Dietary Nanometer Selenium Enhances the Selenium Accumulation, Nutrient Composition and Antioxidant Status of Paramisgurnus dabryanus spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet Preparation
2.2. Experimental Design
2.3. Sample Collection
2.4. Determination of Whole Fish Body Composition
2.5. Determination of Selenium and Amino Acid Content
2.6. Hepatic Antioxidant Enzyme Activity Assay
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Antioxidant Ability
3.3. Body Composition
3.4. Selenium Accumulation in Muscle
3.5. Amino Acid Analysis in Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bell, J.G.; Cower, C.B.; Adron, J.W.; Pirie, B.J.S. Some effects of selenium deficiency on enzyme activities and indices of tissue peroxidation in Atlantic salmon (Salmon salar). Aquaculture 1987, 65, 43–54. [Google Scholar] [CrossRef]
- Bell, J.G.; Pirie, B.J.S.; Adron, J.W.; Cowey, C.B. Some effects of selenium deficiency on glutathione peroxidase (EC 1.11.1.9) activity and tissue pathology in rainbow trout (Salmo gairdneri). Br. J. Nutr. 1986, 55, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.Y.; Peng, C.Z.; Jin, M.C.; Huang, J.L. Effects of selenium deficiency on the physiological and biochemical indices of blood in common carp Cyprinus carpio. J. Dalian Fish. Univ. 2009, 24, 283–287. [Google Scholar] [CrossRef]
- Leanne, K.C.; Collin, E.S.; Anna, K.H.; Molly, K.; Dave, S. Selenium: Mercury molar rations in freshwater fish in the Columbia river basin: Potential applications for specific fish consumption advisories. Biol. Trace Elem. Res. 2017, 178, 136–146. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Ogra, Y.; Ishiwata, K.; Takayama, H.; Aima, N.; Suzuki, K.T. Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proc. Natl. Acad. Sci. USA 2002, 99, 15932–15936. [Google Scholar] [CrossRef]
- Narayanan, G.; Baskaralingam, V.; Ravichandran, R.; Sekar, V.; Caterina, F. Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. Ecotoxicol. Environ. Saf. 2018, 162, 147–159. [Google Scholar] [CrossRef]
- Seyedi, J.; Kalbassi, M.R.; Esmaeilbeigi, M.; Tayemh, M.B.; Amiri, M.J. Toxicity and deleterious impacts of selenium nanoparticles at supranutritional and imbalance levels on male goldfish (Carassius auratus) sperm. J. Trace Elem. Med. Biol. 2021, 66, 126758. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, N.P. Effect of dietary selenium on immuno-biochemical plasticity and resistance against Aeromonas veronii biovar sobria in fish reared under multiple stressors. Fish Shellfish Immunol. 2019, 84, 38–47. [Google Scholar] [CrossRef]
- Zheng, L.; Feng, L.; Jiang, W.D.; Wu, P.; Tang, L.; Kuang, S.Y.; Zeng, Y.Y.; Zhou, X.Q.; Liu, Y. Selenium deficiency impaired immune function of the immune organs in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2018, 77, 53–70. [Google Scholar] [CrossRef]
- Rider, S.A.; Davies, S.J.; Jha, A.N.; Fisher, A.A.; Knight, J.; Sweetman, J.W. Supra-nutritional dietary intake of selenite and selenium yeast in normal and stressed rainbow trout (Oncorhynchus mykiss): Implications on selenium status and health responses. Aquaculture 2009, 295, 282–291. [Google Scholar] [CrossRef]
- Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swamson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Scicence 1973, 179, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.X.; Ma, C.; Dai, Y.Y.; Wang, X.Y.; Bai, D.Q.; Shang, X.D.; Jia, L. Effect of dietary nano-Se on oxidation resistance of juvenile tongue sole (Cynogiossus semilaevis). Feed Res. 2019, 42, 25–30. [Google Scholar] [CrossRef]
- Xu, Y.L.; Gao, Q.F.; Dong, S.L.; Mei, Y.P.; Li, X.Q. Effects of supplementary selenium and vitamin E on the growth performance, antioxidant enzyme activity, and gene expression of sea cucumber Apostichopus japonicus. Biol. Trace Elem Res. 2021, 199, 4820–4831. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.A.O.; Koshio, S.; Zaineldin, A.I.; Van, D.H.; Ahmed, H.A.; Elsabagh, M.; Abdeldaim, M.M. An evaluation of dietary selenium nanoparticles for red sea bream (Pagrus major) aquaculture: Growth, tissue bioaccumulation, and antioxidative responses. Environ. Sci. Pollut. Res. 2019, 26, 30876–30884. [Google Scholar] [CrossRef]
- Shi, M.M.; Qin, F.J.; Yuan, L.X.; Song, X.H.; Pu, Y.X.; Liu, Z.J.; Fu, J.G. Effects of nano-Se on growth performance, selenium content and nutrient composition of Chinese mitten crabs (Eriocheir sinensis). Feed Ind. 2015, 36, 21–25. [Google Scholar] [CrossRef]
- Hao, J.Y.; Lin, Y.; Pan, W.J.; Liu, B.; Miao, L.H.; Zhou, Q.L.; Liang, H.L.; Ge, X.P. Dietary selenium enhances the growth and anti-oxidant capacity of juvenile blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2020, 101, 115–125. [Google Scholar] [CrossRef]
- Cotter, P.A.; Craig, S.R.; Mclean, E. Hyper accumulation of selenium in hybrid striped bass: A functional food for aquaculture? Aquacult. Nutr. 2008, 14, 215–222. [Google Scholar] [CrossRef]
- Ashouri, S.; Keyvanshokoon, S.; Salati, A.P.; Johari, S.A.; Pasha-Zanoosi, H. Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture 2015, 446, 25–29. [Google Scholar] [CrossRef]
- Durigon, E.G.; Kunz, D.F.; Peixoto, N.C.; Uczay, J.; Lazzari, R. Diet selenium improves the antioxidant defense system of juveniles Nile tilapia (Oreochromis niloticus L.). Braz. J. Microbiol. 2019, 79, 527–532. [Google Scholar] [CrossRef]
- Mechlaoui, M.; Dominguez, D.; Robaina, L.; Geraert, P.A.; Kaushik, S.; Saleh, R.; Briens, M.; Montero, D.; Lzquierdo, M. Effects of different dietary selenium sources on growth performance, liver and muscle composition, antioxidant status, stress response and expression of related genes in gilthead seabream (Sparus aurata). Aquaculture 2019, 507, 251–259. [Google Scholar] [CrossRef]
- Gopi, M.; Beulah, P.V.; Ramasamy, D.K.; Muthuvel, S.; Govindasamy, P. Role of nanoparticles in animal and poultry nutrition: Modes of action and applications in formulating feed additives and food processing. Int. J. Pharmacol. 2017, 13, 724–731. [Google Scholar] [CrossRef]
- Fisheries and Fisheries Administration Bureau of the Ministry of Agriculture and Rural Affairs. 2022 China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2022.
