The Bioeconomic Analysis of Hybrid Giant Grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) and Green Grouper (Epinephelus malabaricus): A Case Study in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Input and Study Site
2.2. Economic Analysis
2.2.1. Cost–Benefit Analysis
- (1)
- Cost variables (NTD/year): costi/unit area (fen)
- Fry cost (FC), feed cost (FDC), labor cost (LC), water–electricity cost (WEC) and other cost (OC)
- (2)
- Total return (TR) (NTD/year): stocking density (piece/fen) × survival rate (%) × harvest size (kg/piece) × purchasing price (NTD/kg)
- (3)
- Total cost (TC)(NTD/year): fry cost + feed cost + personnel cost + water–electricity cost + other costs (NTD/year)
- (4)
- Net return (NR) (NTD/year): total earning (NTD/year)-total cost (NTD/year)
- (5)
- Benefit–cost ratio (BCR): BCRn = NRn/TCn
- (6)
- Profit rate (PR): PRn = NRn/TRn
2.2.2. Multivariate Analysis
Mahalanobis Distances and Canonical Discriminant Function
Cobb-Douglas Production Function
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rimmer, M.A.; Glamuzina, B. A review of grouper (Family Serranidae: Subfamily Epinephelinae) aquaculture from a sustainability science perspective. Rev. Aquac. 2019, 11, 58–87. [Google Scholar] [CrossRef]
- FAO. FishStatJ, a Tool for Fisheries Statistics Analysis; FAO Fisheries and Aquaculture Department, FIPS-Statistics and Information: Rome, Italy, 2017. [Google Scholar]
- Fisheries Annual Report 2018. Annual Report of Fishery Statistics; Fisheries Department of the Council of Agriculture, Executive Yuan: Taipei, Taiwan, 2018. [Google Scholar]
- Chen, J.C.; Chen, T.L.; Wang, H.L.; Chang, P.C. Underwater abnormal classification system based on deep learning: A case study on aquaculture fish farm in Taiwan. Aquac. Eng. 2022, 99, 102290. [Google Scholar] [CrossRef]
- Gjedrem, T.; Robinson, N.; Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture 2012, 350–353, 117–129. [Google Scholar] [CrossRef]
- James, C.M.; Al-Thobaiti, S.A.; Rasem, B.M.; Carlos, M.H. Potential of grouper hybrid (Epinephelus fuscoguttatus × E. polyphekadion) for aquaculture. ICLARM Q. 1999, 22, 19–23. [Google Scholar]
- Glamuzina, B.; Glavić, N.; Skaramuca, B.; Kožul, V.; Tutman, P. Early development of the hybrid Epinephelus costae ♀ × E. marginatus ♂. Aquaculture 2001, 198, 55–61. [Google Scholar] [CrossRef]
- Ch’ng, C.L.; Senoo, S. Egg and larval development of a new hybrid grouper, tiger grouper Epinephelus fuscoguttatus × giant grouper E. lanceolatus. Aquac. Sci. 2008, 56, 505–512. [Google Scholar] [CrossRef]
- Chu, K.I.C.; Shaleh, S.R.M.; Akazawa, N.; Oota, Y.; Senoo, S. Egg and larval development of a new hybrid orange-spotted grouper Epinephelus coioides × giant grouper E. lanceolatus. Aquac. Sci. 2010, 58, 1–10. [Google Scholar] [CrossRef]
- Bartley, D.M.; Rana, K.; Immink, A.J. The use of inter-specific hybrids in aquaculture and fisheries. Rev. Fish Biol. Fish. 2001, 10, 325–337. [Google Scholar] [CrossRef]
- Huang, W.; Liu, Q.; Xie, J.; Wang, W.; Xiao, J.; Li, S.; Zhang, H.; Zhang, Y.; Liu, S.; Lin, H. Characterization of triploid hybrid groupers from interspecies hybridization (Epinephelus coioides ♀ × Epinephelus lanceolatus ♂). Aquac. Res. 2014, 47, 2195–2204. [Google Scholar] [CrossRef]
- Afero, F.; Miao, S.; Perez, A.A. Economic analysis of tiger grouper Epinephelus fuscoguttatus and humpback grouper Cromileptes altivelis commercial cage culture in Indonesia. Aquac. Int. 2010, 18, 725–739. [Google Scholar] [CrossRef]
