Surface Excitations, Shape Deformation, and the Long-Time Behavior in a Stirred Bose–Einstein Condensate
Abstract
:1. Introduction
2. Model
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soskin, M.S.; Gorshkov, V.N.; Vasnetsov, M.V.; Malos, J.T.; Heckenberg, N.R. Topological charge and angular momentum of light beams carrying optical vortices. Phys. Rev. A 1997, 56, 4064. [Google Scholar] [CrossRef]
- Matthews, M.R.; Anderson, B.P.; Haljan, P.C.; Hall, D.S.; Wieman, C.E.; Cornell, E.A. Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 1999, 83, 2498. [Google Scholar] [CrossRef]
- Williams, J.E.; Holland, M.J. Preparing topological states of a Bose–Einstein condensate. Nature 1999, 401, 568–572. [Google Scholar] [CrossRef] [Green Version]
- Abo-Shaeer, J.R.; Raman, C.; Vogels, J.M.; Ketterle, W. Observation of vortex lattices in Bose–Einstein condensates. Science 2001, 292, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Madison, K.W.; Chevy, F.; Wohlleben, W.; Dalibard, J. Vortex formation in a Stirred Bose–Einstein condensate. Phys. Rev. Lett. 2000, 84, 806. [Google Scholar] [CrossRef] [PubMed]
- Raman, C.; Abo-Shaeer, J.R.; Vogels, J.M.; Xu, K.; Ketterle, W. Vortex nucleation in a stirred Bose–Einstein. condensate. Phys. Rev. Lett. 2001, 87, 210402. [Google Scholar] [CrossRef] [PubMed]
- Cooper, N.R.; Wilkin, N.K.; Gunn, J.M.F. Quantum phases of vortices in rotating Bose–Einstein condensates. Phys. Rev. Lett. 2001, 87, 120405. [Google Scholar] [CrossRef] [PubMed]
- Cooper, N.R. Rapidly rotating atomic gases. Adv. Phys. 2008, 57, 539–616. [Google Scholar] [CrossRef] [Green Version]
- Fetter, A.L. Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 2009, 81, 647. [Google Scholar] [CrossRef]
- Feder, D.L.; Clark, C.W.; Schneider, B.I. Nucleationn of vortex arrays in rotating anisotropic Bose–Einstein condensates. Phys. Rev. A 1999, 61, 011601. [Google Scholar] [CrossRef]
- Jaksch, D.; Bruder, C.; Cirac, J.I.; Gardiner, C.W.; Zoller, P. Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 1998, 81, 3108. [Google Scholar] [CrossRef]
- Zhang, J.; Zhai, H. Vortex lattices in planar Bose–Einstein condensates with dipolar interactions. Phys. Rev. Lett. 2005, 95, 200403. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; An, J.; Gong, C.D. Vortex competition in a rotating two-component dipolar Bose–Einstein condensate. Phys. Rev. A 2013, 87, 013605. [Google Scholar] [CrossRef]
- Zhang, X.F.; Han, W.; Wen, L.; Zhang, P.; Dong, R.F.; Chang, H.; Zhang, S.G. Two-component dipolar Bose–Einstein condensate in concentrically coupled annular traps. Sci. Rep. 2014, 10, 08684. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Castin, Y. Dynamic instability of a rotating Bose–Einstein condensate. Phys. Rev. Lett. 2001, 87, 190402. [Google Scholar] [CrossRef] [PubMed]
- Ji, A.C.; Liu, W.M.; Song, J.L.; Zhou, F. Dynamical creation of fractionalized vortices and vortex lattices. Phys. Rev. Lett. 2008, 101, 010402. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.; McCann, J.F.; Adams, C.S.B. Dissipation and vortex creation in Bose–Einstein condensed gases. Phys. Rev. A 2000, 61, 051603. [Google Scholar] [CrossRef]
- Yang, T.; Xiong, B.; Benedict, K.A. Dynamical excitations in the collision of two-dimensional Bose–Einstein condensates. Phys. Rev. A 2013, 87, 023603. [Google Scholar] [CrossRef]
- Caradoc-Davies, B.M.; Ballagh, R.J.; Burnett, K. Coherent dynamics of vortex formation in trapped Bose–Einstein Condensates. Phys. Rev. Lett. 1999, 83, 895. [Google Scholar] [CrossRef]
- Allen, A.J.; Zaremba, E.; Barenghi, C.F.; Proukakis, N.P. Observable vortex properties in finite-temperature Bose gases. Phys. Rev. A 2013, 87, 013630. [Google Scholar] [CrossRef]
