Population Genetics of the Endemic Hemiculterella wui (Wang, 1935) in the Poyang Lake Basin (China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. DNA Extraction and PCR Amplification
2.4. Data Analysis
3. Results
3.1. Sequence Features and Population Genetic Diversity
3.2. Population Genetic Differentiation
3.3. Haplotype Network
3.4. Historical Demography Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, B. The hydrological features and the renovative strategy of the Poyang Lake. Resour. Environ. Yangtze Basin 1993, 2, 36–42. [Google Scholar]
- Yin, Z.X.; Zhang, J.C. The hydrological features of Poyang Lake (I). Oceanol. Limnol. Sin. 1987, 18, 22–27. [Google Scholar]
- Liu, X.J.; Qin, J.J.; Xu, Y.; Zhou, M.; Wu, X.P.; Ouyang, S. Biodiversity pattern of fish assemblages in Poyang Lake Basin: Threat and conservation. Ecol. Evol. 2019, 9, 11672–11683. [Google Scholar] [CrossRef]
- Chen, Y.Y. Fauna sinica, Osteichthys, Cypriniformes II; Science Press: Beijing, China, 1998; pp. 171–174. [Google Scholar]
- Fisheries Research Institute of Guangxi Zhuang Autonomous Region, Institute of Zoology, Chinese Academy of Sciences. Freshwater Fishes of Guangxi, China; Guangxi People’s Publishing House: Guangxi, China, 2006; pp. 157–159. [Google Scholar]
- Zhang, E.; Liu, H.Z.; He, C.C. Study on fish fauna in northeast of Jiangxi Province. Chin. J. Zool. 1996, 31, 3–12. [Google Scholar]
- Liu, X.J.; Qin, J.J.; Ao, X.F.; Guo, Q.; Xiao, W.L.; Wu, X.P.; Ouyang, S. Species diversity of fish in the Luoxiao Mountains region. Biodivers. Sci. 2020, 28, 889–895. [Google Scholar] [CrossRef]
- Wang, Z.T.; Zhang, E. An updated species checklist of freshwater fishes from Ganjiang River. Biodivers. Sci. 2021, 29, 1256–1264. [Google Scholar] [CrossRef]
- Meixler, M.S.; Bain, M.B.; Walter, M.T. Predicting barrier passage and habitat suitability for migratory fish species. Ecol. Model. 2009, 220, 2782–2791. [Google Scholar] [CrossRef]
- Kornis, M.S.; Weidel, B.C.; Powers, S.M.; Diebel, M.W.; Cline, T.J.; Fox, J.M.; Kitchell, J.F. Fish community dynamics following dam removal in a fragmented agricultural stream. Aquat. Sci. 2015, 77, 465–480. [Google Scholar] [CrossRef]
- Catalano, M.J.; Bozek, M.A.; Pellett, T.D. Effects of dam removal on fish assemblage structure and spatial distributions in the Baraboo River, Wisconsin. N. Am. J. Fish. Manag. 2007, 27, 519–530. [Google Scholar] [CrossRef]
- Cheng, F.; Li, W.; Castello, L.; Murphy, B.R.; Xie, S.G. Potential effects of dam cascade on fish: Lessons from the Yangtze River. Rev. Fish Biol. Fish. 2015, 25, 569–585. [Google Scholar] [CrossRef]
- Meldgaard, T.; Nielsen, E.E.; Loeschcke, V. Fragmentation by weirs in a riverine system: A study of genetic variation in time and space among populations of European grayling (Thymallus thymallus) in a Danish river system. Conserv. Genet. 2003, 4, 735–747. [Google Scholar] [CrossRef]
- Junker, J.; Peter, A.; Wagner, C.E.; Mwaiko, S.; Germann, B.; Seehausen, O.; Keller, I. River fragmentation increases localized population genetic structure and enhances asymme try of dispersal in bullhead (Cottus gobio). Conserv. Genet. 2012, 13, 545–556. [Google Scholar] [CrossRef]
- Machado, C.B.; Braga-Silva, A.; Freitas, P.D.; Galetti, P.M., Jr. Damming shapes genetic patterns and may affect the persistence of freshwater fish populations. Freshw. Biol. 2022, 67, 603–618. [Google Scholar] [CrossRef]
