Condensed Matter Researches in Cryospheric Science
1. Introduction
2. Condensed Matter Applications in Cryospheric Sciences
2.1. Advanced Measurement Methods for Cryospheric Sciences
2.2. High Latitude-High Altitude Mineral Dust Atmospheric Transport
2.3. Climatic Impact on the Cryospheric Environments
3. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schulz, M.; Prospero, J.M.; Baker, A.R.; Dentener, F.; Ickes, L.; Liss, P.S.; Mahowald, N.M.; Nickovic, S.; García-Pando, C.P.; Rodríguez, S.; et al. Atmospheric Transport and Deposition of Mineral Dust to the Ocean: Implications for Research Needs. Environ. Sci. Technol. 2012, 46, 10390–10404. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.B.; Krom, M.D.; Jickells, T.D.; Bonneville, S.; Carslaw, K.S.; Mihalopoulos, N.; Baker, A.R.; Benning, L.G. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review. Aeolian Res. 2012, 5, 21–42. [Google Scholar] [CrossRef]
- Formenti, P.; Schutz, L.; Balkanski, Y.; Ebert, M.; Kandler, K.; Petzold, A.; Scheuvens, D.; Weinbruch, S.; Zhang, D. Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos. Chem. Phys. 2011, 11, 8231. [Google Scholar] [CrossRef]
- Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; et al. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 2011, 11, 7781. [Google Scholar] [CrossRef]
- Narcisi, B.; Petit, J.R.; Engrand, C. First discovery of meteoritic events in deep Antarctic (EPICA-Dome C) ice cores. Geophys. Res. Lett. 2007, 34, L15502. [Google Scholar] [CrossRef]
- Narcisi, B.; Petit, J.R.; Delmonte, B.; Basile-Doelsch, I.; Maggi, V. Characteristics and sources of tephra layers in the EPICA-Dome C ice record (East Antarctica): Implications for past atmospheric circulation and ice core stratigraphic correlations. Earth Planet. Sci. Lett. 2005, 239, 253. [Google Scholar] [CrossRef]
- Parrenin, F.; Barnola, J.M.; Beer, J.; Blunier, T.; Castellano, E.; Chappellaz, J.; Dreyfus, G.; Fischer, H.; Fujita, S.; Jouzel, J.; et al. The EDC3 chronology for the EPICA Dome, C. ice core. Clim. Past 2007, 3, 485. [Google Scholar] [CrossRef]
- Maggi, V. Mineralogy of atmospheric microparticles deposited along the Greenland Ice Core Project ice core. J. Geophys. Res. 1997, 102, 725. [Google Scholar] [CrossRef]
- Wegner, A.; Gabrielli, P.; Wilhelms-Dick, D.; Ruth, U.; Kriews, M.; De Deckker, P.; Barbante, C.; Cozzi, G.; Delmonte, B.; Fischer, H. Change in dust variability in the Atlantic sector of Antarctica at the end of the last deglaciation. Clim. Past 2012, 8, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Gabrielli, P.; Wegner, A.; Petit, J.R.; Delmonte, B.; De Deckker, P.; Gaspari, V.; Fischer, H.; Ruth, U.; Kriews, M.; Boutron, C.; et al. A major glacial-interglacial change in aeolian dust composition inferred from Rare Earth Elements in Antarctic ice. Quat. Sci. Rev. 2010, 29, 265. [Google Scholar] [CrossRef]
- Marino, F.; Castellano, E.; Ceccato, D.; De Deckker, P.; Delmonte, B.; Ghermandi, G.; Maggi, V.; Petit, J.R.; Revel, M.; Udisti, R. Defining the geochemical composition of the EPICA Dome C ice core dust during the last glacial-interglacial cycle. Geochem. Geophys. Geosyst. 2008, 9, Q10018. [Google Scholar] [CrossRef]
- Puri, A.; Lepore, G.O.; d’Acapito, F. The New Beamline LISA at ESRF: Performances and Perspectives for Earth and Environmental Sciences. Condens. Matter 2019, 4, 12. [Google Scholar] [CrossRef]