- Jackson, B.; Proukakis, N.P.; Barenghi, C.F.; Zaremba, E. Finite-temperature vortex dynamics in Bose–Einstein condensates. Phys. Rev. A 2009, 79, 053615. [Google Scholar] [CrossRef]
- Wright, T.M.; Bradley, A.S.; Ballagh, R.J. Finite-temperature dynamics of a single vortex in a Bose–Einstein condensate: Equilibrium precession and rotational symmetry breaking. Phys. Rev. A 2009, 80, 053624. [Google Scholar] [CrossRef]
- Rooney, S.J.; Bradley, A.S.; Blakie, P.B. Decay of a quantum vortex: test of nonequilibrium theories for warm Bose–Einstein condensates. Phys. Rev. A 2010, 81, 023630. [Google Scholar] [CrossRef]
- Yan, D.; Carretero-Gonzalez, R.; Frantzeskakis, D.J.; Kevrekidis, P.G.; Proukakis, N.P.; Spirn, D. Exploring vortex dynamics in the presence of dissipation: Analytical and numerical results. Phys. Rev. A 2014, 89, 043613. [Google Scholar] [CrossRef] [Green Version]
- Mueller, E.J.; Ho, T.L. Two-Component Bose–Einstein condensates with a large number of vortices. Phys. Rev. Lett. 2002, 88, 180403. [Google Scholar] [CrossRef] [PubMed]
- Kasamatsu, K.; Tsubota, M.; Ueda, M. Vortices in multicomponent Bose–Einstein condensates. Int. J. Mod. B 2005, 19, 1835. [Google Scholar] [CrossRef]
- Lovegrove, J.; Borgh, M.O.; Ruostekoski, J. Energetically stable singular vortex cores in an atomic spin-1 Bose–Einstein condensate. Phys. Rev. A 2012, 86, 013613. [Google Scholar] [CrossRef]
- Oh, Y.T.; Kim, P.; Park, J.H.; Han, J.H. Manifold mixing in the temporal evolution of a spin-1 spinor Bose–Einstein condensate. Phys. Rev. Lett. 2014, 112, 160402. [Google Scholar] [CrossRef] [PubMed]
- Leanhardt, A.E.; Shin, Y.; Kielpinsk, D.I.; Pritchard, D.E.; Ketterle, W. Coreless vortex formation in a spinor Bose–Einstein condensate. Phys. Rev. Lett. 2003, 90, 140403. [Google Scholar] [CrossRef] [PubMed]
- Koplik, J.; Levine, H. Scattering of superfluid vortex rings. Phys. Rev. Lett. 1996, 76, 4745. [Google Scholar] [CrossRef] [PubMed]
- Caradoc-Davies, B.M.; Ballagh, R.J.; Blakie, P.B. Three-dimensional vortex dynamics in Bose–Einstein condensates. Phys. Rev. A 2000, 62, 011602. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kawaguchi, Y.; Nitta, M.; Ueda, M. Collision dynamics and rung formation of non-Abelian vortices. Phys. Rev. Lett. 2009, 103, 115301. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, T.; Saito, H. Collision dynamics of skyrmions in a two-component Bose–Einstein condensate. Phys. Rev. A 2016, 93, 033611. [Google Scholar] [CrossRef]
- Borgh, M.O.; Ruostekoski, J. Core structure and non-Abelian reconnection of defects in a biaxial nematic spin-2 Bose–Einstein condensate. Phys. Rev. Lett. 2017, 117, 275302. [Google Scholar] [CrossRef] [PubMed]
- Kleckner, D.; Irvine, W.T.M. Creation and dynamics of knotted vortices. Nat. Phys. 2013, 9, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Kleckner, D.; Kauffman, L.H.; Irvine, W.T.M. How superfluid vortex knots untie. Nat. Phys. 2016, 12, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.S.; Ray, M.W.; Tiurev, K.; Ruokokosk, E.I.; Gheorghe, A.H.; Mottonen, M. Tying quantum knots. Nat. Phys. 2016, 12, 478–483. [Google Scholar] [CrossRef]
- Freilich, D.V.; Bianchi, D.M.; Kaufman, A.M.; Langin, T.K.; Hall, D.S. Real-Time dynamics of single vortex lines and vortex dipoles in a Bose–Einstein condensate. Science 2010, 329, 1182–1185. [Google Scholar] [CrossRef] [PubMed]
- Neely, T.W.; Samson, E.C.; Bradley, A.S.; Davis, M.J.; Anderson, B.P. Observation of vortex dipoles in an oblate Bose–Einstein condensate. Phys. Rev. Lett. 2014, 104, 160401. [Google Scholar] [CrossRef] [PubMed]
