. Two Novel MKKs (MKK4 and MKK7) from Ctenopharyngodon idella Are Involved in the Intestinal Immune Response to Bacterial Muramyl Dipeptide Challenge. Dev. Comp. Immunol. 2019, 93, 103–114. [Google Scholar] [CrossRef]
Citation | Geographic Region(s) | Description of Topics Included |
---|---|---|
[1] | Russia, including the Amur River Basin; Eastern Europe | Review of Russian language literature on grass carp; topics include geographical distribution; comparison of morphology between introduced and native populations; reproductive biology; growth and size at various ages; and feeding habits |
[10] | Yangtze River, China | English translation and context for a comprehensive Chinese study on the early development of grass carp and three other species in the family Xenocyprididae |
[11] | China and Japan | Includes grass carp and other carps; topics are morphology, classification, geographical distribution in China, feeding habits, growth, reproduction in the wild, artificial propagation, rearing in aquaculture |
[12] | Global | Structural adaptations of grass carp associated with feeding on plants, feeding efficiency, and polyculture of grass carp and other herbivorous fish |
[13] | Canada | Grass carp feeding habits, reproduction, parasites, predators, ecological effects upon introduction, factors influencing invasive potential |
[14] | United States | Aquatic vegetation control using grass carp, feeding habits, digestion, reproduction, growth, potential tradeoffs of their introduction |
[15] | Malacca, Malaysia | Grass carp rate of growth, sex differences, age and size at maturity, natural and artificial spawning, pituitary hormones |
[16] | Global | Estimating triploid induction in batches of larval fish, including grass carp and other fish species |
[9] | Canada; North America; global | Physical description of grass carp, native distribution, non-native distribution globally and in North America prior to 2016, predicted future range in North America, growth, physiological tolerances, reproduction, feeding and diet, habitat, predators, behavior, parasites, pathogens, ecological effects upon introduction, human use, and conservation status |
[17] | United States | Grass carp history in the United States, growth, factors affecting food consumption, selection of plant foods |
[18] | United States | Grass carp size, taxonomy, identification, life history and biology, native and non-native range, status in the United States, effects upon introduction, diseases and parasites |
[19] | United States | Grass carp morphology, anatomy, growth rate, feeding habits, macrophyte selection, artificial stocking, effects on water quality, and reproduction |
[8] | — | Natural habitat, introductions, environmental consequences of stocking, stocking density |
[20] | Global | Grass carp taxonomy, biology, summary of invasiveness, description, global distribution and introductions, food sources, predators, environmental effect, effect on humans |
[21] | Montana, United States | Grass carp description, taxonomy, distribution, growth, life cycle, reproduction, habitat, diseases, genetics, food selection, feeding behavior, environmental effects, potential for escape, dispersal, and establishment in Montana |
[22] | United States | Includes grass carp and other cypriniform species considered invasive in the United States; topics include description, reproduction, and spawning requirements |
[23] | United States | Identification key for grass carp and other cypriniforms considered invasive in the United States |
[2] | China | Review of Chinese language literature on grass carp; topics include reproductive physiology, biology, and ecology; endocrinology; native distribution; diet and growth across all life stages; differences among populations; grass carp introductions outside the native range; the effects of river dams; and the effects of environmental pollutants |
Grass Carp Diet and Behavior | Carp Control Based on Physiological Constraints, Toxicity, and Biology | Grass Carp Gut Physiology and Related Control Pathways |
---|---|---|
Aquaculture | Antimycin | Cellulose |
Attract | Lethal | Digestion |
Avoid | Lethal dose | Food particle size |
Bait | Rotenone | Food milling |
Commercial diet | Toxic | Gastrointestine |
Deter | Toxic dose | Gastrointestine enzyme |
Diet | Toxic food | Gastrointestine pH |
Food | Toxic plant | Gut |
Food selection | Toxicity | Gut enzymes |
Foraging | Ziram | Gut pH |
Grazing | Intestine | |
Gut content | Intestine enzyme | |
Gut content analysis | Intestine pH | |
Management bait | Toxin processes | |
Plant morphology | ||
Plant texture | ||
PrenFish | ||
Prentiss | ||
Raising | ||
Seasonal behavior | ||
Wild diet |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wildhaber, M.L.; West, B.M.; Ditter, K.K.; Moore, A.P.; Peterson, A.S. A Review of Grass Carp and Related Species Literature on Diet, Behavior, Toxicology, and Physiology Focused on Informing Development of Controls for Invasive Grass Carp Populations in North America. Fishes 2023, 8, 547. https://doi.org/10.3390/fishes8110547
Wildhaber ML, West BM, Ditter KK, Moore AP, Peterson AS. A Review of Grass Carp and Related Species Literature on Diet, Behavior, Toxicology, and Physiology Focused on Informing Development of Controls for Invasive Grass Carp Populations in North America. Fishes. 2023; 8(11):547. https://doi.org/10.3390/fishes8110547
Chicago/Turabian StyleWildhaber, Mark L., Benjamin M. West, Karlie K. Ditter, Adrian P. Moore, and Alex S. Peterson. 2023. "A Review of Grass Carp and Related Species Literature on Diet, Behavior, Toxicology, and Physiology Focused on Informing Development of Controls for Invasive Grass Carp Populations in North America" Fishes 8, no. 11: 547. https://doi.org/10.3390/fishes8110547
APA StyleWildhaber, M. L., West, B. M., Ditter, K. K., Moore, A. P., & Peterson, A. S. (2023). A Review of Grass Carp and Related Species Literature on Diet, Behavior, Toxicology, and Physiology Focused on Informing Development of Controls for Invasive Grass Carp Populations in North America. Fishes, 8(11), 547. https://doi.org/10.3390/fishes8110547