Effects of Blending Curcuma longa Hydrolate and Lactobacillus plantarum on the Growth and Health of Nile Tilapia
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Assay to Test the Dosage of Curcuma longa Hydrolate in Probiotic Culture Medium
2.2. In Vivo Experimental Design
2.3. Hematoimmunological Analysis
2.4. Experimental Infection of Aeromonas
2.5. Statistical Analysis
3. Results
3.1. In Vitro Assay
3.2. In Vivo Assay
3.2.1. Growth Performance
3.2.2. Hematoimmunological Analyses
3.2.3. Experimental Challenge
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elumalai, P.; Kurian, A.; Lakshmi, S.; Faggio, C.; Esteban, M.A.; Ringø, E. Herbal immunomodulators in aquaculture. Rev. Fish. Sci. Aquac. 2020, 29, 33–57. [Google Scholar] [CrossRef]
- Jeyavani, J.; Sibiya, A.; Sivakamavalli, J.; Divya, M.; Preetham, E.; Vaseeharan, B.; Faggio, C. Phytotherapy and combined nanoformulations as a promising disease management in aquaculture: A review. Aquac. Int. 2022, 30, 1071–1086. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Hamed, H.S.; Monier, M.N.; Amen, R.M. The ameliorative effects of dietary rosemary (Rosmarinus officinalis) against growth retardation, oxidative stress, and immunosuppression induced by waterborne lead toxicity in Nile tilapia fingerlings. Ann. Anim. Sci. 2024, 24, 139–149. [Google Scholar] [CrossRef]
- Ammon, H.P.; Wahl, M.A. Pharmacology of Curcuma longa. Planta Med. 1991, 57, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Soares, B.V.; Cardoso, A.C.F.; Campos, R.R.; Gonçalves, B.B.; Santos, G.G.; Chaves, F.C.M.; Chagas, E.C.; Tavares-Dias, M. Antiparasitic, physiological and histological effects of the essential oil of Lippia origanoides (Verbenaceae) in native freshwater fish Colossoma macropomum. Aquaculture 2017, 469, 72–78. [Google Scholar] [CrossRef]
- Hamed, H.S.; El-Sayed, Y.S. Antioxidant activities of Moringa oleifera leaf extract against pendimethalin-induced oxidative stress and genotoxicity in Nile tilapia, Oreochromis niloticus (L.). Fish Physiol. Biochem. 2019, 45, 71–82. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Elabd, H.; Mahboub, H.H.; Assayed, M.E.M.; Hamed, H.S.; Elsayyad, A.; Mohamed, E.M. The protective efficacy of dual dietary rosemary plus cinnamon mix against lead nitrate-induced immune suppression, genotoxicity, and oxidant/antioxidant status in Nile tilapia fingerlings. Aquac. Int. 2023, 32, 4009–4029. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Hamed, H.S. Antagonistic effects of dietary guava (Psidium guajava) leaves extract on growth, hemato-biochemical, and immunity response of cypermethrin-intoxicated Nile tilapia, Oreochromis niloticus, fingerlings. Aquaculture 2020, 529, 735668. [Google Scholar] [CrossRef]
- Hamed, H.S.; Abdel-Tawwab, M. Dietary pomegranate (Punica granatum) peel mitigated the adverse effects of silver nanoparticles on the performance, haemato-biochemical, antioxidant, and immune responses of Nile tilapia fingerlings. Aquaculture 2021, 540, 736742. [Google Scholar] [CrossRef]
- Zanuzzo, F.S.; Urbinati, E.C.; Rise, M.L.; Hall, J.R.; Nash, G.W.; Gamperl, A.K. Aeromonas salmonicida induced immune gene expression in Aloe vera fed steelhead trout, Oncorhynchus mykiss (Walbaum). Aquaculture 2015, 435, 1–9. [Google Scholar] [CrossRef]
- Militz, T.A.; Southgate, P.C.; Carton, A.G.; Hutson, K.S. Dietary supplementation of garlic (Allium sativum) to prevent monogenean infection in aquaculture. Aquaculture 2013, 408, 95–99. [Google Scholar] [CrossRef]
