The Complete Mitogenome of Amazonian Hyphessobrycon heterorhabdus (Characiformes: Characidae) as a Valuable Resource for Phylogenetic Analyses of Characidae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Assembly and Annotation of the Complete Mitochondrial Genome
2.3. Phylogenetic Analysis
3. Results
3.1. Mitochondrial Genome Structure
3.2. Protein-Coding Genes
3.3. Transfer and Ribosomal RNA Genes and Control Region
3.4. Mitogenomic Heteroplasmy and NUMTs Analysis
3.5. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montag, L.F.A.; Leão, H.; Benone, N.L.; Monteiro-Júnior, C.S.; Faria, A.P.J.; Nicacio, G.; Ferreira, C.P.; Garcia, D.H.A.; Santos, C.R.M.; Pompeu, P.S.; et al. Contrasting Associations between Habitat Conditions and Stream Aquatic Biodiversity in a Forest Reserve and Its Surrounding Area in the Eastern Amazon. Hydrobiologia 2019, 826, 263–277. [Google Scholar] [CrossRef]
- Faria, T.C.; Guimarães, K.L.A.; Rodrigues, L.R.R.; Oliveira, C.; Lima, F.C.T. A New Hyphessobrycon (Characiformes: Characidae) of the Hyphessobrycon heterorhabdus Species-Group from the Lower Amazon Basin, Brazil. Neotrop. Ichthyol. 2021, 19, e200102. [Google Scholar] [CrossRef]
- Gibran, F.Z. Habitat Partitioning, Habits and Convergence among Coastal Nektonic Fish Species from the São Sebastião Channel, Southeastern Brazil. Neotrop. Ichthyol. 2010, 8, 299–310. [Google Scholar] [CrossRef]
- Brejao, G.L.; Gerhard, P.; Zuanon, J. Functional Trophic Composition of the Ichthyofauna of Forest Streams in Eastern Brazilian Amazon. Neotrop. Ichthyol. 2013, 11, 361–373. [Google Scholar] [CrossRef]
- Benone, N.L.; Lobato, C.M.C.; Soares, B.E.; de Assis Montag, L.F. Spatial and Temporal Variation of the Diet of the Flag Tetra Hyphessobrycon heterorhabdus (Characiformes: Characidae) in Streams of the Eastern Amazon. Neotrop. Ichthyol. 2020, 18, e200078. [Google Scholar] [CrossRef]
- Novák, J.; Kalous, L.; Patoka, J. Modern Ornamental Aquaculture in Europe: Early History of Freshwater Fish Imports. Rev. Aquac. 2020, 12, 2042–2060. [Google Scholar] [CrossRef]
- Oliveira, C.; Avelino, G.S.; Abe, K.T.; Mariguela, T.C.; Benine, R.C.; Ortí, G.; Vari, R.P.; Corrêa e Castro, R.M. Phylogenetic Relationships within the Speciose Family Characidae (Teleostei: Ostariophysi: Characiformes) Based on Multilocus Analysis and Extensive Ingroup Sampling. BMC Evol. Biol. 2011, 11, 275. [Google Scholar] [CrossRef]
- Mirande, J.M. Morphology, Molecules and the Phylogeny of Characidae (Teleostei, Characiformes). Cladistics 2019, 35, 282–300. [Google Scholar] [CrossRef]
- Ohara, W.M.; Teixeira, T.F.; Albornoz-Garzón, J.G.; Mirande, J.M.; Lima, F.C.T. Hyphessobrycon rheophilus, a New Species from Rapids of the Amazon and Orinoco River Basins (Characiformes: Characidae: Stethaprioninae). Zootaxa 2019, 4712, 561–575. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Xu, R.; Jiang, H.; Ding, J.; Wu, H.; Wu, Y.; Liu, H. Comparative Mitochondrial Genomics of Tetras: Insights into Phylogenetic Relationships in Characidae. Biologia 2022, 77, 2905–2914. [Google Scholar] [CrossRef]
- Lima, F.; Coutinho, D.; Wosiacki, W. A New Hyphessobrycon (Ostariophysi: Characiformes: Characidae) from the Middle Amazon Basin, Brazil. Zootaxa 2014, 3872, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Moreira, C.; Lima, F. Two New Hyphessobrycon (Characiformes: Characidae) Species from Central Amazon Basin, Brazil. Zootaxa 2017, 4318, 123–134. [Google Scholar] [CrossRef]