- Huang, Z.Z.; Ma, B.; Guo, X.L.; Wang, H.H.; Ma, A.J.; Sun, Z.B.; Wang, Q.M. Comparative transcriptome analysis of the molecular mechanism underling the golden red colour in mutant Taiwanese loach. Aquaculture 2021, 543, 736979. [Google Scholar] [CrossRef]
- Dong, Z.G.; Zhang, M.; Wei, S.F.; Ge, H.X.; Li, L.T.; Ni, Q.G.; Lin, Q.F.; Li, Y. Effect of farming patterns on the nutrient composition and farming environment of loach, Paramisgurnus dabryanus. Aquaculture 2018, 497, 214–219. [Google Scholar] [CrossRef]
- Zhang, B.Z. Dietary chitosan oligosaccharides modulate the growth, intestine digestive enzymes, body composition and nonspecific immunity of loach Paramisgurnus dabryanus. Fish Shellfish Immunol. 2019, 88, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Li, X.; Wang, M.J.; Wang, C.M.; Peng, Y.Q.; Wang, H.H.; Zhu, M. Molecular cloning and expression analysis of myd88 from oriental weatherfish (Misgurnus anguillicaudatus) in response to bacterial challenge. J. Fish. Biol. 2020, 96, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists International, 16th ed.; Cunnif, P.A., Ed.; AOAC Int.: Arlington, VA, USA, 1995; Volume 1, pp. 31–65. [Google Scholar]
- Shenkin, A. The key role of micronutrients. Clin. Nutr. 2006, 25, 1–13. [Google Scholar] [CrossRef]
- Arthur, J.R.; Nicol, F.; Beckett, G.J. Hepatic iodothyronine 5′-deiodinase: The role of selenium. Biochem. J. 1990, 272, 537–540. [Google Scholar] [CrossRef]
- Çiçek, S.; Özoğul, F. Effects of selenium nanoparticles on growth performance, hematological, serum biochemical parameters, and antioxidant status in fish. Anim. Feed. Sci. Technol. 2021, 281, 115099. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; EI-gendy, G.M.; Ahmed, A.I.; Elharoun, E.R.; Hassaan, M.S. Nanoselenium versus bulk selenium as a dietary supplement: Effects on growth, feed efficiency, intestinal histology, haemato-biochemical and oxidative stress biomarkers in Nile tilapia (Oreochromis niloticus Linaeus, 1758) fingerlings. Aquac. Res. 2021, 52, 5642–5655. [Google Scholar] [CrossRef]
- Cao, Y.Z.; Maddox, J.F.; Mastro, A.M.; Scholz, R.W.; Hildenbrandt, G.; Reddy, C. Selenium deficiency alters the lipoxygenase pathway and mitogenic response in bovine lymphocytes. J. Nutr. 1992, 122, 2121–2127. [Google Scholar] [CrossRef]
- Orun, I.; Talas, Z.S.; Ozdemir, I.; Alkan, A.; Erdogan, K. Antioxidative role of selenium on some tissues of (Cd2+, Cr3+)-induced rainbow trout. Ecotoxicol Environ.Saf. 2008, 71, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.L.; Li, J.X.; Luo, Q.Y.; Wang, X.; Xiao, M.M.; Zhou, D.; Lu, Q.; Chen, X. Effect of supplementation with selenium-yeast on muscle antioxidant activity, meat quality, fatty acids and amino acids in goats. Front. Vet. Sci. 2021, 8, 813672. [Google Scholar] [CrossRef]
- Zhou, X.X.; Wang, Y.B.; Gu, Q.; Li, W.F. Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 2009, 291, 78–81. [Google Scholar] [CrossRef]
