Structure and Diversity of Microbiomes Associated with the Gastrointestinal Tracts of Wild Spiny Lobsters and Profiling Their Potential Probiotic Properties Using eDNA Metabarcoding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collections
2.2. DNA Extraction, Amplification, and Sequencing of 16S rRNA Genes
2.3. Bioinformatics
2.4. Profiling of Predictive Metagenomic Functional Contents
3. Results
3.1. Number of Reads
3.2. Taxonomic Composition of Bacteria
3.3. Predicted Metagenomic Functional Contents
3.4. Predicted Biosynthesis of Secondary Metabolites
3.5. Digestive Enzyme Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Amin, M.; Kumala, R.R.C.; Mukti, A.T.; Lamid, M.; Nindarwi, D.D. Metagenomic profiles of core and signature bacteria in the guts of white shrimp, Litopenaeus vannamei, with different growth rates. Aquaculture 2022, 550, 737849. [Google Scholar] [CrossRef]
- Amin, M.; Adams, M.B.; Burke, C.M.; Bolch, C.J. Isolation and screening of lactic acid bacteria associated with the gastrointestinal tracts of abalone at various life stages for probiotic candidates. Aquac. Rep. 2020, 17, 100378. [Google Scholar] [CrossRef]
- Phan, T.T.C.; Vu, U.N.; Pham, N.T.T.; Vu, H.H.; Huynh, G.T. Evaluation of Pseudomonas stutzeri AM1 and Pseudomonas oleovorans ST1. 1 isolated from shrimp pond sediments as probiotics for whiteleg shrimp, Litopenaeus vannamei culture. Int. J. Aquat. Biol. 2022, 10, 201–208. [Google Scholar]
- Haditomo, A.H.C.; Prayitno, S.B. Probiotic Candidates from Fish Pond Water in Central Java Indonesia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Yogyakarta, Indonesia, 2018. [Google Scholar]
- Chiu, S.-T.; Chu, T.-W.; Simangunsong, T.; Ballantyne, R.; Chiu, C.-S.; Liu, C.-H. Probiotic, Lactobacillus pentosus BD6 boost the growth and health status of white shrimp, Litopenaeus vannamei via oral administration. Fish Shellfish. Immunol. 2021, 117, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yao, B.; Romero, J.; Waines, P.; Ringø, E.; Emery, M.; Liles, M.R.; Merrifield, D.L. Methodological approaches used to assess fish gastrointestinal communities. In Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics; Wiley: Hoboken, NJ, USA, 2014; pp. 101–127. [Google Scholar]
- Alam, K.; Abbasi, M.N.; Hao, J.; Zhang, Y.; Li, A. Strategies for natural products discovery from uncultured microorganisms. Molecules 2021, 26, 2977. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Sekizuka, T.; Kishi, N.; Yamashita, A.; Kuroda, M. Conventional culture methods with commercially available media unveil the presence of novel culturable bacteria. Gut Microbes 2019, 10, 77–91. [Google Scholar] [CrossRef]
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Middlemiss, K.L.; Daniels, C.L.; Urbina, M.A.; Wilson, R.W. Combined effects of UV irradiation, ozonation, and the probiotic Bacillus spp. on growth, survival, and general fitness in European lobster (Homarus gammarus). Aquaculture 2015, 444, 99–107. [Google Scholar] [CrossRef]
