Data Review on the Variation in Sensitivity to Aquaculture Chemotherapeutants in Some Crustacean Life Stages
Abstract
:1. Introduction
2. Approach Used for Data Review
3. Results and Discussion
3.1. Prawn Data
3.2. Lobster Data
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Page, F.H.; Losier, R.; Haigh, S.; Bakker, J.; Chang, B.D.; McCurdy, P.; Beattie, M.; Haughn, K.; Thorpe, B.; Fife, J.; et al. Transport and Dispersal of Sea Lice Bath Therapeutants from Salmon Farm Net-Pens and Well-Boats; DFO Canadian Science Advisory Secretariat Research Document 2015/064; Canadian Science Advisory Secretariat (CSAS): Ottawa, ON, Canada, 2015; p. xviii + 148. [Google Scholar]
- Ernst, W.; Doe, K.; Cook, A.; Burridge, L.; Lalonde, B.; Jackman, P.; Aubé, J.G.; Page, F. Dispersion and Toxicity to Non-Target Crustaceans of Azamethiphos and Deltamethrin after Sea Lice Treatments on Farmed Salmon, Salmo Salar. Aquaculture 2014, 424–425, 104–112. [Google Scholar] [CrossRef]
- Kallander, D.B.; Fisher, S.W.; Lydy, M.J. Recovery Following Pulsed Exposure to Organophosphorus and Carbamate Insecticides in the Midge, Chironomus Riparius. Arch. Environ. Contam. Toxicol. 1997, 33, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Canty, M.N.; Hagger, J.A.; Moore, R.T.B.; Cooper, L.; Galloway, T.S. Sublethal Impact of Short-Term Exposure to the Organophosphate Pesticide Azamethiphos in the Marine Mollusc Mytilus Edulis. Mar. Pollut. Bull. 2007, 54, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Refseth, G.H.; Nøst, O.A.; Evenset, A.; Tassara, L.; Espenes, H.; Drivdal, M.; Augustin, S.; Samuelsen, O.; Agnalt, A.L. Risk Assessment and Risk Reducing Measures for Discharges of Hydrogen Peroxide (H2O2). Tromsø, Norway. 2019. Available online: https://www.fhf.no/prosjekter/prosjektbasen/901416/ (accessed on 19 September 2023).
- Escobar-Lux, R.H.; Parsons, A.E.; Samuelsen, O.B.; Agnalt, A.L. Short-Term Exposure to Hydrogen Peroxide Induces Mortality and Alters Exploratory Behaviour of European Lobster (Homarus Gammarus). Ecotoxicol. Environ. Saf. 2020, 204, 111111. [Google Scholar] [CrossRef]
- Roberts, T.R.; Hutson, D.H. Macrocyclic Insecticides. In Metabolic Pathways of Agrochemicals: Part 2: Insecticides and Fungicides; The Royal Society of Chemistry: Cambridge, UK, 1999; pp. 87–94. ISBN 9788578110796. [Google Scholar]
- Jacova, R.; Kennedy, C. Avermectin Toxicity to Benthic Invertebrates Is Modified by Sediment Organic Carbon and Chemical Residence Time. Environ. Toxicol. Chem. 2022, 41, 1918–1936. [Google Scholar] [CrossRef] [PubMed]
- Strachan, F.; Kennedy, C.J. The Environmental Fate and Effects of Anti-Sea Lice Chemotherapeutants Used in Salmon Aquaculture. Aquaculture 2021, 544, 737079. [Google Scholar] [CrossRef]
- Lumaret, J.; Errouissi, F.; Floate, K.; Römbke, J.; Wardhaugh, K.; Rombke, J.; Wardhaugh, K. A Review on the Toxicity and Non-Target Effects of Macrocyclic Lactones in Terrestrial and Aquatic Environments. Curr. Pharm. Biotechnol. 2012, 13, 1004–1060. [Google Scholar] [CrossRef] [PubMed]
- Maslakova, S.; Ellison, C.I.; Hiebert, T.C.; Conable, F.; Heaphy, M.C.; Venera-Pontón, D.E.; Norenburg, J.L.; Schwartz, M.L.; Moss, N.D.; Boyle, M.J.; et al. Sampling Multiple Life Stages Significantly Increases Estimates of Marine Biodiversity. Biol. Lett. 2022, 18, 20210596. [Google Scholar] [CrossRef] [PubMed]
- Collin, R.; Venera-Pontón, D.E.; Driskell, A.C.; Macdonald, K.S.; Geyer, L.B.; Lessios, H.A.; Boyle, M.J. DNA Barcoding of Echinopluteus Larvae Uncovers Cryptic Diversity in Neotropical Echinoids. Invertebr. Biol. 2020, 139, e12292. [Google Scholar] [CrossRef]