- Talpur, A.D.; Ikhwanuddin, M.; Bolong, A.M.A. Nutritional effects of ginger (Zingiber officinale Roscoe) on immune response of Asian sea bass, Lates calcarifer (Bloch) and disease resistance against Vibrio harveyi. Aquaculture 2013, 400, 46–52. [Google Scholar] [CrossRef]
- Brum, A.; Pereira, S.A.; Owatari, M.S.; Chagas, E.C.; Chaves, F.C.M.; Mouriño, J.L.P.; Martins, M.L. Effect of dietary essential oils of clove basil and ginger on Nile tilapia (Oreochromis niloticus) following challenge with Streptococcus agalactiae. Aquaculture 2017, 468, 235–243. [Google Scholar] [CrossRef]
- Boaventura, T.P.; Souza, C.F.; Ferreira, A.L.; Favero, G.C.; Baldissera, M.D.; Heinzmann, B.M.; Baldisserotto, B.; Luz, R.K. Essential oil of Ocimum gratissimum (Linnaeus, 1753) as anesthetic for Lophiosilurus alexandri: Induction, recovery, hematology, biochemistry and oxidative stress. Aquaculture 2020, 529, 735676. [Google Scholar] [CrossRef]
- Owatari, M.S.; Jesus GF, A.; Brum, A.; Pereira, S.A.; Lehmann, N.B.; Pereira, U.P.; Martins, M.L.; Mouriño, J.L.P. Sylimarin as hepatic protector and immunomodulator in Nile tilapia during Streptococcus agalactiae infection. Fish Shellfish Immunol. 2018, 82, 565–572. [Google Scholar] [CrossRef]
- Pereira, M.O.; Moraes, A.V.; Rodhermel, J.C.B.; Hess, J.D.; Alves, L.; Chaaban, A.; Jatobá, A. Supplementation of Curcuma longa hydrolate improves immunomodulatory response in Nile tilapia reared in a recirculation aquaculture system. Arq. Bras. Med. Vet. Zootec. 2020, 72, 1805–1812. [Google Scholar] [CrossRef]
- Pereira, M.O.; Hess, J.D.; Rodhermel, J.C.B.; Farias, D.R.; Schleder, D.D.; Alves, L.; Bertoldi, F.C.; Chaban, A.; Andrade, J.I.A.; Jatobá, A. Curcuma longa hydrolate improves Nile tilapia survival in a recirculation rearing system, maintaining the animal homeostasis and modulating the gut microbial community. An. Acad. Bras. Cienc. 2021, 93, e20210088. [Google Scholar] [CrossRef]
- Marchi, J.P.; Tedesco, L.; Melo, A.D.C.; Frasson, A.C.; França, V.F.; Sato, S.W.; Lovato, E.C.W. Curcuma longa L., o açafrão da terra, e seus benefícios medicinais. Arq. Ciênc. Saúde UNIPAR 2016, 20, 189–194. [Google Scholar] [CrossRef]
- Omosa, L.K.; Midiwo, J.O.; Kuete, V. Curcuma longa. In Medicinal Spices and Vegetables from Africa; Academic Press: Cambridge, MA, USA, 2017; pp. 425–435. [Google Scholar]
- Jyotirmayee, B.; Mahalik, G. A review on selected pharmacological activities of Curcuma longa L. Int. J. Food Prop. 2022, 25, 1377–1398. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Delannoy, C.M.; Samai, H.; Labrie, L. Streptococcus agalactiae serotype IV in farmed tilapia. Aquaculture 2021, 544, 737033. [Google Scholar] [CrossRef]
- Tavares-Dias, M.; Martins, M.L. An overall estimation of losses caused by diseases in the Brazilian fish farms. J. Parasit. Dis. 2017, 41, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; He, H.; Li, Z.; Liu, C.; Jiang, B.; Huang, Y.; Su, Y.; Li, W. Screening and effects of intestinal probiotics on growth performance, gut health, immunity, and disease resistance of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae. Fish Shellfish Immunol. 2024, 151, 109668. [Google Scholar] [CrossRef]
- Gatesoupe, F.J. The use of probiotics in aquaculture. Aquaculture 1999, 180, 147–165. [Google Scholar] [CrossRef]
- Newaj-Fyzul, A.; Al-Harbi, A.H.; Austin, B. Developments in the use of probiotics for disease control in aquaculture. Aquaculture 2014, 431, 1–11. [Google Scholar] [CrossRef]