- Kadokura, T.; Yoshida, J.; Saito, H. Hysteresis in quantized vortex shedding. Phys. Rev. A 2014, 90, 013612. [Google Scholar] [CrossRef]
- Kwon, W.J.; Moon, G.; Seo, S.W.; Shin, Y. Critical velocity for vortex shedding in a Bose–Einstein condensate. Phys. Rev. A 2015, 91, 053615. [Google Scholar] [CrossRef]
- Kwon, W.J.; Seo, S.W.; Shin, Y.I. Periodic shedding of vortex dipoles from a moving penetrable obstacle in a Bose–Einstein condensate. Phys. Rev. A 2015, 92, 033613. [Google Scholar] [CrossRef]
- Kwon, W.J.; Kim, J.H.; Seo, S.W.; Shin, Y. Observation of von karman vortex street in an atomic superfluid gas. Phys. Rev. Lett. 2016, 117, 245301. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.W.; Kwon, W.J.; Kang, S.; Shin, Y. Collisional dynamics of half-quantum vortices in a spinor Bose–Einstein condensate. Phys. Rev. Lett. 2016, 116, 185301. [Google Scholar] [CrossRef] [PubMed]
- Law, K.J.H.; Neely, T.W.; Kevrekidis, P.G.; Anderson, B.P.; Bradley, A.S.; Carretero-Gonzalez, R. Dynamic and energetic stabilization of persistent currents in Bose–Einstein condensates. Phys. Rev. A 2014, 89, 053606. [Google Scholar] [CrossRef]
- Fujimoto, K.; Tsubota, M. Nonlinear dynamics in a trapped atomic Bose–Einstein condensate induced by an oscillating Gaussian potential. Phys. Rev. A 2011, 83, 053609. [Google Scholar] [CrossRef]
- Gautam, S.; Roy, A.; Mukerjee, S. Finite-temperature dynamics of vortices in Bose–Einstein condensates. Phys. Rev. A 2014, 89, 013612. [Google Scholar] [CrossRef]
- Kato, M.; Zhang, X.F.; Saito, H. Moving obstacle potential in a spin-orbit-coupled Bose–Einstein condensate. Phys. Rev. A 2017, 96, 033613. [Google Scholar] [CrossRef]
- Aioi, T.; Kadokura, T.; Kishimoto, T.; Saito, H. Controlled generation and manipulation of vortex dipoles in a Bose–Einstein condensate. Phys. Rev. X 2011, 1, 021003. [Google Scholar] [CrossRef]
- Gertjerenken, B.; Kevrekidis, P.G.; Carretero-Gonzalez, R.; Anderson, B.P. Generating and manipulating quantized vortices on-demand in a Bose–Einstein condensate: A numerical study. Phys. Rev. A 2016, 93, 023604. [Google Scholar] [CrossRef]
- Samson, E.C.; Wilson, K.E.; Newman, Z.L.; Anderson, B.P. Deterministic creation, pinning, and manipulation of quantized vortices in a Bose–Einstein condensate. Phys. Rev. A 2016, 93, 023603. [Google Scholar] [CrossRef]
- Ramanathan, A.; Wright, K.C.; Muni, S.R.Z.; Zelan, M.; Hill, W.T.; Lobb, C.; Helmerson, K.; Phillips, W.D.; Campbell, G.K. Superflow in a toroidal Bose–Einstein condensate: An atom circuit with a tunableWeak link. Phys. Rev. Lett. 2011, 106, 130401. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.C.; Blakestad, R.B.; Lobb, C.J.; Phillips, W.D.; Campbell, G.K. Driving phase slips in a superfluid atom circuit with a rotating weak link. Phys. Rev. Lett. 2013, 110, 025302. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.C.; Blakestad, R.B.; Lobb, C.J.; Phillips, W.D.; Campbell, G.K. Threshold for creating excitations in a stirred superfluid ring. Phys. Rev. A 2013, 88, 063633. [Google Scholar] [CrossRef]
- Jendrzejewski, F.; Eckel, S.; Murray, N.; Lanier, C.; Edwards, M.; Lobb, C.J.; Campbell, G.K. Resistive flow in a weakly interacting Bose–Einstein condensate. Phys. Rev. Lett. 2014, 113, 045305. [Google Scholar] [CrossRef] [PubMed]
- Yakimenko, A.I.; Isaieva, K.O.; Vilchinskii, S.I.; Ostrovskaya, E.A. Vortex excitation in a stirred toroidal Bose–Einstein condensate. Phys. Rev. A 2015, 91, 023607. [Google Scholar] [CrossRef]
- Yakimenko, A.I.; Bidasyuk, Y.M.; Weyrauch, M.; Kuriatnikov, Y.I.; Vilchinskii, S.I. Vortices in a toroidal Bose–Einstein condensate with a rotating weak link. Phys. Rev. A 2015, 91, 033607. [Google Scholar] [CrossRef]