- Huang, C.T.; Miao, S.; Nan, F.H.; Jung, S.M. Study on regional production and economy of cobia Rachycentron canadum commercial cage culture. Aquacult Int. 2011, 19, 649–664. [Google Scholar] [CrossRef]
- Mohammad, T.; Moulick, S.; Mukherjee, C.K. Economic feasibility of goldfish (Carassius auratus Linn.) recirculating aquaculture system. Aquac. Res. 2018, 49, 2945–2953. [Google Scholar] [CrossRef]
- Nguyen, P.V.; Huang, C.T.; Hieu, T.K.; Hsiao, Y.J. Economic evaluation for improving productivity of brine shrimp Artemia franciscana culture in the Mekong Delta, Vietnam. Aquaculture 2020, 526, 735425. [Google Scholar] [CrossRef]
- Miao, S.; Tang, H.C. Bioeconomic analysis of improving management productivity regarding grouper Epinepelus malabaricus farming in Taiwan. Aquaculture 2002, 211, 151–169. [Google Scholar] [CrossRef]
- Miao, S.; Jen, C.C.; Huang, C.T.; Hu, S.H. Ecological and economic analysis for cobia Rachycentron canadum commercial cage culture in Taiwan. Aquac. Int. 2009, 17, 125–141. [Google Scholar] [CrossRef]
- Huang, C.T.; Nguyen, P.V.; Chen, Y.T.; Liang, T.T.; Nan, F.H.; Liu, P.C. Improving productivity management of commercial abalone Haliotis diversicolor supertexta and Haliotis discus hannai aquaculture in Taiwan: A bioeconomic analysis. Aquaculture 2019, 512, 734323. [Google Scholar] [CrossRef]
- Huang, C.-T.; Afero, F.; Hung, C.-W.; Chen, B.-Y.; Nan, F.-H.; Chiang, W.-S.; Tang, H.-J.; Kang, C.-K. Economic feasibility assessment of cage aquaculture in offshore wind power generation areas in Changhua County, Taiwan. Aquaculture 2022, 548, 737611. [Google Scholar] [CrossRef]
- Shinji, J.; Nohara, S.; Yagi, N.; Wilder, M. Bio-economic analysis of super-intensive closed shrimp farming and improvement of management plans: A case study in Japan. Fish. Sci. 2019, 85, 1055–1065. [Google Scholar] [CrossRef]
- Llorente, I.; Luna, L. Bioeconomic modelling in aquaculture: An overview of the literature. Aquac. Int. 2016, 24, 931–948. [Google Scholar] [CrossRef]
- Campbell, H.F.; Brown, R.P.C. A multiple account framework for cost–benefit analysis. Eval. Program Plan. 2005, 28, 23–32. [Google Scholar] [CrossRef]
- Engle, C.R. Aquaculture Economics and Financing Management and Analysis; Wiley-Blackwell: Ames, IA, USA, 2010; pp. 163–165. [Google Scholar]
- Farel, R.; Yannou, B.; Ghaffari, A.; Leroy, Y. A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: A systematic approach. Resour. Conserv. Recycl. 2013, 74, 54–65. [Google Scholar] [CrossRef]
- Dalton, G.; Bardócz, T.; Blanch, M.; Campbell, D.; Johnson, K.; Lawrence, G.; Lilas, T.; Friis-Madsen, E.; Neumann, F.; Nikitas, N.; et al. Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies. Renew. Sustain. Energy Rev. 2019, 107, 338–359. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Q.; Wang, H. Cost-benefit analysis of waste photovoltaic module recycling in China. Waste Manag. 2020, 118, 491–500. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, T. Cost-Benefit Analysis and the environment: The time horizon is of the essence. Environ. Impact Assess. Rev. 2021, 89, 106587. [Google Scholar] [CrossRef]
- Academia Sinica. The Map and Remote Sensing Imagery Digital Archive Project. 2019. Available online: http://gis.rchss.sinica.edu.tw/mapdap/ (accessed on 1 June 2019).