- Moraes, A.V.; Owatari, M.S.; Silva, E.; Pereira, M.O.; Piola, M.; Ramos, C.; Farias, D.R.; Schleder, D.D.; Jesus, G.F.A.; Jatobá, A. Effects of microencapsulated probiotics-supplemented diet on growth, non-specific immunity, intestinal health and resistance of juvenile Nile tilapia challenged with Aeromonas hydrophila. Anim. Feed Sci. Technol. 2022, 287, 115286. [Google Scholar] [CrossRef]
- Jatobá, A.; Vieira, F.D.N.; Buglione Neto, C.; Silva, B.C.; Mouriño, J.L.P.; Jerônimo, G.T.; Dotta, G.; Martins, M.L. Utilização de bactérias ácido-lácticas isoladas do trato intestinal de tilápia-do-nilo como probiótico. Pesqui. Agropecu. Bras. 2008, 43, 1201–1207. [Google Scholar] [CrossRef]
- Jatobá, A.; Vieira, F.D.N.; Buglione-Neto, C.C.; Mouriño, J.L.P.; Silva, B.C.; Seiftter, W.Q.; Andreatta, E.R. Diet supplemented with probiotic for Nile tilapia in polyculture system with marine shrimp. Fish Physiol. Biochem. 2011, 37, 725–732. [Google Scholar] [CrossRef]
- Jatobá, A.; Pereira, M.O.; Vieira, L.M.; Bitencourt, M.; Rodrigues, E.; Fachini, F.A.; Moraes, A.V. Action time and feed frequency of Lactobacillus plantarum for Nile tilapia. Arq. Bras. Med. Vet. Zootec. 2018, 70, 327–332. [Google Scholar] [CrossRef]
- Yue, B.; Zong, G.; Tao, R.; Wei, Z.; Lu, Y. Crosstalk between traditional Chinese medicine-derived polysaccharides and the gut microbiota: A new perspective to understand traditional Chinese medicine. Phytother. Res. 2022, 36, 4125–4138. [Google Scholar] [CrossRef]
- Hamed, H.S.; Amen, R.M.; Elelemi, A.H.; Mahboub, H.H.; Elabd, H.; Abdelfattah, A.M.; Abdel Moniem, H.; El-Beltagy, M.A.; Alkafafy, M.; Yassin, E.M.M.; et al. Effect of dietary Moringa oleifera leaves nanoparticles on growth performance, physiological, immunological responses, and liver antioxidant biomarkers in Nile tilapia (Oreochromis niloticus) against Zinc oxide nanoparticles toxicity. Fishes 2022, 7, 360. [Google Scholar] [CrossRef]
- Elabd, H.; Mahboub, H.H.; Salem, S.M.; Abdelwahab, A.M.; Alwutayd, K.M.; Shaalan, M.; Ismail, S.H.; Abdelfattah, A.M.; Khalid, A.; Mansour, A.T.; et al. Nano-curcumin/chitosan modulates growth, biochemical, immune, and antioxidative profiles, and the expression of related genes in Nile tilapia, Oreochromis niloticus. Fishes 2023, 8, 333. [Google Scholar] [CrossRef]
- Goda, M.N.; Shaheen, A.A.; Hamed, H.S. Potential role of dietary parsley and/or parsley nanoparticles against zinc oxide nanoparticles toxicity induced physiological, and histological alterations in Nile tilapia, Oreochromis niloticus. Aquac. Rep. 2023, 28, 101425. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Goldenfarb, P.B.; Bowyer, F.P.; Hall, E.; Brosious, E. Reproducibility in the hematology laboratory: The microhematocrit determination. Am. J. Clin. Pathol. 1971, 56, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Blaxhall, P.C.; Daisley, K.W. Routine haematological methods for use with fish blood. J. Fish Biol. 1973, 5, 771–781. [Google Scholar] [CrossRef]
- De Paiva, M.J.T.R.; Pádua, S.B.; Tavares-Dias, M.; Egami, M.I. Métodos Para Análise Hematológica em Peixes; Editora da Universidade Estadual de Maringá-EDUEM: Maringá, Brazil, 2013. [Google Scholar]
- Rosenfeld, G. Corante pancrômico para hematologia e citologia clínica. Nova combinação dos componentes do May-Grünwald e do Giemsa num só corante de emprego rápido. Mem. Inst. Butantan 1947, 20, 329–334. [Google Scholar]
- Ishikawa, N.M.; Ranzani-Paiva, M.J.T.; Lombardi, J.V. Total leukocyte counts methods in fish, Oreochromis niloticus. Arch. Vet. Sci. 2008, 13, 54–63. Available online: http://hdl.handle.net/11449/70526 (accessed on 2 December 2024).