- Montag, L.F.A.; Winemiller, K.O.; Keppeler, F.W.; Leão, H.; Benone, N.L.; Torres, N.R.; Prudente, B.S.; Begot, T.O.; Bower, L.M.; Saenz, D.E.; et al. Land Cover, Riparian Zones and Instream Habitat Influence Stream Fish Assemblages in the Eastern Amazon. Ecol. Freshw. Fish 2019, 28, 317–329. [Google Scholar] [CrossRef]
- Meyer, J.N.; Leung, M.C.K.; Rooney, J.P.; Sendoel, A.; Hengartner, M.O.; Kisby, G.E.; Bess, A.S. Mitochondria as a Target of Environmental Toxicants. Toxicol. Sci. 2013, 134, 1–17. [Google Scholar] [CrossRef]
- Li, D.; Luo, R.; Liu, C.-M.; Leung, C.-M.; Ting, H.-F.; Sadakane, K.; Yamashita, H.; Lam, T.-W. MEGAHIT v1.0: A Fast and Scalable Metagenome Assembler Driven by Advanced Methodologies and Community Practices. Methods 2016, 102, 3–11. [Google Scholar] [CrossRef]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An Empirically Improved Memory-Efficient Short-Read de Novo Assembler. Gigascience 2012, 1, 18. [Google Scholar] [CrossRef]
- Sato, Y.; Miya, M.; Fukunaga, T.; Sado, T.; Iwasaki, W. MitoFish and MiFish Pipeline: A Mitochondrial Genome Database of Fish with an Analysis Pipeline for Environmental DNA Metabarcoding. Mol. Biol. Evol. 2018, 35, 1553–1555. [Google Scholar] [CrossRef]
- Iwasaki, W.; Fukunaga, T.; Isagozawa, R.; Yamada, K.; Maeda, Y.; Satoh, T.P.; Sado, T.; Mabuchi, K.; Takeshima, H.; Miya, M.; et al. MitoFish and MitoAnnotator: A Mitochondrial Genome Database of Fish with an Accurate and Automatic Annotation Pipeline. Mol. Biol. Evol. 2013, 30, 2531–2540. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. TRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef]
- Sweeney, B.A.; Hoksza, D.; Nawrocki, E.P.; Ribas, C.E.; Madeira, F.; Cannone, J.J.; Gutell, R.; Maddala, A.; Meade, C.D.; Williams, L.D.; et al. R2DT Is a Framework for Predicting and Visualising RNA Secondary Structure Using Templates. Nat. Commun. 2021, 12, 3494. [Google Scholar] [CrossRef]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. Unraveling Heteroplasmy Patterns with NOVOPlasty. NAR Genom. Bioinform. 2020, 2, lqz011. [Google Scholar] [CrossRef] [PubMed]
- Parakatselaki, M.-E.; Ladoukakis, E.D. MtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life 2021, 11, 633. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Wei, L.; Huang, Q.; Zhou, Q.; Wang, G. First Determination and Analysis of the Complete Mitochondrial Genome of X-Ray Tetra Pristella maxillaris (Ulrey, 1894) (Actinopteri, Characidae). Mitochondrial DNA Part B 2022, 7, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-H.; Liu, H.-Y.; Xu, N.; Zhang, X.-L.; Zhang, Q.; Han, B.-P. Mitochondrial Genome Structures and Phylogenetic Analyses of Two Tropical Characidae Fishes. Front. Genet. 2021, 12, 627402. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, Z.-X.; Xu, P.; Sun, X.-W. The Complete Mitochondrial Genome of the Silvertip Tetra, Hasemania nana (Characiformes: Characidae). Mitochondrial DNA 2015, 26, 889–890. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Huang, Y.; Liu, B.; Zhu, K.; Zhang, J.; Jing, F.; Xia, L.; Liu, Y. The Complete Mitochondrial Genome of Lebiasina astrigata (Characiformes: Lebiasinida) and Phylogenetic Studies of Characiformes. Mitochondrial DNA Part B 2019, 4, 579–580. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, B.; Zhu, K.; Zhang, J.; Jing, F.; Xia, L.; Liu, Y. The Complete Mitochondrial Genome of Gephyrocharax atracaudatus (Characiformes, Characidae) and Phylogenetic Studies of Characiformes. Mitochondrial DNA Part B 2019, 4, 1901–1902. [Google Scholar] [CrossRef]