- Palecanda, S.; Feller, K.D.; Porter, M.L. Using Larval Barcoding to Estimate Stomatopod Species Richness at Lizard Island, Australia for Conservation Monitoring. Sci. Rep. 2020, 10, 10990. [Google Scholar] [CrossRef]
- Katz, C.H.; Cobb, J.S.; Spaulding, M. Larval Behavior, Hydrodynamic Transport, and Potential Offshore-to-Inshore Recruitment in the American Lobster Homarus Americanus. Mar. Ecol. Prog. Ser. 1994, 103, 265–274. [Google Scholar] [CrossRef]
- Queiroga, H.; Blanton, J. Interactions between Behaviour and Physical Forcing in the Control of Horizontal Transport of Decapod Crustacean Larvae. In Advances in Marine Biology; Academic Press: San Diego CA, USA, 2004; Volume 47, ISBN 0120261480. [Google Scholar]
- Cobb, S. The American Lobster: The Biology of Homarus Americanus; University of Rhode Island: Kingston, RI, USA, 1976. [Google Scholar]
- Spurgeon, D.; Lahive, E.; Robinson, A.; Short, S.; Kille, P. Species Sensitivity to Toxic Substances: Evolution, Ecology and Applications. Front. Environ. Sci. 2020, 8, 588380. [Google Scholar] [CrossRef]
- Mohammed, A. Why Are Early Life Stages of Aquatic Organisms More Sensitive to Toxicants than Adults? In New Insights into Toxicity and Drug Testing; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar] [CrossRef]
- Tangwancharoen, S.; Burton, R.S. Early Life Stages Are Not Always the Most Sensitive: Heat Stress Responses in the Copepod Tigriopus Californicus. Mar. Ecol. Prog. Ser. 2014, 517, 75–83. [Google Scholar] [CrossRef]
- Länge, R.; Hutchinson, T.H.; Scholz, N.; Solbé, J. Analysis of the ECETOC Aquatic Toxicity (EAT) Database II—Comparison of Acute to Chronic Ratios for Various Aquatic Organisms and Chemical Substances. Chemosphere 1998, 36, 115–127. [Google Scholar] [CrossRef]
- Hutchinson, T.H.; Solbé, J.; Kloepper-Sams, P.J. Analysis of the ECETOC Aquatic Toxicity (EAT) Database. III—Comparative Toxicity of Chemical Substances to Different Life Stages of Aquatic Organisms. Chemosphere 1998, 36, 129–142. [Google Scholar] [CrossRef]
- Kingsbury, M.; Marteinson, S.; Ryall, E.; Hamoutene, D. Considerations and Data Update for the Inference of Environmental Quality Standards for Two Avermectins Widely Used in Salmon Aquaculture. Mar. Pollut. Bull. 2024, 201, 116213. [Google Scholar] [CrossRef] [PubMed]
- Hamoutene, D.; Marteinson, S.; Kingsbury, M.; McTavish, K. Species Sensitivity Distributions for Two Widely Used Anti-Sea Lice Chemotherapeutants in the Salmon Aquaculture Industry. Sci. Total Environ. 2023, 857, 159574. [Google Scholar] [CrossRef]
- Hamoutene, D.; Ryall, E.; Porter, E.; Page, F.H.; Wickens, K.; Wong, D.; Martell, L.; Burridge, L.; Villeneuve, J.; Miller, C. Discussion of Environmental Quality Standards (EQS) and Their Development for the Monitoring of Impacts from the Use of Pesticides and Drugs at Marine Aquaculture Sites; DFO Canadian Science Advisory Secretariat Research Document 2022/066; Canadian Science Advisory Secretariat (CSAS): Ottawa, ON, Canada, 2022; p. v + 68 + Lii. [Google Scholar]
- Moermond, C.T.A.; Kase, R.; Korkaric, M.; Ågerstrand, M. CRED: Criteria for Reporting and Evaluating Ecotoxicity Data. Environ. Toxicol. Chem. 2016, 35, 1297–1309. [Google Scholar] [CrossRef]
- CCME. A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life. In Canadian Environmental Quality Guidelines, 1999; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2007. [Google Scholar]
- Bright, D.A.; Dionne, S. Use of Emamectin Benzoate in the Canadian Finfish Aquaculture Industry: A Review of Environmental Fate and Effects; Environment and Climate Change Canada: Ottawa, ON, Canada, 2005; 74p.