- Silva, B.C.; Martins, M.L.; Jatobá, A.; Buglione Neto, C.C.; Vieira, F.N.; Pereira, G.V.; Jerônimo, G.T.; Seiffert, W.Q.; Mouriño, J.L.P. Hematological and immunological responses of Nile tilapia after polyvalent vaccine administration by different routes. Pesq. Vet. Bras. 2009, 29, 874–880. [Google Scholar] [CrossRef]
- Amar, E.C.; Kiron, V.; Satoh, S.; Okamoto, N.; Watanabe, T. Effects of dietary β carotene on the immune response of rainbow trout Oncorhynchus mykiss. Fish. Sci. 2000, 66, 1068–1075. [Google Scholar] [CrossRef]
- Andrawes, N.G.; Nour, A.A.A.; Shaheen, A.A.; Hamed, H.S. Effect of Nigella sativa enriched diet on biochemical variables and antioxidant damage caused by silver nanoparticles toxicity in the African catfish, Clarias gariepinus. Egypt. J. Aquat. Biol. Fish. 2021, 25, 63–76. [Google Scholar] [CrossRef]
- Mansour, A.T.; Hamed, H.S.; El-Beltagi, H.S.; Mohamed, W.F. Modulatory effect of papaya extract against chlorpyrifos-induced oxidative stress, immune suppression, endocrine disruption, and DNA damage in female Clarias gariepinus. Int. J. Environ. Res. Public Health 2022, 19, 4640. [Google Scholar] [CrossRef]
- Santos, G.G.; Libanori, M.C.M.; Pereira, S.A.; Ferrarezi, J.V.S.; Ferreira, M.B.; Soligo, T.A.; Yamashita, E.; Martins, M.L.; Mouriño, J.L.P. Probiotic mix of Bacillus spp. and benzoic organic acid as growth promoter against Streptococcus agalactiae in Nile tilapia. Aquaculture 2023, 566, 739212. [Google Scholar] [CrossRef]
- Ferreira, L.A.; Henriques, O.B.; Andreoni, A.A.; Vital, G.R.; Campos, M.M.; Habermehl, G.G.; Moraes, V.L. Antivenom and biological effects of ar-turmerone isolated from Curcuma longa (Zingiberaceae). Toxicon 1992, 30, 1211–1218. [Google Scholar] [CrossRef]
- Lee, H.S. Antiplatelet property of Curcuma longa L. rhizome-derived ar-turmerone. Bioresour. Technol. 2006, 97, 1372–1376. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Amelot, M.E. Multitargeted bioactive materials of plants in the Curcuma genus and related compounds: Recent advances. Stud. Nat. Prod. Chem. 2016, 47, 111–200. [Google Scholar] [CrossRef]
- Su, P.; Henriksson, A.; Nilsson, C.; Mitchell, H. Synergistic effect of green tea extract and probiotics on the pathogenic bacteria, Staphylococcus aureus and Streptococcus pyogenes. World J. Microbiol. Biotechnol. 2008, 24, 1837–1842. [Google Scholar] [CrossRef]
- Jatobá, A.; Mouriño, J.L.P. Lactobacillus plantarum effect on intestinal tract of Oreochromis niloticus fingerlings. Ciênc. Anim. Bras. 2015, 16, 45–53. [Google Scholar] [CrossRef]
- Bomba, A.; Nemcová, R.; Mudroňová, D.; Guba, P. The possibilities of potentiating the efficacy of probiotics. Trends Food Sci. Technol. 2002, 13, 121–126. [Google Scholar] [CrossRef]
- Ringø, E.; Gatesoupe, F.J. Lactic acid bacteria in fish: A review. Aquaculture 1998, 160, 177–203. [Google Scholar] [CrossRef]