- Xu, W.; Lin, S.; Liu, H. Mitochondrial Genomes of Five Hyphessobrycon Tetras and Their Phylogenetic Implications. Ecol. Evol. 2021, 11, 12754–12764. [Google Scholar] [CrossRef]
- Xu, W.; Ding, J.; Lin, S.; Xu, R.; Liu, H. Comparative Mitogenomes of Three Species in Moenkhausia: Rare Irregular Gene Rearrangement within Characidae. Int. J. Biol. Macromol. 2021, 183, 1079–1086. [Google Scholar] [CrossRef]
- Liu, H.; Sun, C.; Zhu, Y.; Li, Y.; Wei, Y.; Ruan, H. Mitochondrial Genomes of Four American Characins and Phylogenetic Relationships within the Family Characidae (Teleostei: Characiformes). Gene 2020, 762, 145041. [Google Scholar] [CrossRef]
- Wang, Q.; Miao, Z.; Chen, J.; Huang, Y.; Meng, F.; Zhu, K.; Liu, B.; Liu, Y. The Complete Mitochondrial Genome of Hemigrammus bleheri (Characiformes: Hemigrammus) and Phylogenetic Studies of Characiformes. Mitochondrial DNA Part B 2019, 4, 3834–3835. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Meng, F.; Liu, B.; Huang, Y.; Wang, Q.; Zhang, T. The Complete Mitochondrial Genome of Paracheirodon axelrodi (Characiformes: Characidae) and Phylogenetic Studies of Characiformes. Mitochondrial DNA Part B 2019, 4, 3824–3825. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Liu, F.; Jiang, H.; Feng, C.; Tang, D. The Complete Mitochondrial Genome of Paracheirodon innesi. Mitochondrial DNA Part A 2017, 28, 377–378. [Google Scholar] [CrossRef] [PubMed]
- Pasa, R.; Menegídio, F.B.; Rodrigues-Oliveira, I.H.; da Silva, I.B.; de Campos, M.L.C.B.; Rocha-Reis, D.A.; Heslop-Harrison, J.S.; Schwarzacher, T.; Kavalco, K.F. Ten Complete Mitochondrial Genomes of Gymnocharacini (Stethaprioninae, Characiformes). Insights Into Evolutionary Relationships and a Repetitive Element in the Control Region (D-Loop). Front. Ecol. Evol. 2021, 9, 650783. [Google Scholar] [CrossRef]
- Isaza, J.P.; Alzate, J.F.; Maldonado-Ocampo, J.A. Complete Mitochondrial Genome Sequence of Grundulus Bogotensis (Humboldt, 1821). Mitochondrial DNA 2014, 27, 2076–2078. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, P.; Yin, X.; Chen, J.; Yuan, P.; Miao, Z.; Ping, H.; Zhang, H.; Liu, B.; Gao, Y. Characterization of the Complete Mitochondrial Genome of Hyphessobrycon herbertaxelrodi (Characiformes, Characidae) and Phylogenetic Studies of Characiformes. Mitochondrial DNA Part B 2020, 5, 3622–3624. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, T.; Yin, X.; Meng, F.; Huang, Y.; Liu, B.; Liu, Y. The Complete Mitochondrial Genome of Nematobrycon palmeri (Characiformes:Nematobrycon) and Phylogenetic Studies of Characidaes. Mitochondrial DNA Part B 2020, 5, 3474–3475. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A Fast Online Phylogenetic Tool for Maximum Likelihood Analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.L.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and Organization of the Human Mitochondrial Genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-H.; Zhang, Y.-N.; Zeng, X.-S.; Liu, D.-W.; Huang, Q.; Zhang, X.