- Cibin, G.; Marcelli, A.; Maggi, V.; Baccolo, G.; Hampai, D.; Robbins, P.; Liedl, A.; Polese, C.; D’Elia, A.; Macis, S.; et al. Synchrotron Radiation Research and Analysis of the Particulate Matter in Deep Ice Cores: An Overview of the Technical Challenges. Condens. Matter 2019, 4, 61. [Google Scholar] [CrossRef]
- Xu, W.; Du, Z.; Liu, S.; Zhu, Y.; Xiao, C.; Marcelli, A. Perspectives of XRF and XANES Applications in Cryospheric Sciences Using Chinese SR Facilities. Condens. Matter 2018, 3, 29. [Google Scholar] [CrossRef]
- Cappuccio, G.; Cibin, G.; Dabagov, S.B.; Di Filippo, A.; Piovesan, G.; Hampai, D.; Maggi, V.; Marcelli, A. Challenging X-ray Fluorescence Applications for Environmental Studies at XLab Frascati. Condens. Matter 2018, 3, 33. [Google Scholar] [CrossRef]
- Macis, S.; Cibin, G.; Maggi, V.; Baccolo, G.; Hampai, D.; Delmonte, B.; D’Elia, A.; Marcelli, A. Microdrop Deposition Technique: Preparation and Characterization of Diluted Suspended Particulate Samples. Condens. Matter 2018, 3, 21. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, C.; Du, Z.; Marcelli, A.; Cibin, G.; Baccolo, G.; Zhu, Y.; Puri, A.; Maggi, V.; Xu, W. Iron Speciation in Insoluble Dust from High-Latitude Snow: An X-ray Absorption Spectroscopy Study. Condens. Matter 2018, 3, 47. [Google Scholar] [CrossRef]
- Maggi, V.; Baccolo, G.; Cibin, G.; Delmonte, B.; Hampai, D.; Marcelli, A. XANES Iron Geochemistry in the Mineral Dust of the Talos Dome Ice Core (Antarctica) and the Southern Hemisphere Potential Source Areas. Condens. Matter 2018, 3, 45. [Google Scholar] [CrossRef]
- Baccolo, G.; Cibin, G.; Delmonte, B.; Hampai, D.; Marcelli, A.; Di Stefano, E.; Macis, S.; Maggi, V. The Contribution of Synchrotron Light for the Characterization of Atmospheric Mineral Dust in Deep Ice Cores: Preliminary Results from the Talos Dome Ice Core (East Antarctica). Condens. Matter 2018, 3, 25. [Google Scholar] [CrossRef]
- Speranza, A.; Caggiano, R.; Pavese, G.; Summa, V. The Study of Characteristic Environmental Sites Affected by Diverse Sources of Mineral Matter Using Compositional Data Analysis. Condens. Matter 2018, 3, 16. [Google Scholar] [CrossRef]
- Ding, M.; Wang, S.; Sun, W. Decadal Climate Change in Ny-Ålesund, Svalbard, A Representative Area of the Arctic. Condens. Matter 2018, 3, 12. [Google Scholar] [CrossRef]
- Pittino, F.; Ambrosini, R.; Azzoni, R.S.; Diolaiuti, G.A.; Villa, S.; Gandolfi, I.; Franzetti, A. Post-Depositional Biodegradation Processes of Pollutants on Glacier Surfaces. Condens. Matter 2018, 3, 24. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maggi, V.; Xiao, C.; Marcelli, A. Condensed Matter Researches in Cryospheric Science. Condens. Matter 2019, 4, 68. https://doi.org/10.3390/condmat4030068
Maggi V, Xiao C, Marcelli A. Condensed Matter Researches in Cryospheric Science. Condensed Matter. 2019; 4(3):68. https://doi.org/10.3390/condmat4030068
Chicago/Turabian StyleMaggi, Valter, Cunde Xiao, and Augusto Marcelli. 2019. "Condensed Matter Researches in Cryospheric Science" Condensed Matter 4, no. 3: 68. https://doi.org/10.3390/condmat4030068
APA StyleMaggi, V., Xiao, C., & Marcelli, A. (2019). Condensed Matter Researches in Cryospheric Science. Condensed Matter, 4(3), 68. https://doi.org/10.3390/condmat4030068