- Mill, K.; Sahota, C.; Hayek, K.; Kennedy, C.J. Effects of Sea Louse Chemotherapeutants on Early Life Stages of the Spot Prawn (Pandalus Platyceros). Aquac. Res. 2021, 53, 109–124. [Google Scholar] [CrossRef]
- Huang, A.; Roessink, I.; van den Brink, N.W.; van den Brink, P.J. Size- and Sex-Related Sensitivity Differences of Aquatic Crustaceans to Imidacloprid. Ecotoxicol. Environ. Saf. 2022, 242, 113917. [Google Scholar] [CrossRef]
- Lund, S.A.; Fulton, M.H.; Key, P.B. The Sensitivity of Grass Shrimp, Palaemonetes Pugio, Embryos to Organophosphate Pesticide Induced Acetylcholinesterase Inhibition. Aquat. Toxicol. 2000, 48, 127–134. [Google Scholar] [CrossRef]
- Bas, C.C.; Ituarte, R.B.; Kittlein, M.J. Decapod Egg Membranes: Powerful Barriers or Regulatory Structures. J. Exp. Biol. 2022, 225, jeb244165. [Google Scholar] [CrossRef]
- Charmantier, G.; Charmantier-Öaures, M. Ontogeny of Osmoregulation in Crustaceans: The Embryonic Phase1. Am. Zool. 2001, 41, 1078–1089. [Google Scholar] [CrossRef]
- Charmantier, G.; Aiken, D.E. Osmotic Regulation in Late Embryos and Prelarvae of the American Lobster Homarus Americanus H. Milne-Edwards, 1837 (Crustacea, Decapoda). J. Exp. Mar. Bio. Ecol. 1987, 109, 101–108. [Google Scholar] [CrossRef]
- Mill, K.; Kennedy, C.J. Lethal and Sublethal Effects of the Anti-Sea Lice Formulation Salmosan® on the Pacific Spot Prawn (Pandalus Platyceros). J. World Aquac. Soc. 2021, 52, 1243–1258. [Google Scholar] [CrossRef]
- Anger, K. Contributions of Larval Biology to Crustacean Research: A Review. Invertebr. Reprod. Dev. 2006, 49, 175–205. [Google Scholar] [CrossRef]
- Escher, B.I.; Berger, C.; Bramaz, N.; Kwon, J.H.; Richter, M.; Tsinman, O.; Avdeef, A. Membrane-Water Partitioning, Membrane Permeability, and Baseline Toxicity of the Parasiticides Ivermectin, Albendazole, and Morantel. Environ. Toxicol. Chem. 2008, 27, 909–918. [Google Scholar] [CrossRef]
- Pest Management Regulatory Agency (PMRA). Proposed Registration Decision PRD2016-25 Azamethiphos; Pest Management Regulatory Agency: Ottawa, ON, Canada, 2016.
- Solvay. Safety Data Sheet INTEROX® PARAMOVETM 50 Ver 1.04; Vol. 1.04. 2015. Available online: https://www.solvay.com/en/downloadDocument?fileId=16381100&fileName=INTEROX%C2%AE%20PARAMOVE%C2%AE%2050&base=RCSEHS (accessed on 27 June 2022).