- Baggio, R.A.; Araujo, S.B.L.; Ayllón, D.; Boeger, W.A. Dams cause genetic homogenization in populations of fish that present homing behavior: Evidence from a demogenetic individual-based model. Ecol. Model. 2018, 384, 209–220. [Google Scholar] [CrossRef]
- Pavlova, A.; Beheregaray, L.B.; Coleman, R.; Gilligan, D.; Harrisson, K.A.; Ingram, B.A.; Kearns, J.; Lamb, A.M.; Lintermans, M.; Lyon, J.; et al. Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: A call for assisted gene flow. Evol. Appl. 2017, 10, 531–550. [Google Scholar] [CrossRef] [PubMed]
- Bessert, M.L.; Ortí, G. Genetic effects of habitat fragmentation on blue sucker populations in the upper Missouri River (Cycleptus elongatus Lesueur, 1918). Conserv. Genet. 2008, 9, 821–832. [Google Scholar] [CrossRef]
- Yamamoto, S.; Morita, K.; Koizumi, I.; Maekawa, K. Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: Spatial–temporal changes in gene frequencies. Conserv. Genet. 2004, 5, 529–538. [Google Scholar] [CrossRef]
- Ruzich, J.; Turnquist, K.; Nye, N.; Rowe, D.; Larson, W.A. Isolation by a hydroelectric dam induces minimal impacts on genetic diversity and population structure in six fish species. Conserv. Genet. 2019, 20, 1421–1436. [Google Scholar] [CrossRef]
- Haponski, A.E.; Marth, T.A.; Stepien, C.A. Genetic Divergence across a Low-head Dam: A Preliminary Analysis using Logperch and Greenside Darters. J. Great Lakes Res. 2007, 33, 117–126. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, L.L.; Deng, M.X.; Mo, Y.M.; Huang, X.; Song, X.H.; Huang, T.H.; Zou, Q. Spatial and temporal variation of fish assemblages and characteristic of dominant species in Lipu River, Guangxi. J. Southern Agric. 2019, 50, 1111–11119. [Google Scholar]
- Yin, C.; Huang, J.; Huang, L.L.; Wu, Z.Q.; Deng, M.X.; Xu, L.; Gao, M.H. Species composition and temporal-spatial variation of the fish community in Guijiang River. J. Hydroecol. 2019, 40, 48–54. [Google Scholar]
- Kuang, T.X. Molecular Identification and Community Structure of Cultrinae in the Pearl River. Master’s Dissertation, Shanghai Ocean University, Shanghai, China, 2018. [Google Scholar]
- Gao, M.H.; Wu, Z.Q.; Huang, L.L.; Ding, Y.; Zhu, Z.J. Length–weight relationships of 13 fish species from the Lijiang River, China. J. Appl. Ichthyol. 2018, 34, 180–182. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.; Zhu, L.; Huang, L.; Huang, Y. Length–weight relationships of seven fish species from Guijiang River in Guangxi Region, China. J. Appl. Ichthyol. 2021, 37, 497–499. [Google Scholar] [CrossRef]
- Chen, W.T.; Hubert, N.; Li, Y.F.; Xiang, D.G.; Cai, X.W.; Zhu, S.L.; Yang, J.P.; Zhou, C.J.; Li, X.H.; Li, J. Large-scale DNA barcoding of the subfamily Culterinae (Cypriniformes: Xenocyprididae) in East Asia unveils a geographical scale effect, taxonomic warnings and cryptic diversity. Mol. Ecol. 2022, 31, 3871–3887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.Y.; Zhu, T.T.; Yu, F. The New Mitochondrial Genome of Hemiculterella wui (Cypriniformes, Xenocyprididae): Sequence, Structure, and Phylogenetic Analyses. Genes 2023, 14, 2110. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, Y.; Liu, H. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): Taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Mol. Phylogenet. Evol. 2001, 18, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Nishimaki, T.; Sato, K. An extension of the Kimura Two-Parameter Model to the natural evolutionary process. J. Mol. Evol. 2019, 87, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Juhns, G.C.; Avise, J.C. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol. Biol. Evol. 1998, 15, 1481–1490. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Zardoya, R.; Doadrio, I. Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids. J. Mol. Evol. 1999, 49, 227–237. [Google Scholar] [CrossRef]
- Schneider, S.; Excoffier, L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA. Genetics 1999, 152, 1079–1089. [Google Scholar] [CrossRef]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Slatkin, M.; Hudson, R.R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 1991, 129, 555–562. [Google Scholar] [CrossRef]
- Rogers, A.R.; Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar]
- Neigel, J.E.; Avise, J.C. Application of a random walk model to geographic distributions of animal mitochondrial DNA variation. Genetics 1993, 135, 1209–1220. [Google Scholar] [CrossRef]
- Li, W.J.; Wang, H.S.; Liu, H.Z.; Cao, W.X.; Wang, X.M.; Yu, J.; Zhu, X. Genetic diversity and population demographic history of Hemiculterella sauvagei in the Chishui River. Acta. Hydrobiol. Sin. 2018, 42, 106–113. [Google Scholar]
- Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol. 1996, 10, 1500–1508. [Google Scholar] [CrossRef]
- Grant, W.A.S.; Bowen, B.W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Heredity 1998, 89, 415–426. [Google Scholar] [CrossRef]
- Hedrick, P.W. A standardized genetic differentiation measure. Evolution 2005, 59, 1633–1638. [Google Scholar] [PubMed]
- Nei, M.; Tajima, F. Genetic drift and estimation of effective population size. Genetics 1981, 98, 625–640. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. Evolution and the Genetics of Populations: Variability within and among Populations V. 4; University of Chicago Press: Chicago, IL, USA, 1978. [Google Scholar]
- Neraas, L.P.; Spruell, P. Fragmentation of riverine systems: The genetic effects of dams on bull trout (Salvelinus confuentus) in the Clark Fork River system. Mol. Ecol. 2001, 10, 1153–1164. [Google Scholar] [CrossRef]
- Blanchet, S.; Rey, O.; Etienne, R.; Lek, S.; Loot, G. Species-specific responses to landscape fragmentation: Implications for management strategies. Evol. Appl. 2010, 3, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Horreo, J.L.; Martinez, J.L.; Ayllon, F.; Pola, I.G.; Monteoliva, J.A.; Heland, M.; Garcia-Vazquez, E. Impact of habitat fragmentation on the genetics of populations in dendritic landscapes. Freshw. Biol. 2011, 56, 2567–2579. [Google Scholar] [CrossRef]
- Allendorf, F.W.; Luikart, G. Conservation and the Genetics of Populations; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Landguth, E.L.; Cushman, S.A.; Schwartz, M.K.; McKelvey, K.S.; Murphy, M.; Luikart, G. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 2010, 19, 4179–4191. [Google Scholar] [CrossRef]
- Waples, R.S. Separating the wheat from the chaff: Patterns of genetic differentiation in high gene flow species. J. Hered. 1998, 89, 438–450. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, T.L.; Ouyang, S.; Wu, X.P. Genetic diversity and population structure of Gobiobotia meridionalis in the Ganjiang River and Fuhe River. Chin. J. Zool. 2022, 57, 585–594. [Google Scholar]