- Amin, M.; Taha, H.; Samara, S.H.; Fitria, A.; Muslichah, N.A.; Musdalifah, L.; Odeyemi, O.A.; Alimuddin, A.; Arai, T. Revealing diets of wild-caught ornate spiny lobster, Panulirus ornatus, at puerulus, post-puerulus and juvenile stages using environmental DNA (eDNA) metabarcoding. Aquac. Rep. 2022, 27, 101361. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2012, 41, e1. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Cruz, R.; Torres, M.T.; Santana, J.V.; Cintra, I.H. Lobster Distribution and Biodiversity on the Continental Shelf of Brazil: A Review. Diversity 2021, 13, 507. [Google Scholar] [CrossRef]
- Amin, M.; Harlyan, L.I.; Khamad, K.; Diantari, R. Profiling the natural settlement habitat of spiny lobster, Panulirus spp. to determine potential diets and rearing conditions in a lobster hatchery. Biodivers. J. Biol. Divers. 2022, 23. [Google Scholar] [CrossRef]
- Hug, J.J.; Krug, D.; Müller, R. Bacteria as genetically programmable producers of bioactive natural products. Nat. Rev. Chem. 2020, 4, 172–193. [Google Scholar] [CrossRef]
- Chen, H.; Pan, J.; Wang, Y.; Qiao, Y.; Han, F.; Xu, C.; Farhadi, A.; Li, E. Growth, health status and gut microbiota of the scalloped spiny lobster (Panulirus homarus) at different salinities. Aquaculture 2023, 562, 738779. [Google Scholar] [CrossRef]
- Ooi, M.C.; Goulden, E.F.; Smith, G.G.; Nowak, B.F.; Bridle, A.R. Developmental and gut-related changes to microbiomes of the cultured juvenile spiny lobster Panulirus ornatus. FEMS Microbiol. Ecol. 2017, 93, fix159. [Google Scholar] [CrossRef]
- Pfenning-Butterworth, A.; Cooper, R.O.; Cressler, C.E. Daily feeding rhythm linked to microbiome composition in two zooplankton species. PLoS ONE 2022, 17, e0263538. [Google Scholar] [CrossRef]
- Yu, C.; Li, L.; Jin, J.; Zhang, B.; Wei, H.; Zhao, Y.; Li, X.; Li, Y. Comparative analysis of gut bacterial community composition during a single day cycle in Chinese mitten crab (Eriocheir sinensis). Aquac. Rep. 2021, 1, 100907. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, Z.; Zhang, B.; Yu, C.; Li, L.; Li, X.; Li, Y. Intestinal bacterial community composition of juvenile Chinese mitten crab Eriocheir sinensis under different feeding times in lab conditions. Sci. Rep. 2022, 12, 22206. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, G.; Ray, A.K. Bacterial symbiosis in the fish gut and its role in health and metabolism. Symbiosis 2017, 72, 1–11. [Google Scholar] [CrossRef]
- Holt, C.C.; van der Giezen, M.; Daniels, C.L.; Stentiford, G.D.; Bass, D. Spatial and temporal axes impact ecology of the gut microbiome in juvenile European lobster (Homarus gammarus). ISME J. 2020, 14, 531–543. [Google Scholar] [CrossRef]
- Zamora-Briseño, J.A.; Cerqueda-García, D.; Hernández-Velázquez, I.M.; Rivera-Bustamante, R.; Huchín-Mian, J.P.; Briones-Fourzán, P.; Lozano-Álvarez, E.; Rodríguez-Canul, R. Alterations in the gut-associated microbiota of juvenile Caribbean spiny lobsters Panulirus argus (Latreille, 1804) infected with PaV1. J. Invertebr. Pathol. 2020, 176, 107457. [Google Scholar] [CrossRef]
- Berger, L.R. Microflora in the gut of Japanese coastal crustacea. Bull. Jpn. Soc. Sci. Fish 1987, 53, 1647–1655. [Google Scholar]
- Dopazo, C.; Lemos, M.; Lodeiros, C.; Bolinches, J.; Barja, J.; Toranzo, A.E. Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J. Appl. Bacteriol. 1988, 65, 97–101. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; Vlami, M.; De Souza, J.T. Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 2002, 81, 537–547. [Google Scholar] [CrossRef]