- Boardman, A.E.; Greenberg, D.H.; Vining, A.R.; Weimer, D.L. Cost-Benefit Analysis: Concepts and Practice; Prentice Hall: Bergen, NJ, USA, 2006. [Google Scholar]
- Tabachnick, G.B.; Fidell, L.S. Using Multivariate Statistics, 15th ed.; Pearson/Allyn and Bacon: Boston, MA, USA, 2007. [Google Scholar]
- Manly, B.F.J. Multivariate Statistical Methods: A Primer; Chapman and Hall: Boca Raton, FL, USA, 1986. [Google Scholar]
- Marte, C.L. Larviculture of marine species in Southeast Asia: Current research and industry prospect. Aquaculture 2003, 227, 293–304. [Google Scholar] [CrossRef]
- Leong, T.S. Grouper Culture. In Tropical Mariculture; De Silva, S.S., Ed.; Elsevier Science: Amsterdam, The Netherlands, 1998; pp. 423–448. [Google Scholar]
- Poot-López, G.R.; Gasca-Leyva, E. Substitution of balanced feed with chaya, Cnidoscolus chayamansa, leaf in tilapia culture: A bioeconomic evaluation. J. Theworld Aquac. Soc. 2009, 40, 351–362. [Google Scholar] [CrossRef]
- Huang, C.T.; Afero, F.; Lu, F.Y.; Chen, B.Y.; Huang, P.L.; Lan, H.Y.; Hou, Y.L. Bioeconomic evaluation of Eleutheronema tetradactylum farming: A case study in Taiwan. Fish. Sci. 2022, 88, 437–447. [Google Scholar] [CrossRef]
- Dennis, L.P.; Ashford, G.; Thai, T.Q.; In, V.V.; Nihn, N.H.; Elizur, A. Hybrid grouper in Vietnamese aquaculture: Production approaches and profitability of a promising new crop. Aquaculture 2020, 522, 735108. [Google Scholar] [CrossRef]
- Wu, R.S.S.; Lam, K.S.; Mackay, D.W.; Lau, T.S.; Yam, V. Impact of marine fish farming on water quality and bottom sediment: A case study in the sub-tropical environment. Mar. Environ. Res. 1994, 38, 115–145. [Google Scholar] [CrossRef]
- Petersen, E.H.; Chinh, D.T.M.; Diu, N.T.; Van Phuoc, V.; Phuong, T.H.; Van Dung, N.; Dat, N.K.; Giang, P.T.; Glencross, B.D. Bioeconomics of gropuper, Serranidae: Epinephelinae, culture in Vietnam. Rev. Fish. Sci. 2013, 21, 49–57. [Google Scholar] [CrossRef]
- Duray, M.N.; Estudillo, C.B.; Alpasan, L.G. The effect of background color and rotifer density on rotifer intake, growth and survival of the grouper (Epinephelus suillus) larvae. Aquaculture 1996, 146, 217–224. [Google Scholar] [CrossRef]
- Glamuzina, B.; Skaramuca, B.; Glavić, N.; Kožul, V. Preliminary studies on reproduction and early life stages in rearing trials with dusky grouper, Epinephelus marginatus (Lowe, 1834). Aquac. Res. 1998, 29, 769–771. [Google Scholar] [CrossRef]