- Wang, W.X.; Li, Y.; Zhu, H.G.; Zhang, W.R.; Feng, G.P.; Chen, J.H. Genetic differentiation of Shortjaw Tapertail Anchovy Coilia brachygnathus population based on Cytb and Morphology. Fish Sci. 2022, 41, 949–958. [Google Scholar]
- Wright, S. Evolution in mendelian populations. Genetics 1931, 16, 97–159. [Google Scholar] [CrossRef] [PubMed]
River | Locations | Number of Individuals | Number of Haplotypes (N) | Haplotype Diversity (Hd) | Nucleotide Diversity (Pi) |
---|---|---|---|---|---|
Ganjiang | Xiajiang (XJ) | 42 | 23 | 0.948 ± 0.018 | 0.0027 ± 0.0003 |
Wan’an (WA) | 38 | 19 | 0.932 ± 0.023 | 0.0023 ± 0.0003 | |
Fuhe | Fuzhou (FZ) | 33 | 17 | 0.936 ± 0.023 | 0.0024 ± 0.0003 |
Xinjiang | Guangfeng (GF) | 25 | 13 | 0.860 ± 0.060 | 0.0028 ± 0.0004 |
Yujiang (YJ) | 39 | 19 | 0.916 ± 0.031 | 0.0019 ± 0.0002 | |
Raohe | Changjiang (CJ) | 28 | 10 | 0.802 ± 0.069 | 0.0012 ± 0.0003 |
Fuliang (FL) | 26 | 14 | 0.852 ± 0.066 | 0.0024 ± 0.0005 | |
Total | 231 | 65 | 0.914 ± 0.014 | 0.0023 ± 0.0001 |
Source of Variation | df | Sum of Squares | Variance Components | Percentage of Variation | Fixation Indices |
---|---|---|---|---|---|
Among groups | 3 | 8.468 | 0.0208 | 1.57 | FCT: 0.01575 |
Among populations within groups | 3 | 4.939 | 0.0109 | 0.83 | FSC: 0.00839 * |
Within populations | 224 | 289.363 | 1.2918 | 97.60 | FST: 0.02400 ** |
Total | 230 | 302.771 | 1.3236 |
Population | XJ | WA | FZ | GF | YJ | CJ | FL |
---|---|---|---|---|---|---|---|
XJ | 0.7478 | 0.1351 | 0.1712 | 0.0000 | 0.0090 | 0.0631 | |
WA | −0.0074 | 0.0360 | 0.2252 | 0.0000 | 0.0000 | 0.0270 | |
FZ | 0.0108 | 0.0224 * | 0.0000 | 0.0721 | 0.0721 | 0.0991 | |
GF | 0.0099 | 0.0080 | 0.0337 ** | 0.0811 | 0.0721 | 0.0631 | |
YJ | 0.0325 ** | 0.0481 ** | 0.0173 | 0.0252 | 0.0991 | 0.5045 | |
CJ | 0.0401 ** | 0.0363 ** | 0.0231 | 0.0340 | 0.0165 | 0.0901 | |
FL | 0.0264 | 0.0363 * | 0.0175 | 0.0184 | −0.0018 | 0.0209 |
Population | Tajima’s D | Tajima’s D p-Value | Fu’s Fs | Fu’s Fs p-Value | Tau | T (MYA) |
---|---|---|---|---|---|---|
XJ | −1.9386 | 0.0100 | −16.1328 | 0.0000 | 3.328 | 0.19 |
WA | −1.7000 | 0.0220 | −12.4238 | 0.0000 | 1.770 | 0.10 |
FZ | −1.7102 | 0.0210 | −9.7760 | 0.0000 | 2.877 | 0.17 |
GF | −1.4218 | 0.0660 | −4.7832 | 0.0120 | 4.262 | 0.25 |
YJ | −1.9325 | 0.0140 | −14.0957 | 0.0000 | 2.289 | 0.13 |
CJ | −1.7919 | 0.0150 | −5.1212 | 0.0020 | 1.375 | 0.08 |
FL | −2.0028 | 0.0110 | −7.0473 | 0.0010 | 0.629 | 0.04 |
Total | −2.3373 | 0.0000 | −26.4815 | 0.0000 | 2.758 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Li, M.; Liu, H. Population Genetics of the Endemic Hemiculterella wui (Wang, 1935) in the Poyang Lake Basin (China). Fishes 2024, 9, 260. https://doi.org/10.3390/fishes9070260
Ma Q, Li M, Liu H. Population Genetics of the Endemic Hemiculterella wui (Wang, 1935) in the Poyang Lake Basin (China). Fishes. 2024; 9(7):260. https://doi.org/10.3390/fishes9070260
Chicago/Turabian StyleMa, Qin, Mingzheng Li, and Huanzhang Liu. 2024. "Population Genetics of the Endemic Hemiculterella wui (Wang, 1935) in the Poyang Lake Basin (China)" Fishes 9, no. 7: 260. https://doi.org/10.3390/fishes9070260
APA StyleMa, Q., Li, M., & Liu, H. (2024). Population Genetics of the Endemic Hemiculterella wui (Wang, 1935) in the Poyang Lake Basin (China). Fishes, 9(7), 260. https://doi.org/10.3390/fishes9070260