-L.; Zhang, Q. Mitogenome of Knodus borki (Cypriniformes: Characidae): Genomic Characterization and Phylogenetic Analysis. Mol. Biol. Rep. 2022, 49, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Luo, S.; Pan, S.; Su, X.; Liu, Z.; Chen, J. Complete Mitogenome of Gymnocorymbus ternetzi (Characiformes: Characidae: Gymnocorymbus) and Phylogenetic Implications. Mitochondrial DNA Part B 2022, 7, 58–59. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.A.; Buckup, P.A.; Britto, M.R.; Magalhães, M.G.P.; de Andrade, P.C.C.; Furtado, C.; Parente, T.E. The Complete Mitochondrial Genome of Corydoras nattereri (Callichthyidae: Corydoradinae). Neotrop. Ichthyol. 2016, 14, e150167. [Google Scholar] [CrossRef]
- Song, R.; Zhang, D.; Deng, S.; Ding, D.; Liao, F.; Liu, L. The Complete Mitochondrial Genome of Acanthosentis cheni (Acanthocephala: Quadrigyridae). Mitochondrial DNA Part B 2016, 1, 797–798. [Google Scholar] [CrossRef]
- Ojala, D.; Montoya, J.; Attardi, G. TRNA Punctuation Model of RNA Processing in Human Mitochondria. Nature 1981, 290, 470–474. [Google Scholar] [CrossRef]
- Shi, W.; Gong, L.; Wang, S.-Y.; Miao, X.-G.; Kong, X.-Y. Tandem Duplication and Random Loss for Mitogenome Rearrangement in Symphurus (Teleost: Pleuronectiformes). BMC Genom. 2015, 16, 355. [Google Scholar] [CrossRef]
- Satoh, T.P.; Miya, M.; Mabuchi, K.; Nishida, M. Structure and Variation of the Mitochondrial Genome of Fishes. BMC Genom. 2016, 17, 719. [Google Scholar] [CrossRef]
- Liu, K.; Xie, N.; Wang, Y.; Liu, X. Extensive Mitogenomic Heteroplasmy and Its Implications in the Phylogeny of the Fish Genus Megalobrama. 3 Biotech 2023, 13, 115. [Google Scholar] [CrossRef]
- Dagosta, F.C.P.; de Pinna, M. Biogeography of Amazonian Fishes: Deconstructing River Basins as Biogeographic Units. Neotrop. Ichthyol. 2017, 15, e170034. [Google Scholar] [CrossRef]
- Dagosta, F.C.P.; De Pinna, M. The Fishes of the Amazon: Distribution and Biogeographical Patterns, with a Comprehensive List of Species. Bull. Am. Mus. Nat. Hist. 2019, 2019, 1–163. [Google Scholar] [CrossRef]
- Irion, G.; Müller, J.; Morais, J.O.; Keim, G.; de Mello, J.N.; Junk, W.J. The Impact of Quaternary Sea Level Changes on the Evolution of the Amazonian Lowland. Hydrol. Process. 2009, 23, 3168–3172. [Google Scholar] [CrossRef]
- Aleixo, A. Historical Diversification of Floodplain Forest Specialist Species in the Amazon: A Case Study with Two Species of the Avian Genus Xiphorhynchus (Aves: Dendrocolaptidae). Biol. J. Linn. Soc. 2006, 89, 383–395. [Google Scholar] [CrossRef]
Name | Type | Strand | Start | Stop | Length | Anticodon and Start Codon/Stop Codon | Intergenic Nucleotides |
---|---|---|---|---|---|---|---|
tRNA-Phe | tRNA | H | 1 | 69 | 69 | GAA | 0 |
12S rRNA | rRNA | H | 70 | 1023 | 954 | - | 0 |
tRNA-Val | tRNA | H | 1024 | 1095 | 72 | TAC | 0 |
16S rRNA | rRNA | H | 1096 | 2754 | 1659 | - | 0 |
tRNA-Leu | tRNA | H | 2755 | 2828 | 74 | TAA | 0 |
ND1 | Gene | H | 2829 | 3797 | 969 | ATG/TAA | 7 |
tRNA-Ile | tRNA | H | 3805 | 3876 | 72 | GAT | 12 |
tRNA-Gln | tRNA | L | 3889 | 3959 | 71 | TTG | 4 |
tRNA-Met | tRNA | H | 3964 | 4032 | 69 | CAT | 1 |
ND2 | Gene | H | 4034 | 5101 | 1068 | ATG/TAA | 12 |
tRNA-Trp | tRNA | H | 5114 | 5183 | 70 | TCA | 7 |
tRNA-Ala | tRNA | L | 5191 | 5259 | 69 | TGC | 1 |
tRNA-Asn | tRNA | L | 5261 | 5333 | 73 | GTT | 31 |
tRNA-Cys | tRNA | L | 5365 | 5430 | 66 | GCA | −1 |
tRNA-Tyr | tRNA | L | 5430 | 5500 | 71 | GTA | 1 |
COX1 | Gene | H | 5502 | 7061 | 1560 | ATG/AGG | −13 |
tRNA-Ser | tRNA | L | 7049 | 7120 | 72 | TGA | 5 |