- Liu, X.; Mao, B.; Gu, J.; Wu, J.; Cui, S.; Wang, G.; Zhao, J.; Zhang, H.; Chen, W. Blautia—A new functional genus with potential probiotic properties? Gut Microbes 2021, 13, 1875796. [Google Scholar] [CrossRef]
- Lakhdari, O.; Tap, J.; Béguet-Crespel, F.; Le Roux, K.; De Wouters, T.; Cultrone, A.; Nepelska, M.; Lefevre, F.; Doré, J.; Blottiere, H.M. Identification of NF-κB modulation capabilities within human intestinal commensal bacteria. J. Biomed. Biotechnol. 2011, 2011, 282356. [Google Scholar] [CrossRef]
- Meidong, R.; Khotchanalekha, K.; Doolgindachbaporn, S.; Nagasawa, T.; Nakao, M.; Sakai, K.; Tongpim, S. Evaluation of probiotic Bacillus aerius B81e isolated from healthy hybrid catfish on growth, disease resistance and innate immunity of Pla-mong Pangasius bocourti. Fish Shellfish Immunol. 2018, 73, 1–10. [Google Scholar] [CrossRef]
- Dutta, D.; Banerjee, S.; Mukherjee, A.; Ghosh, K. Selection and probiotic characterization of exoenzyme-producing bacteria isolated from the gut of Catla catla (Actinopterygii: Cypriniformes: Cyprinidae). Acta Ichthyol. Piscat. 2015, 45, 373–384. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M. The role of exogenous enzymes in promoting growth and improving nutrient digestibility in poultry. Iran. J. Vet. Res. 2018, 19, 157. [Google Scholar]
- Ray, A.; Ghosh, K.; Ringø, E. Enzyme-producing bacteria isolated from fish gut: A review. Aquac. Nutr. 2012, 18, 465–492. [Google Scholar] [CrossRef]
- Amin, M. Marine protease-producing bacterium and its potential use as an abalone probiont. Aquac. Rep. 2018, 12, 30–35. [Google Scholar] [CrossRef]
- Feng, W.; Wang, X.-Q.; Zhou, W.; Liu, G.-Y.; Wan, Y.-J. Isolation and characterization of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage. J. Insect Sci. 2011, 11, 135. [Google Scholar] [CrossRef]
- Dutta, D.; Ghosh, K. Screening of extracellular enzyme-producing and pathogen inhibitory gut bacteria as putative probiotics in mrigal, Cirrhinus mrigala (Hamilton, 1822). Int. J. Fish. Aquat. Stud. 2015, 2, 310–318. [Google Scholar]
- Wang, Y.; Song, J.; Zhai, Y.; Zhang, C.; Gerritsen, J.; Wang, H.; Chen, X.; Li, Y.; Zhao, B.; Zhao, B. Romboutsia sedimentorum sp. nov., isolated from an alkaline-saline lake sediment and emended description of the genus Romboutsia. Int. J. Syst. Evol. Microbiol. 2015, 65, 1193–1198. [Google Scholar] [CrossRef]
- Avery, S.E.; Ruzbarsky, S.P.; Hise, A.M.; Schreier, H.J. Antibacterial Activity of Bacillus inaquosorum Strain T1 against pirABVp-Bearing Vibrio parahaemolyticus: Genetic and Physiological Characterization. Appl. Environ. Microbiol. 2020, 86, e01950-20. [Google Scholar] [CrossRef]
- Bonnet, M.; Lagier, J.C.; Raoult, D.; Khelaifia, S. Bacterial culture through selective and non-selective conditions: The evolution of culture media in clinical microbiology. New Microbes New Infect. 2020, 34, 100622. [Google Scholar] [CrossRef]
- Marston, C.K.; Beesley, C.; Helsel, L.; Hoffmaster, A.R. Evaluation of two selective media for the isolation of Bacillus anthracis. Lett. Appl. Microbiol. 2008, 47, 25–30. [Google Scholar] [CrossRef]
- Fritze, D.; Claus, D. Chapter 4 Media for Bacillus spp. and related genera relevant to foods. In Progress in Industrial Microbiology; Corry, J.E.L., Curtis, G.D.W., Baird, R.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 61–77. [Google Scholar]