- Frantzen, M.; Bytingsvik, J.; Tassara, L.; Reinardy, H.C.; Refseth, G.H.; Watts, E.J.; Evenset, A. Effects of the Sea Lice Bath Treatment Pharmaceuticals Hydrogen Peroxide, Azamethiphos and Deltamethrin on Egg-Carrying Shrimp (Pandalus Borealis). Mar. Environ. Res. 2020, 159, 105007. [Google Scholar] [CrossRef] [PubMed]
- Aaen, S.M.; Aunsmo, A.; Horsberg, T.E. Impact of Hydrogen Peroxide on Hatching Ability of Egg Strings from Salmon Lice (Lepeophtheirus Salmonis) in a Field Treatment and in a Laboratory Study with Ascending Concentrations. Aquaculture 2014, 422–423, 167–171. [Google Scholar] [CrossRef]
- Pahl, B.C.; Opitz, H.M. The Effects of Cypermethrin (Excis) and Azamethiphos (Salmosan) on Lobster Homarus Americanus H. Milne Edwards Larvae in a Laboratory Study. Aquac. Res. 1999, 30, 655–665. [Google Scholar] [CrossRef]
- Burridge, L.E.; Haya, K.; Zitko, V.; Waddy, S. The Lethality of Salmosan® (Azamethiphos) to American Lobster (Homarusamericanus) Larvae, Postlarvae, and Adults. Ecotoxicol. Environ. Saf. 1999, 169, 165–169. [Google Scholar] [CrossRef] [PubMed]
- de Jourdan, B.; Benfey, T.; Burridge, L.; Surette, M.; McCarthy, A.F.; Barría-Araya, A.M.; Daoud, D. Evaluating Non-Lethal and Latent Effects of the Anti-Sea Lice Pesticide Azamethiphos on Larvae and Adults of the American Lobster (Homarus Americanus). Aquac. Res. 2022, 53, 6355–6368. [Google Scholar] [CrossRef]
- Cenov, A.; Linšak, D.T.; Perić, L.; Žurga, P.; Lušić, D.V.; Traven, L.; Linšak, Ž.; Pupavac, S.M.; Hamer, B.; Pelikan, J.; et al. Acetylcholinesterase Activity in Muscle Tissue of Norway Lobster Nephrops Norvegicus: Importance of Body Size, Season, Sex and Naturally Occurring Metals. Mar. Pollut. Bull. 2024, 200, 116067. [Google Scholar] [CrossRef] [PubMed]
- Carr, G.J.; Belanger, S.E. SSDs Revisited: Part I—A Framework for Sample Size Guidance on Species Sensitivity Distribution Analysis. Environ. Toxicol. Chem. 2019, 38, 1514–1525. [Google Scholar] [CrossRef]
- TGD European Commission; Directorate-General for Health and Food Safety. Technical Guidance for Deriving Environmental Quality Standards; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Warne, M.; Batley, G.; van Dam, R.; Chapman, J.; Fox, D.; Hickey, C.; Stauber, J. Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants—Update of 2015 Version. Prepared for Revision of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality; Australian and New Zealand G: Brisbane, QLD, Australia, 2018. [Google Scholar]
- Water Framework Directive—United Kingdom Advisory Group (UKTAG). UKTAG Environmental Quality Standards Recommendation for Emamectin Benzoate; WFD-UKTAG: Bristol, UK, 2022. [Google Scholar]
- Posthuma, L.; Traas, T.P.; Suter, G.W. (Eds.) Species Sensitivity Distributions in Ecotoxicology; Lewis Publishers: Boca Raton, FL, USA, 2002; ISBN 1566705789. [Google Scholar]
- Sævik, P.N.; Agnalt, A.L.; Samuelsen, O.B.; Myksvoll, M. Modelling Chemical Releases from Fish Farms: Impact Zones, Dissolution Time, and Exposure Probability. ICES J. Mar. Sci. 2022, 79, 22–33. [Google Scholar] [CrossRef]