- Duray, M.N.; Estudillo, C.B.; Alpasan, L.G. Larval rearing of the grouper Epinephelus suillus under laboratory conditions. Aquaculture 1997, 150, 63–76. [Google Scholar] [CrossRef]
- Kohno, H.; Ordonio-Aguilar, R.S.; Ohno, A.; Taki, Y. Why is grouper larval rearing difficult? An approach from the development of the feeding apparatus in early stage larvae of the grouper, Epinephelus coioides. Ichthyol. Res. 1997, 44, 267–274. [Google Scholar] [CrossRef]
- Toledo, J.D.; Golez, M.S.; Doi, M.; Ohno, A. Use of copepod nauplii during early feeding stage of grouper Epinephelus coioides. Fish. Sci. 1999, 65, 390–397. [Google Scholar] [CrossRef]
- Ma, Z.; Guo, H.; Zhang, N.; Bai, Z. State of art for larval rearing of grouper. Int. J. Aquac. 2013, 3, 63–72. [Google Scholar] [CrossRef]
- Sim, S.Y. Grouper Aquaculture in Three Asian Countries: Farming and Economic Aspect. Ph.D. Thesis, Deakin University, Geelong, VIC, Australia, 2006. Available online: https://hdl.handle.net/10536/DRO/DU:30027094 (accessed on 2 March 2023).
Geographical Location | Species | |||
---|---|---|---|---|
Kaohsiung | Pingtung | Green Grouper | Hybrid Giant Grouper | |
Number of farms (n) | 29 | 32 | 42 | 19 |
Farming area (fen) | 13.6 ± 20.9 | 10.4 ± 11.8 | 11.7 ± 17.7 | 12.4 ± 14.6 |
Biological variables | ||||
Stocking density (pcs/fen) | 5287.3 ± 1460.4 | 11,584.4 ± 2140.0 | 9286.5 ± 3548.2 | 7052.6 ± 3523.3 |
Survival rate (%) | 68.9 ± 15.9 | 64.4 ± 11.3 | 64.3 ± 12.8 | 71.4 ± 14.9 |
Farming cycle (month) | 15.7 ± 3.3 | 15.2 ± 2.6 | 16.8 ± 2.3 | 12.6 ± 2.1 |
Input intensities (NTD 1000/fen) | ||||
Fry cost (FC) | 116.3 ± 58.8 | 199.4 ± 63.6 | 155.2 ± 66.7 | 170.2 ± 88.6 |
Feed cost (FDC) | 321.5 ± 107.1 | 561.5 ± 142.7 | 475.8 ± 173.7 | 384.6 ± 163.8 |
Water–electricity cost (WEC) | 38.3 ± 18.6 | 68.5 ± 39.9 | 63.0 ± 38.2 | 34.5 ± 11.2 |
Labor cost (LC) | 43.3 ± 27.4 | 72.9 ± 40.8 | 64.8 ± 40.5 | 45.7 ± 27.8 |
Other cost (OC) | 17.1 ± 10.9 | 23.2 ± 13.2 | 21.1 ± 13.7 | 18.5 ± 9.2 |
Total cost | 536.7 ± 160.6 | 925.4 ± 200.9 | 780.0 ± 269.8 | 653.5 ± 244.7 |
Profitability variables | ||||
Total revenue (TR) (NTD 1000/fen) | 799.0 ± 359.4 | 1152.1 ± 423.4 | 884.5 ± 354.1 | 1204.9 ± 504.9 |
Net revenue (NR) (NTD 1000/fen) | 262.4 ± 258.1 | 226.7 ± 359.3 | 104.4 ± 184.0 | 551.4 ± 323.7 |
Benefit–cost ratio (BCR) | 0.47 ± 0.40 | 0.25 ± 0.42 | 0.13 ± 0.22 | 0.84 ± 0.35 |
Profitability rate (PR) | 0.27 ± 0.18 | 0.13 ± 0.22 | 0.09 ± 0.16 | 0.44 ± 0.11 |
Kaoshiung | Pingtung | |||
---|---|---|---|---|