- Eckel, S.; Jendrzejewski, F.; Kumar, A.; Lobb, C.J.; Campbell, G.K. Interferometric measurement of the current-phase relationship of a superfluid weak link. Phys. Rev. X 2014, 4, 031052. [Google Scholar] [CrossRef]
- Abad, M. Persistent currents in coherently coupled Bose–Einstein condensates in a ring trap. Phys. Rev. A 2016, 93, 033603. [Google Scholar] [CrossRef]
- White, A.C.; Zhang, Y.P.; Busch, T. Odd-petal-number states and persistent flows in spin-orbit-coupled Bose–Einstein condensates. Phys. Rev. A 2017, 95, 041604. [Google Scholar] [CrossRef]
- Desbuquois, R.; Chomaz, L.; Yefsah, T.; Leonard, J.; Beugnon, J.; Weitenberg, C.; Dalibard, J. Superfluid behaviour of a two-dimensional Bose gas. Nat. Phys. 2012, 10, 645–648. [Google Scholar] [CrossRef]
- Singh, V.P.; Weitenberg, C.; Dalibard, J.; Mathey, L. Superfluidity and relaxation dynamics of a laser-stirred two-dimensional Bose gas. Phys. Rev. A 2017, 95, 043631. [Google Scholar] [CrossRef]
- Choi, S.; Morgan, S.A.; Burnett, K. Phenomenological damping in trapped atomic Bose–Einstein condensates. Phys. Rev. A 1998, 57, 4057. [Google Scholar] [CrossRef]
- Castin, Y. Simple theoretical tools for low dimension Bose gases. J. Phys. IV (France) 2004, 116, 89. [Google Scholar] [CrossRef]
- Inouye, S.; Gupta, S.; Rosenband, T.; Chikkatur, A.P.; Gorlitz, A.; Gustavson, T.L.; Leanhardt, A.E.; Pritchard, D.E.; Ketterle, W. Observation of vrtex phase singularities in Bose–Einstein condensates. Phys. Rev. Lett. 2001, 87, 080402. [Google Scholar] [CrossRef] [PubMed]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Onofrio, R.; Durfee, D.S.; Raman, C.; Kohl, M.; Kuklewicz, C.; Ketterle, W. Surface excitations of a Bose–Einstein condensate. Phys. Rev. Lett. 2000, 84, 810. [Google Scholar] [CrossRef] [PubMed]
- Dalfovo, F.; Stringari, S. Shape deformations and angular-momentum transfer in trapped Bose–Einstein condensates. Phys. Rev. A 2000, 63, 011601. [Google Scholar] [CrossRef]
- Recati, A.; Zambelli, F.; Stringari, S. Overcritical rotation of a trapped Bose–Einstein Condensate. Phys. Rev. Lett. 2001, 86, 377. [Google Scholar] [CrossRef] [PubMed]
- Stringari, S. Collective Excitations of a Trapped Bose-Condensed Gas. Phys. Rev. Lett. 1996, 77, 2360. [Google Scholar] [CrossRef] [PubMed]
- Pinsker, F.; Berloff, N.G. Transitions and excitations in a superfluid stream passing small impurities. Phys. Rev. A 2014, 89, 053605. [Google Scholar] [CrossRef]
- Winiecki, T.; McCann, J.F.; Adamas, C.S. Pressure dDrag in linear and nonlinear quantum fluids. Phys. Rev. Lett. 1999, 82, 5186. [Google Scholar] [CrossRef]
v | ||||||
---|---|---|---|---|---|---|
n | n | |||||
1.00–1.25 | 1 | 0 | 1 | 1 | 0 | 1 |
1.25–1.35 | 2 | 0 | 2 | 2 | 0 | 2 |
1.35–1.50 | 2 | 1 | 3 | 3 | 0 | 3 |
1.50–1.70 | 3 | 1 | 4 | 2 | 4 | 6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.-L.; An, J. Surface Excitations, Shape Deformation, and the Long-Time Behavior in a Stirred Bose–Einstein Condensate. Condens. Matter 2018, 3, 41. https://doi.org/10.3390/condmat3040041
Zhu Q-L, An J. Surface Excitations, Shape Deformation, and the Long-Time Behavior in a Stirred Bose–Einstein Condensate. Condensed Matter. 2018; 3(4):41. https://doi.org/10.3390/condmat3040041
Chicago/Turabian StyleZhu, Qing-Li, and Jin An. 2018. "Surface Excitations, Shape Deformation, and the Long-Time Behavior in a Stirred Bose–Einstein Condensate" Condensed Matter 3, no. 4: 41. https://doi.org/10.3390/condmat3040041
APA StyleZhu, Q. -L., & An, J. (2018). Surface Excitations, Shape Deformation, and the Long-Time Behavior in a Stirred Bose–Einstein Condensate. Condensed Matter, 3(4), 41. https://doi.org/10.3390/condmat3040041