Drug | Endpoint | n | Life-Stage | Endpoint Response | Concentration Min–Max (Average) in μg L−1 | Exposure Timeframe (min, h, d) |
---|---|---|---|---|---|---|
EMB | NOEC/LOEC | 4 | egg to stage 1 | hatch success | 300–1000 (650) | 1–3 h |
NOEC/LOEC | 6 | juvenile | survival | 100–500 (300) | 24 h | |
NOEC/LOEC | 6 | adult | survival | 100–500 (300) | 24 h | |
EC50 | 2 | egg | hatch success | >1200 | 1–3 h | |
EC50 | 2 | egg to stage 1 | hatch success | 605–926 (765.5) | 1–3 h | |
EC50 | 6 | larvae | morbidity | 321–489 (403.5) | 1–3 h | |
EC50 | 2 | juvenile | morbidity | 1321–1532 (1425.5) | 1–3 h | |
LC50 | 3 | juvenile | mortality | 482–670 (576.3) | 24 h | |
LC50 | 3 | adult | mortality | 738–927 (852.7) | 24 h | |
AZA | NOEC/LOEC | 4 | larvae | morbidity | 110 (10–300) | 1–3 h |
EC50 | 2 | egg | hatch success | 187–220 (203.5) | 1–3 h | |
EC50 | 2 | egg to stage 1 | hatch success | 52–69 (60.5) | 1–3 h | |
EC50 | 6 | larvae | morbidity | 10–47 (28.3) | 1–3 h | |
EC50 | 2 | juvenile | morbidity | 178–236 (207) | 1–3 h | |
LC50 | 3 | adult | mortality | 17.1–39.8 (28) | 3 × 1 h | |
HP | NOEC/LOEC | 2 | larvae | mobility | 1000–3000 (2000) | 1–3 h |
EC50 | 2 | egg | 73,000–74,000 (73,500) | 1–3 h | ||
EC50 | 2 | egg to stage 1 | hatch success | 118,000–249,000 (183,500) | 1–3 h | |
EC50 | 6 | larvae | mobility | 77,000–433,000 (209,833.3) | 1–3 h | |
EC50 | 2 | juvenile | mobility | 765,000–809,000 (787,000) | 1–3 h | |
LC50 | 2 | adult | mortality | 530–2700 (1615) | 24–48 h |
Drug | End Point | n | Endpoint Response | Life-Stage | Concentration Min–Max (Average) in μg L−1 | Exposure Timeframe |
---|---|---|---|---|---|---|
EMB | LC50 | 1 | mortality | larvae (IV) | >589 | 7 d |
LC50 | 1 | mortality | adult | 644 | 7 d | |
AZA | NOEC/LOEC | 3 | n/a, survival, behaviour | larvae (I–IV) | 1–11.5 (7.8) | 1 h–5 × 1 h |
NOEC/LOEC | 2 | n/a, behaviour | adult | 1.03–2.9 (2.0) | 30 min–1 h | |
EC50 | 3 | n/a | larvae (IV) | 0.36–1.25 (0.7) | 24–96 h | |
LC50 | 18 | Mortality | larvae (I–IV) | 0.9–50.4 (16.3) | 5 min–48 h | |
LC50 | 1 | Mortality | juvenile (V) | 0.5 | 96 h | |
LC50 | 8 | Mortality | adult | 0.216–24.8 (4.3) | 1 h–48 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marteinson, S.; Kingsbury, M.; Hamoutene, D. Data Review on the Variation in Sensitivity to Aquaculture Chemotherapeutants in Some Crustacean Life Stages. Fishes 2024, 9, 273. https://doi.org/10.3390/fishes9070273
Marteinson S, Kingsbury M, Hamoutene D. Data Review on the Variation in Sensitivity to Aquaculture Chemotherapeutants in Some Crustacean Life Stages. Fishes. 2024; 9(7):273. https://doi.org/10.3390/fishes9070273
Chicago/Turabian StyleMarteinson, Sarah, Melanie Kingsbury, and Dounia Hamoutene. 2024. "Data Review on the Variation in Sensitivity to Aquaculture Chemotherapeutants in Some Crustacean Life Stages" Fishes 9, no. 7: 273. https://doi.org/10.3390/fishes9070273
APA StyleMarteinson, S., Kingsbury, M., & Hamoutene, D. (2024). Data Review on the Variation in Sensitivity to Aquaculture Chemotherapeutants in Some Crustacean Life Stages. Fishes, 9(7), 273. https://doi.org/10.3390/fishes9070273