Green Grouper | Hybrid Giant Grouper | Green Grouper | Hybrid Giant Grouper | |
Number of farms (n) | 16 | 13 | 26 | 6 |
Farming area (fen) | 17.5 ± 27.1 | 8.7 ± 6.8 | 8.0 ± 5.9 | 20.2 ± 23.3 |
Biological variables | ||||
Stocking density (pcs/fen) | 5552.1 ± 1673.0 | 4961.5 ± 1126.6 | 11,584.6 ± 2133.1 | 11,583.3 ± 2375.2 |
Survival rate (%) | 64.1 ± 15.2 | 74.8 ± 15.4 | 64.4 ± 11.4 | 64.2 ± 11.6 |
Farming cycle (month) | 17.8 ± 2.7 | 13.2 ± 2.1 | 16.1 ± 1.9 | 11.3 ± 1.6 |
Input intensities (NTD 1000/fen) | ||||
Fry cost (FC) | 99.1 ± 42.4 | 137.5 ± 70.3 | 189.7 ± 54.5 | 241.2 ± 87.1 |
Feed cost (FDC) | 319.9 ± 96.8 | 323.5 ± 122.7 | 571.7 ± 136.8 | 517.0 ± 172.5 |
Water–electricity cost (WEC) | 45.0 ± 22.0 | 30.1 ± 8.1 | 74.1 ± 42.0 | 43.9 ± 11.7 |
Labor cost (LC) | 48.0 ± 30.7 | 37.6 ± 22.6 | 75.2 ± 42.8 | 63.2 ± 31.9 |
Other cost (OC) | 18.1 ± 12.9 | 16.0 ± 8.2 | 23.0 ± 14.1 | 23.9 ± 9.5 |
Total cost | 530.1 ± 157.6 | 544.7 ± 170.4 | 933.8 ± 199.8 | 889.1 ± 220.2 |
Profitability variables | ||||
Total revenue (TR) (NTD 1000/fen) | 562.1 ± 204.4 | 936.9 ± 416.8 | 1033.8 ± 339.5 | 1660.7 ± 395.2 |
Net revenue (NR) (NTD 1000/fen) | 110.0 ± 94.7 | 449.9 ± 274.1 | 101.0 ± 223.8 | 771.4 ± 334.5 |
Benefit–cost ratio (BCR) | 1.23 ± 0.18 | 1.88 ± 0.31 | 1.10 ± 0.24 | 1.91 ± 0.42 |
Profitability rate (PR) | 0.15 ± 0.12 | 0.43 ± 0.10 | 0.06 ± 0.17 | 0.45 ± 0.14 |
Biological Variables | Input Intensities | Profitability Variables | ||||
---|---|---|---|---|---|---|
Number of factors | F value | Pr > F | F value | Pr > F | F value | Pr > F |
Location (L) | 53.60 | <0.0001 | 9.39 | <0.0001 | 25.70 | <0.0001 |
Species (S) | 18.88 | <0.0001 | 4.21 | 0.0027 | 29.83 | <0.0001 |
L × S | 0.74 | 0.5337 | 0.44 | 0.8216 | 8.83 | <0.0001 |
Factor (s) | Stocking Density | Survival Rate | Farming Cycle | |||
---|---|---|---|---|---|---|
F-Value | Pr > F | F-Value | Pr > F | F-Value | Pr > F | |
Location (L) | 133.00 | <0.0001 | 1.70 | 0.1981 | 7.88 | 0.0068 |
Species (S) | 0.29 | 0.5917 | 1.76 | 0.1893 | 56.57 | <0.0001 |
L × S | 0.29 | 0.5933 | 1.94 | 0.1688 | 0.03 | 0.8656 |
Factor (s) | Input Intensities | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fry | Feed | Water–Electricity | Labor | Other | ||||||
F-Value | Pr > F | F-Value | Pr > F | F-Value | Pr > F | F-Value | Pr > F | F-Value | Pr > F | |
Location (L) | 31.46 | <0.0001 | 34.97 | <0.0001 | 5.74 | 0.0198 | 6.46 | 0.0138 | 3.13 | 0.0823 |
Species (S) | 6.71 | 0.0121 | 0.46 | 0.4997 | 6.38 | 0.0144 | 1.16 | 0.2865 | 0.03 | 0.8637 |