- Saffari, S.; Keyvanshokooh, S.; Zakeri, M.; Johari, S.A.; Pasha-Zanoosi, H. Effects of different dietary selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio). Aquac. Nutr. 2017, 23, 611–617. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Zaineldin, A.I.; Van, D.H.; Moustafa, E.M.; Abdel-Daim, M.M.; Angeles, E.M.; Hassaan, M.S. Dietary supplementation of selenium nanoparticles modulated systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). Fish Physiol. Biochem. 2019, 45, 219–230. [Google Scholar] [CrossRef]
- Zhou, L.J.; Shen, D.X.; Zhan, H.X. Studies on the nutritional components of fish muscles and human health. Anim. Husbandry Feed Sci. 2013, 34, 69–71. [Google Scholar] [CrossRef]
- Le, K.T.; Fotedar, R. Bioavailability of selenium from different dietary sources in yellowtail kingfish (Seriola lalandi). Aquaculture 2014, 420, 57–62. [Google Scholar] [CrossRef]
- Chen, C.X.; Shang, X.D.; Ma, C.; Dai, Y.Y.; Jia, L.; Bai, D.Q. Effect of dietary nano-Se on growth, body composition and selenium content of juvenile tongue sole (Cynogiossus semilaevis). J. Agric. Sci. 2018, 46, 180–183. [Google Scholar] [CrossRef]
- Guo, Z.F.; Li, J.; Yang, X.Q. Effects of dietary selenium content on growth performance and antioxidant capacity of juvenile Japanese seabass (Lateolabrax japonicus). China Feed 2018, 6, 88–92. [Google Scholar] [CrossRef]
- Li, L.Q.; Luo, Y.J.; Xiao, J.; Huang, Y.F.; Yin, Q.L.; Wang, Z.F.; Tan, W.F. Effects of artificial addition of yeast selenium on protein, fat and amino acids in muscle of GITF tilapia. J. South. Agric. 2020, 51, 2856–2864. [Google Scholar] [CrossRef]
- Su, C.F.; Luo, L.; Wen, H.; Chen, X.C.; Sheng, X.S.; Chen, Z. Effects of dietary selenium on growth performance, quality and digestive enzyme activities of grass carp. J. Shanghai Fish. Univ. 2007, 16, 124–129. [Google Scholar]
- Elia, A.C.; Prearo, M.; Pacini, N.; Dörr, A.J.M.; Abete, M.C. Effect of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicol. Environ. Saf. 2011, 74, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Sun, Z.H.; Zhao, J.; Zhou, J.X.; Liu, L.Y. A comparative study on amino acid composition and contents in the muscle of several fishes. Amino Acids Biot. Resour. 1996, 18, 37–42. [Google Scholar] [CrossRef]
- Bing, X.W.; Cai, B.Y.; Wang, L.P. Evaluation of nutritive quality and nutritional components in Spinibarbus sinensis muscle. J. Fish. Sci. China 2005, 12, 211–215. [Google Scholar]
- Ding, C.H.; Wang, Y.; Wang, W.L.; Cui, Z.F.; He, Y.Y.; Wu, W.H. Study on the contents of acidic and basic amino acids and flavor amino acids in fish meal. Feed Ind. 2018, 39, 49–52. [Google Scholar] [CrossRef]
- Hurson, M.; Regan, M.C.; Kirk, S.J.; Wasserkrug, H.L.; Barbul, A. Metabolic effects of arginine in a healthy elderly population. JPEN J. Parenter. Enteral. Nutr. 1995, 19, 227–230. [Google Scholar] [CrossRef]
- Park, J.N.; Watanabe, T.; Endoh, K.I.; Watanabe, K.S.; Abe, H. Taste-active components in a Vietnamese fish sauce. Fish Sci. 2002, 68, 913–920. [Google Scholar] [CrossRef]
Ingredient | Diet | ||||
---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.4 | 0.6 | |
Fish meal | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 |