- Vázquez, J.A.; González, M.; Murado, M.A. Effects of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture 2005, 245, 149–161. [Google Scholar] [CrossRef]
- Ringø, E.; Hoseinifar, S.H.; Ghosh, K.; Doan, H.V.; Beck, B.R.; Song, S.K. Lactic acid bacteria in finfish—An update. Front. Microbiol. 2018, 9, 1818. [Google Scholar] [CrossRef]
- Gill, H.S. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 2003, 17, 755–773. [Google Scholar] [CrossRef] [PubMed]
- Owatari, M.S.; Cardoso, L.; Pereira, S.A.; Pereira, U.P.; Tachibana, L.; Martins, M.L.; Mouriño, J.L.P. Laboratory-controlled challenges of streptococcosis in Nile tilapia using the oral route (infected-feed) for infection. Fish Shellfish Immunol. 2022, 120, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.N.; Dhayanithi, N.B.; Kumar, T.T.A.; Balasundaram, C.; Harikrishnan, R. In vitro and in vivo efficacy of partially purified herbal extracts against bacterial fish pathogens. Aquaculture 2016, 458, 121–133. [Google Scholar] [CrossRef]
- Dawood, M.A.; Koshio, S.; Abdel-Daim, M.M.; Van Doan, H. Probiotic application for sustainable aquaculture. Rev. Aquac. 2019, 11, 907–924. [Google Scholar] [CrossRef]
- Yousuf, S.; Tyagi, A.; Singh, R. Probiotic supplementation as an emerging alternative to chemical therapeutics in finfish aquaculture: A Review. Probiotics Antimicrob. Proteins 2022, 15, 1151–1168. [Google Scholar] [CrossRef]
Treatments | Vehicle (mL) | |
---|---|---|
Curcuma longa Hydrolate (%) | Distilled Water (%) | |
100 | 10.00 | 0.00 |
50 | 5.00 | 5.00 |
25 | 2.50 | 7.50 |
12.5 | 1.25 | 8.75 |
0 | 0.00 | 10.00 |
Treatments | Aeromonas hydrophila | A. veronii | Pseudomonas sp. | Streptococcus agalactiae |
---|---|---|---|---|
0 | 10.5 ± 1.00 a | 12.0 ± 0.50 a | 17.0 ± 0.00 a | 15.0 ± 0.00 a |
12.5 | 11.5 ± 1.50 a | 12.5 ± 1.00 a | 17.0 ± 1.00 a | 15.0 ± 1.00 a |
25 | 11.0 ± 1.00 a | 11.5 ± 1.50 a | 17.0 ± 1.00 a | 15.0 ± 0.00 a |
50 | 10.5 ± 1.00 a | 13.0 ± 0.50 a | 16.0 ± 0.00 a | 14.0 ± 1.00 a |
100 | 11.0 ± 0.50 a | 12.5 ± 0.00 a | 15.0 ± 1.00 a | 12.0 ± 0.00 b |
Growth Indexes | CTRL | CUR | PRO | COMB |
---|---|---|---|---|
Final average weight (g) | 28.03 ± 3.44 b | 30.81 ± 1.02 b | 33.26 ± 1.12 a | 32.62 ± 1.96 ab |
SGR (% day−1) | 1.51 ± 0.10 b | 1.58 ± 0.02 b | 1.64 ± 0.01 a | 1.61 ± 0.04 a |
FCR | 1.50 ± 0.19 a | 1.22 ±0.11 ab | 1.03 ±0.11 c | 1.11 ±0.08 bc |
Survival (%) | 83.33 ± 5.56 b | 100.00 ± 0.00 a | 97.22 ± 3.70 a | 97.22 ± 3.70 a |
Yield (g m−3) | 345.42 ± 24.44 b | 462.15 ± 15.23 a | 484.35 ± 10.83 a | 474.51 ± 11.34 a |
Body Indexes | Treatments | |||
---|---|---|---|---|
CTRL | CUR | PRO | COMB | |
Hepatosomatic Index (%) | 2.25 ± 0.27 | 2.57 ± 0.25 | 2.25 ± 0.27 | 2.57 ± 0.25 |
Viscerosomatic Index (%) | 6.36 ± 0.56 | 6.32 ± 0.26 | 6.36 ± 0.56 | 6.32 ± 0.26 |