- Kimura, N. Novel biological resources screened from uncultured bacteria by a metagenomic method. In Metagenomics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 273–288. [Google Scholar]
- Qiu, Y.; Chu, A.J.; Tsang, T.F.; Zheng, Y.; Lam, N.M.; Li, K.S.L.; Ip, M.; Yang, X.; Ma, C. Synthesis and biological evaluation of nusbiarylin derivatives as bacterial rRNA synthesis inhibitor with potent antimicrobial activity against MRSA and VRSA. Bioorg. Chem. 2022, 124, 105863. [Google Scholar] [CrossRef]
Pathways | PP_OSL | PP_SSL | J_OSL | J_SSL | Descriptions |
---|---|---|---|---|---|
K01092 | 118,581.5 | 190,599.3 | 40,773.16 | 124,961.4 | Myo-inositol-1(or 4)-monophosphatase [EC:3.1.3.25] |
K01710 | 125,918 | 198,920 | 33,847 | 87,774 | E4.2.1.46, rfbB, rffG; dTDP-glucose 4,6-dehydratase [EC:4.2.1.46] |
K00973 | 124,573 | 197,982 | 30,688 | 85,974 | E2.7.7.24, rfbA, rffH; glucose-1-phosphate thymidylyltransferase [EC:2.7.7.24] |
K00067 | 126,865 | 170,770 | 24,793 | 85,249 | rfbD, rmlD; dTDP-4-dehydrorhamnose reductase [EC:1.1.1.133] |
K01835 | 110,010 | 185,143 | 26,735 | 66,997 | pgm; phosphoglucomutase [EC:5.4.2.2] |
K01790 | 85,732 | 156,628 | 22,427 | 62,023 | rfbC, rmlC; dTDP-4-dehydrorhamnose 3,5-epimerase [EC:5.1.3.13] |
K00845 | 57,867 | 41,065 | 21,738 | 52,923 | glk; glucokinase [EC:2.7.1.2] |
K15778 | 25,650.8 | 10,507.67 | 9245.3 | 43,916.6 | phosphomannomutase/phosphoglucomutase [EC:5.4.2.8; 5.4.2.2] |
K00010 | 6092 | 6712 | 4887 | 11,708 | iolG; myo-inositol 2-dehydrogenase/D-chiro-inositol 1-dehydrogenase [EC:1.1.1.18 1.1.1.369] |
K01858 | 78 | 510 | 61 | 972 | INO1, ISYNA1; myo-inositol-1-phosphate synthase [EC:5.5.1.4] |
K10673 | 5 | 13 | 1333 | 352 | strA; streptomycin 3″-kinase [EC:2.7.1.87] |
K04343 | 200 | 223 | 1333 | 1067 | strB; streptomycin 6-kinase [EC:2.7.1.72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.; Taha, H.; Musdalifah, L.; Ali, M.; Alimuddin, A.; Alim, S.; Arai, T. Structure and Diversity of Microbiomes Associated with the Gastrointestinal Tracts of Wild Spiny Lobsters and Profiling Their Potential Probiotic Properties Using eDNA Metabarcoding. Fishes 2024, 9, 264. https://doi.org/10.3390/fishes9070264
Amin M, Taha H, Musdalifah L, Ali M, Alimuddin A, Alim S, Arai T. Structure and Diversity of Microbiomes Associated with the Gastrointestinal Tracts of Wild Spiny Lobsters and Profiling Their Potential Probiotic Properties Using eDNA Metabarcoding. Fishes. 2024; 9(7):264. https://doi.org/10.3390/fishes9070264
Chicago/Turabian StyleAmin, Muhamad, Hussein Taha, Laila Musdalifah, Muhamad Ali, Alimuddin Alimuddin, Sahrul Alim, and Takaomi Arai. 2024. "Structure and Diversity of Microbiomes Associated with the Gastrointestinal Tracts of Wild Spiny Lobsters and Profiling Their Potential Probiotic Properties Using eDNA Metabarcoding" Fishes 9, no. 7: 264. https://doi.org/10.3390/fishes9070264
APA StyleAmin, M., Taha, H., Musdalifah, L., Ali, M., Alimuddin, A., Alim, S., & Arai, T. (2024). Structure and Diversity of Microbiomes Associated with the Gastrointestinal Tracts of Wild Spiny Lobsters and Profiling Their Potential Probiotic Properties Using eDNA Metabarcoding. Fishes, 9(7), 264. https://doi.org/10.3390/fishes9070264