tRNA-Asp | tRNA | H | 7126 | 7193 | 68 | GTC | 16 |
COX2 | Gene | H | 7210 | 7900 | 691 | ATG/T- | 0 |
tRNA-Lys | tRNA | H | 7901 | 7973 | 73 | TTT | 1 |
ATP8 | Gene | H | 7975 | 8142 | 168 | ATG/TAG | −10 |
ATP6 | Gene | H | 8133 | 8814 | 682 | TTG/T- | 0 |
COX3 | Gene | H | 8815 | 9598 | 784 | ATG/T- | 0 |
tRNA-Gly | tRNA | H | 9599 | 9670 | 72 | TCC | 0 |
ND3 | Gene | H | 9671 | 10,019 | 349 | ATG/T- | 0 |
tRNA-Arg | tRNA | H | 10,020 | 10,088 | 69 | TCG | 0 |
ND4L | Gene | H | 10,089 | 10,385 | 297 | ATG/TAA | −7 |
ND4 | Gene | H | 10,379 | 11,759 | 1381 | ATG/T- | 0 |
tRNA-His | tRNA | H | 11,760 | 11,828 | 69 | GTG | 0 |
tRNA-Ser | tRNA | H | 11,829 | 11,896 | 68 | GCT | 1 |
tRNA-Leu | tRNA | H | 11,898 | 11,970 | 73 | TAG | 0 |
ND5 | Gene | H | 11,971 | 13,809 | 1839 | ATG/TAA | −4 |
ND6 | Gene | L | 13,806 | 14,321 | 516 | ATG/TAA | 0 |
tRNA-Glu | tRNA | L | 14,322 | 14,389 | 68 | TTC | 5 |
CYTB | Gene | H | 14,395 | 15,531 | 1137 | ATG/TAA | 4 |
tRNA-Thr | tRNA | H | 15,536 | 15,608 | 73 | TGT | −2 |
tRNA-Pro | tRNA | L | 15,607 | 15,676 | 70 | TGG | 0 |
D-loop | H | 15,677 | 17,020 | 1344 | - | 1 |
Sample | Locus | REF Allele | ALT Allele | AF | DP | Gene Region |
---|---|---|---|---|---|---|
Male | 2691 | C | A | 0.0145 | 137 | 16S rRNA |
Female | 10,803 | G | A | 0.0263 | 75 | ND4 |
Male | 13,940 | T | A | 0.0122 | 81 | ND6 |
Male | 14,076 | CC | C | 0.0124 | 322 | ND6 |
Female | 14,192 | T | G | 0.0162 | 123 | ND6 |
Male | 14,397 | G | A | 0.0161 | 123 | CYTB |
Male | 14,691 | T | G | 0.0128 | 77 | CYTB |
Male | 16,951 | T | C,A | 0.576, 0.0205 | 97 | D-Loop |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montag, L.F.d.A.; Koroiva, R.; Ribeiro-dos-Santos, Â.; Magalhães, L.; Cavalcante, G.C.; Silva, C.S.; Guerreiro, S.; Gomes, D.H.F.; Souza, J.E.S.d.; Souza, S.J.d.; et al. The Complete Mitogenome of Amazonian Hyphessobrycon heterorhabdus (Characiformes: Characidae) as a Valuable Resource for Phylogenetic Analyses of Characidae. Fishes 2023, 8, 233. https://doi.org/10.3390/fishes8050233
Montag LFdA, Koroiva R, Ribeiro-dos-Santos Â, Magalhães L, Cavalcante GC, Silva CS, Guerreiro S, Gomes DHF, Souza JESd, Souza SJd, et al. The Complete Mitogenome of Amazonian Hyphessobrycon heterorhabdus (Characiformes: Characidae) as a Valuable Resource for Phylogenetic Analyses of Characidae. Fishes. 2023; 8(5):233. https://doi.org/10.3390/fishes8050233
Chicago/Turabian StyleMontag, Luciano Fogaça de Assis, Ricardo Koroiva, Ândrea Ribeiro-dos-Santos, Leandro Magalhães, Giovanna C. Cavalcante, Caio S. Silva, Sávio Guerreiro, Daniel H. F. Gomes, Jorge E. S. de Souza, Sandro J. de Souza, and et al. 2023. "The Complete Mitogenome of Amazonian Hyphessobrycon heterorhabdus (Characiformes: Characidae) as a Valuable Resource for Phylogenetic Analyses of Characidae" Fishes 8, no. 5: 233. https://doi.org/10.3390/fishes8050233
APA StyleMontag, L. F. d. A., Koroiva, R., Ribeiro-dos-Santos, Â., Magalhães, L., Cavalcante, G. C., Silva, C. S., Guerreiro, S., Gomes, D. H. F., Souza, J. E. S. d., Souza, S. J. d., Seabra, L. B., Lucena, M. D. L. d., Prata, E. G., Penha, I. C. d. S., Michelan, T. S., Ligeiro, R., & Juen, L. (2023). The Complete Mitogenome of Amazonian Hyphessobrycon heterorhabdus (Characiformes: Characidae) as a Valuable Resource for Phylogenetic Analyses of Characidae. Fishes, 8(5), 233. https://doi.org/10.3390/fishes8050233