Moisture (%) | 68.33 ± 0.94 | 67.29 ± 1.41 | 67.21 ± 0.76 | 66.47 ± 2.02 |
Crude Protein (%) | 16.82 ± 1.84 | 16.06 ± 2.32 | 16.44 ± 1.23 | 17.00 ± 1.93 |
Crude lipids (%) | 11.03 ± 1.49 | 12.64 ± 2.32 | 10.99 ± 1.78 | 12.11 ± 2.04 |
Ashes (%) | 2.62 ± 0.12 | 2.63 ± 0.09 | 2.65 ± 0.09 | 2.65 ± 0.08 |
Total and Differential Count | CTRL | CUR | PRO | COMB |
---|---|---|---|---|
Thrombocytes (×103 µL−1) | 21.08 ± 8.12 | 20.90 ± 7.32 | 36.74 ± 6.26 | 24.34 ± 10.97 |
Total leukocytes (×103 µL−1) | 25.47 ± 6.76 b | 30.73 ± 9.58 ab | 40.92 ± 6.04 a | 33.56 ± 10.29 ab |
Lymphocytes (×103 µL−1) | 20.73 ± 7.04 b | 25.29 ± 8.76 ab | 36.95 ± 7.12 a | 28.62 ± 11.09 ab |
Monocytes (×103 µL−1) | 2.23 ± 1.85 | 3.45 ± 0.97 | 2.54 ± 0.42 | 2.93 ± 1.60 |
Neutrophils (×103 µL−1) | 2.51 ± 0.64 | 1.99 ± 0.51 | 1.43 ± 0.57 | 2.01 ± 0.69 |
Hematimetric Parameters | ||||
Erythrocytes (×106 µL−1) | 1.96 ± 0.64 | 1.97 ± 0.45 | 1.52 ± 0.43 | 1.58 ± 0.42 |
Hematocrit (%) | 26.89 ± 3.19 | 25.89 ± 4.71 | 27.29 ± 3.60 | 26.00 ± 1.44 |
Hemoglobin (g dL−1) | 6.51 ± 0.65 | 7.20 ± 0.68 | 6.76 ± 0.85 | 7.87 ± 0.98 |
MCV (fL) | 154.81 ± 58.86 | 137.77 ± 38.36 | 192.81 ± 54.28 | 183.41 ± 75.36 |
MCH (10−5 pg) | 40.57 ± 5.26 | 36.17 ± 6.98 | 37.19 ± 5.64 | 35.25 ± 5.27 |
MCHC (g dL−1) | 24.44 ± 3.07 | 28.99 ± 7.29 | 27.56 ± 4.53 | 29.66 ± 3.78 |
Glucose (mg d L−1) | 30.31 ± 4.71 | 31.29 ± 4.25 | 30.54 ± 5.06 | 34.37 ± 7.02 |
MIC (%) | 5.0 | 5.0 | 5.33 | 5.66 |
Agglutination titer | 5.01 ± 1.0 | 4.66 ± 0.58 | 5.00 ± 0.34 | 5.38 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jatobá, A.; Pereira, M.d.O.; Jesus, G.F.A.; Dutra, S.A.P.; Mouriño, J.L.P.; Owatari, M.S.; Schleder, D.D. Effects of Blending Curcuma longa Hydrolate and Lactobacillus plantarum on the Growth and Health of Nile Tilapia. Fishes 2024, 9, 503. https://doi.org/10.3390/fishes9120503
Jatobá A, Pereira MdO, Jesus GFA, Dutra SAP, Mouriño JLP, Owatari MS, Schleder DD. Effects of Blending Curcuma longa Hydrolate and Lactobacillus plantarum on the Growth and Health of Nile Tilapia. Fishes. 2024; 9(12):503. https://doi.org/10.3390/fishes9120503
Chicago/Turabian StyleJatobá, Adolfo, Marina de Oliveira Pereira, Gabriel Fernandes Alves Jesus, Scheila Anelise Pereira Dutra, José Luiz Pedreira Mouriño, Marco Shizuo Owatari, and Delano Dias Schleder. 2024. "Effects of Blending Curcuma longa Hydrolate and Lactobacillus plantarum on the Growth and Health of Nile Tilapia" Fishes 9, no. 12: 503. https://doi.org/10.3390/fishes9120503
APA StyleJatobá, A., Pereira, M. d. O., Jesus, G. F. A., Dutra, S. A. P., Mouriño, J. L. P., Owatari, M. S., & Schleder, D. D. (2024). Effects of Blending Curcuma longa Hydrolate and Lactobacillus plantarum on the Growth and Health of Nile Tilapia. Fishes, 9(12), 503. https://doi.org/10.3390/fishes9120503