L × S | 0.14 | 0.7062 | 0.60 | 0.4412 | 0.73 | 0.3964 | 0.01 | 0.9377 | 0.16 | 0.6939 |
Factor (s) | Profitability Variables | |||||||
---|---|---|---|---|---|---|---|---|
Total Revenue | Net Revenue | Benefit–Cost Ratio | Profitability Ratio | |||||
F Value | Pr > F | F Value | Pr > F | F Value | Pr > F | F Value | Pr > F | |
Location (L) | 29.23 | <0.0001 | 5.67 | 0.0206 | 0.00 | 0.9450 | 0.60 | 0.4416 |
Species (S) | 24.96 | <0.0001 | 59.29 | <0.0001 | 82.27 | <0.0001 | 67.04 | <0.0001 |
L × S | 1.91 | 0.1722 | 6.35 | 0.0146 | 1.54 | 0.2199 | 1.78 | 0.1873 |
Pingtung Green Grouper (PG) | Pingtung Hybrid Giant Grouper (PH) | Kaohsiung Green Grouper (KG) | Kaohsiung Hybrid Giant Grouper (KH) | |
---|---|---|---|---|
Pingtung green grouper (PG) | 0 2 (1.0000) 3 | |||
Pingtung hybrid giant grouper (PH) | 3.1829 (0.0102) | 0 (1.0000) | ||
Kaohsiung green grouper (KG) | 4.7402 (<0.0001) | 6.0525 (0.0003) | 0 (1.0000) | |
Kaohsiung hybrid giant grouper (KH) | 5.9635 (<0.0001) | 3.7759 (0.0102) | 1.0510 (0.1452) | 0 (1.0000) |
Pingtung Green Grouper (PG) | Pingtung Hybrid Giant Grouper (PH) | Kaohsiung Green Grouper (KG) | Kaohsiung Hybrid Giant Grouper (KH) | |
---|---|---|---|---|
Pingtung green grouper (PG) | 0 2 (1.0000) 3 | |||
Pingtung hybrid giant grouper (PH) | 10.8806 (<0.0001) | 0 (1.0000) | ||
Kaohsiung green grouper (KG) | 7.7746 (<0.0001) | 11.2238 (<0.0001) | 0 (1.0000) | |
Kaohsiung hybrid giant grouper (KH) | 14.6948 (<0.0001) | 7.5953 (<0.0001) | 7.5752 (<0.0001) | 0 (1.0000) |
Canonical Coefficients | CAN1 | CAN2 | CAN3 |
---|---|---|---|
Fry cost (FC) | 0.1028 | −1.0622 | 0.3911 |
Feed cost (FDC) | 0.6771 | 0.3165 | −0.8131 |
Water−electricity cost (WEC) | 0.3771 | 0.5013 | 0.2720 |
Labor cost (LC) | 0.3881 | 0.2217 | 0.8470 |
Other costs (OC) | 0.1028 | −1.0622 | 0.3911 |
Eigenvalue | 1.2349 | 0.3651 | 0.0043 |
Approximated F value | 6.29 | 3.13 | 0.12 |
Pr > F | <0.0001 | 0.0071 | 0.8860 |
Means of canonical variables | |||
Pingtung green grouper (PG) | 1.1346 | 0.2006 | −0.0213 |
Pingtung hybrid giant grouper (PH) | 0.4295 | −1.4328 | 0.1099 |
Kaohsiung green grouper (KG) | −1.0108 | 0.5610 | 0.0637 |
Kaohsiung hybrid giant grouper (KH) | −1.2234 | −0.4304 | −0.0865 |
Canonical Coefficients | CAN4 | CAN5 | CAN6 |
---|---|---|---|
Total revenue (TR) | −1.3112 | 1.4857 | 1.0115 |
Net revenue (NR) | 0.7824 | −1.6170 | −3.4639 |
Benefit−cost ratio (BC) | 0.0532 | 2.0186 | 2.4178 |
Profitability rate (PR) | 0.8662 | −0.9136 | −0.1496 |