Prawn paste | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Squid paste | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Fish-soluble pulp | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Soybean meal | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 |
Rapeseed meal | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 |
Strong wheat flour | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 |
Soybean phospholipid oil | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 |
Monocalcium phosphate | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
Choline chloride | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Premix a | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Nano-Se (mg/kg) | 0.00 | 0.10 | 0.20 | 0.40 | 0.60 |
Proximate composition b | |||||
Crude protein | 37.31 ± 0.14 | 37.57 ± 0.23 | 37.44 ± 0.18 | 37.37 ± 0.21 | 37.28 ± 0.09 |
Crude fat | 6.86 ± 0.13 | 6.78 ± 0.15 | 6.75 ± 0.06 | 6.71 ± 0.09 | 6.82 ± 0.11 |
Ash | 9.65 ± 0.12 | 9.59 ± 0.19 | 9.55 ± 0.17 | 9.71 ± 0.07 | 9.64 ± 0.13 |
Moisture | 11.59 ± 0.13 | 11.62 ± 0.11 | 11.57 ± 0.08 | 11.65 ± 0.12 | 11.56 ± 0.07 |
Se concentration c | 0.534 ± 0.03 | 0.626 ± 0.02 | 0.746 ± 0.04 | 0.932 ± 0.03 | 1.166 ± 0.05 |
Growth Parameters | Dietary Nano-Se Levels (mg/kg) | ||||
---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.4 | 0.6 | |
Initial weight (g) | 5.14 ± 0.16 a | 5.34 ± 0.13 a | 5.17 ± 0.31 a | 5.20 ± 0.46 a | 5.16 ± 0.44 a |
Final weight (g) | 8.79 ± 0.42 a | 9.41 ± 0.14 ab | 9.93 ± 0.63 b | 8.99 ± 0.40 a | 8.88 ± 0.33 a |
SR (%) | 85.00 ± 5.00 ab | 81.67 ± 2.89 a | 90.00 ± 5.00 bc | 93.33 ± 2.87 c | 90.00 ± 0.00 bc |
WGR (%) | 71.16 ± 7.50 a | 76.42 ± 1.71 a | 92.11 ± 2.89 b | 73.33 ± 7.19 a | 72.74 ± 9.68 a |
SGR (%/d) | 1.28 ± 0.13 a | 1.35 ± 0.03 a | 1.56 ± 0.04 b | 1.31 ± 0.12 a | 1.30 ± 0.16 a |
FCR | 1.74 ± 0.09 c | 1.78 ± 0.13 c | 1.51 ± 0.03 a | 1.70 ± 0.07 bc | 1.56 ± 0.07 ab |
CF (g/cm3) | 0.87 ± 0.04 a | 0.89 ± 0.10 a | 0.93 ± 0.04 a | 0.84 ± 0.06 a | 0.87 ± 0.06 a |
Addition Amount of Nano-Se (mg/kg) | Body Composition (%) | ||
---|---|---|---|
Moisture (%) | Crude Protein (%) | Crude Fat (%) | |
0 | 73.90 ± 0.19 a | 16.43 ± 0.52 a | 5.82 ± 0.09 ab |
0.1 | 74.69 ± 1.51 a | 16.40 ± 0.20 a | 5.30 ± 0.21 a |
0.2 | 72.69 ± 1.77 a | 16.46 ± 0.10 a | 6.60 ± 0.48 c |
0.4 | 73.93 ± 0.81 a | 15.89 ± 0.41 a | 6.14 ± 0.26 bc |
0.6 | 73.32 ± 2.41 a | 15.92 ± 0.43 a | 5.80 ± 0.47 ab |
Addition Amount of Nano-Se (mg/kg) | Selenium Content (mg/kg) |
---|---|
0 | 0.134 ± 0.003 a |
0.1 | 0.142 ± 0.007 a |
0.2 | 0.169 ± 0.005 b |
0.4 | 0.184 ± 0.006 c |
0.6 | 0.194 ± 0.007 c |
Amino Acids | Amount of Nano-Se (mg/kg) Added | ||||
---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.4 | 0.6 | |
Lysine 1 | 1.75 ± 0.06 a | 1.87 ± 0.07 b | 1.88 ± 0.07 b | 1.88 ± 0.01 b | 1.85 ± 0.04 ab |
Methionine 1 | 0.54 ± 0.02 a | 0.58 ± 0.02 b | 0.57 ± 0.01 b | 0.57 ± 0.01 b | 0.57 ± 0.02 b |
Valine 1 | 0.88 ± 0.02 a | 0.95 ± 0.02 bc | 0.96 ± 0.03 bc | 0.98 ± 0.02 c | 0.94 ± 0.03 b |
Isoleucine 1 | 0.84 ± 0.01 a | 0.92 ± 0.01 b | 0.92 ± 0.03 b | 0.91 ± 0.02 b | 0.90 ± 0.02 b |
Leucine 1 | 1.38 ± 0.03 a | 1.49 ± 0.03 b | 1.50 ± 0.04 b | 1.45 ± 0.01 b | 1.47 ± 0.04 b |