Eigenvalue | 2.4303 | 0.9817 | 0.3683 |
Approximated F value | 15.79 | 11.86 | 10.31 |
Pr > F | <0.0001 | <0.0001 | 0.0002 |
Means of canonical variables | |||
Pingtung green grouper (PG) | −1.6127 | 0.2490 | 0.2141 |
Pingtung hybrid giant grouper (PH) | 0.8609 | 1.7364 | −1.3824 |
Kaohsiung green grouper (KG) | 0.5220 | −1.4427 | −0.3817 |
Kaohsiung hybrid giant grouper (KH) | −1.2234 | −0.4304 | −0.0865 |
Parameter | Constant/Input Intensity | |||
---|---|---|---|---|
Constant | Feed Cost (FDC) | Labor Cost (LC) | Other Costs (OC) | |
Log β0 | β1 | β2 | β3 | |
Estimated parameter | −4.7708 | 1.0156 | 0.1019 | −0.0559 |
Standard error | 0.9880 | 0.0788 | 0.0616 | 0.0461 |
t value | 23.31 | 165.96 | 2.74 | 1.47 |
Pr > |t| | <0.0001 | <0.0001 | 0.1061 | 0.2331 |
Parameter | Constant/Input Intensity | |||
---|---|---|---|---|
Constant | Feed Cost (FDC) | Labor Cost (LC) | Other Cost (OC) | |
Log β0 | β1 | β2 | β3 | |
Estimated parameter | −6.7409 | 0.9045 | 0.2773 | 0.1125 |
Standard error | 2.4894 | 0.1814 | 0.2353 | 0.1116 |
t value | 7.33 | 24.86 | 1.39 | 1.02 |
Pr > |t| | 0.0162 | 0.0002 | 0.2568 | 0.3296 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.-L.; Afero, F.; Chang, Y.; Chen, B.-Y.; Lan, H.-Y.; Hou, Y.-L.; Huang, C.-T. The Bioeconomic Analysis of Hybrid Giant Grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) and Green Grouper (Epinephelus malabaricus): A Case Study in Taiwan. Fishes 2023, 8, 610. https://doi.org/10.3390/fishes8120610
Huang P-L, Afero F, Chang Y, Chen B-Y, Lan H-Y, Hou Y-L, Huang C-T. The Bioeconomic Analysis of Hybrid Giant Grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) and Green Grouper (Epinephelus malabaricus): A Case Study in Taiwan. Fishes. 2023; 8(12):610. https://doi.org/10.3390/fishes8120610
Chicago/Turabian StyleHuang, Po-Lin, Farok Afero, Yao Chang, Bo-Ying Chen, Hsun-Yu Lan, Yen-Lung Hou, and Cheng-Ting Huang. 2023. "The Bioeconomic Analysis of Hybrid Giant Grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) and Green Grouper (Epinephelus malabaricus): A Case Study in Taiwan" Fishes 8, no. 12: 610. https://doi.org/10.3390/fishes8120610
APA StyleHuang, P.-L., Afero, F., Chang, Y., Chen, B.-Y., Lan, H.-Y., Hou, Y.-L., & Huang, C.-T. (2023). The Bioeconomic Analysis of Hybrid Giant Grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) and Green Grouper (Epinephelus malabaricus): A Case Study in Taiwan. Fishes, 8(12), 610. https://doi.org/10.3390/fishes8120610