Phenylalanine 1,3 | 0.78 ± 0.02 a | 0.83 ± 0.02 b | 0.84 ± 0.03 b | 0.85 ± 0.02 b | 0.82 ± 0.02 b |
Threonine 1 | 0.82 ± 0.02 a | 0.90 ± 0.04 b | 0.89 ± 0.04 b | 0.89 ± 0.02 b | 0.90 ± 0.02 b |
Aspartic acid 2,3 | 1.81 ± 0.04 a | 1.96 ± 0.04 b | 1.97 ± 0.06 b | 1.90 ± 0.01 b | 1.93 ± 0.04 b |
Serine 2 | 0.58 ± 0.02 a | 0.60 ± 0.03 a | 0.59 ± 0.02 a | 0.59 ± 0.01 a | 0.58 ± 0.01 a |
Glutamic acid 2,3 | 2.88 ± 0.07 a | 3.09 ± 0.04 b | 3.08 ± 0.09 b | 3.14 ± 0.04 b | 3.06 ± 0.08 b |
Glycine 2,3 | 1.02 ± 0.04 a | 1.14 ± 0.03 b | 1.00 ± 0.01 a | 1.07 ± 0.02 ab | 1.07 ± 0.03 ab |
Alanine 2,3 | 1.10 ± 0.03 a | 1.20 ± 0.03 b | 1.18 ± 0.03 b | 1.18 ± 0.01 b | 1.19 ± 0.04 b |
Tyrosine 2,3 | 0.55 ± 0.01 a | 0.59 ± 0.01 b | 0.59 ± 0.01 b | 0.62 ± 0.01 c | 0.61 ± 0.02 bc |
Histidine 2 | 0.54 ± 0.01 a | 0.55 ± 0.01 a | 0.61 ± 0.02 c | 0.59 ± 0.01 b | 0.53 ± 0.01 a |
Arginine 2 | 1.14 ± 0.04 a | 1.27 ± 0.02 b | 1.26 ± 0.03 b | 1.24 ± 0.01 b | 1.25 ± 0.03 b |
Proline 2 | 0.70 ± 0.02 a | 0.79 ± 0.02 c | 0.74 ± 0.01 b | 0.79 ± 0.02 c | 0.77 ± 0.03 c |
Cystine 2 | 0.16 ± 0.01 a | 0.16 ± 0.00 a | 0.16 ± 0.00 a | 0.16 ± 0.00 a | 0.16 ± 0.00 a |
EAA | 6.99 ± 0.14 a | 7.54 ± 0.20 b | 7.57 ± 0.23 b | 7.53 ± 0.08 b | 7.44 ± 0.16 b |
NEAA | 10.48 ± 0.22 a | 11.36 ± 0.19 b | 11.17 ± 0.24 b | 11.28 ± 0.05 b | 11.15 ± 0.28 b |
DAA | 8.14 ± 0.18 a | 8.81 ± 0.16 b | 8.65 ± 0.20 b | 8.75 ± 0.05 b | 8.67 ± 0.24 b |
TAA | 17.47 ± 0.36 a | 18. 90 ± 0.38 b | 18.73 ± 0.47 b | 18.82 ± 0.13 b | 18.59 ± 0.43 b |
EAA/TAA | 40.02 ± 0.09% a | 39.91 ± 0.23% a | 40.39 ± 0.24% b | 40.03 ± 0.17% a | 40.04 ± 0.14% a |
NEAA/TAA | 59.98 ±0.09% b | 60.09 ± 0.23% b | 59.61 ± 0.24% a | 59.97 ± 0.17% b | 59.96 ± 0.14% b |
EAA/NEAA | 66.72 ± 0.24% a | 66.42 ± 0.65% a | 67.75 ± 0.68% b | 66.76 ± 0.48% a | 66.78 ± 0.38% a |
DAA/TAA | 46.58 ± 0.12% b | 46.63 ± 0.12% b | 46.16 ± 0.13% a | 46.52 ± 0.05% b | 46.64 ± 0.21% b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Xing, S.; Xu, H.; Zhu, H.; Fu, H.; Wang, H.; Li, F.; Zhu, M. Dietary Nanometer Selenium Enhances the Selenium Accumulation, Nutrient Composition and Antioxidant Status of Paramisgurnus dabryanus spp. Fishes 2024, 9, 28. https://doi.org/10.3390/fishes9010028
Chen J, Xing S, Xu H, Zhu H, Fu H, Wang H, Li F, Zhu M. Dietary Nanometer Selenium Enhances the Selenium Accumulation, Nutrient Composition and Antioxidant Status of Paramisgurnus dabryanus spp. Fishes. 2024; 9(1):28. https://doi.org/10.3390/fishes9010028
Chicago/Turabian StyleChen, Jianhua, Shaopeng Xing, Haixin Xu, Honggeng Zhu, Huiyun Fu, Haihua Wang, Fugui Li, and Ming Zhu. 2024. "Dietary Nanometer Selenium Enhances the Selenium Accumulation, Nutrient Composition and Antioxidant Status of Paramisgurnus dabryanus spp." Fishes 9, no. 1: 28. https://doi.org/10.3390/fishes9010028
APA StyleChen, J., Xing, S., Xu, H., Zhu, H., Fu, H., Wang, H., Li, F., & Zhu, M. (2024). Dietary Nanometer Selenium Enhances the Selenium Accumulation, Nutrient Composition and Antioxidant Status of Paramisgurnus dabryanus spp. Fishes, 9(1), 28. https://doi.org/10.3390/fishes9010028