Ferroelectricity, Superconductivity, and SrTiO3—Passions of K.A. Müller
Abstract
:1. Introduction
2. SrTiO: Properties, Phase Diagram and Tuning Parameters
3. Superconductivity in Doped SrTiO from 1964 until 2020
4. Superconductivity in Two Dimensions
5. O Isotope Effect
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bednorz, J.G.; Müller, K.A. Perovskite-type oxides—The new approach to high-Tc superconductivity. Rev. Mod. Phys. 1988, 60, 585–600. [Google Scholar] [CrossRef] [Green Version]
- Müller, K.A.; Burkard, H. SrTiO3: An intrinsic quantum paraelectric below 4 K. Phys. Rev. B 1979, 19, 3593–3602. [Google Scholar] [CrossRef]
- Bednorz, J.G.; Müller, K.A. Sr1-xCaxTiO3: An XY Quantum Ferroelectric with Transition to Randomness. Phys. Rev. Lett. 1984, 52, 2289–2292. [Google Scholar] [CrossRef]
- Itoh, M.; Wang, R.; Inaguma, Y.; Yamaguchi, T.; Shan, Y.J.; Nakamura, T. Ferroelectricity Induced by Oxygen Isotope Exchange in Strontium Titanate Perovskite. Phys. Rev. Lett. 1999, 82, 3540–3543. [Google Scholar] [CrossRef]
- Haeni, J.H.; Irvin, P.; Chang, W.; Uecker, R.; Reiche, P.; Li, Y.L.; Choudhury, S.; Tian, W.; Hawley, M.E.; Craigo, B.; et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 2004, 430, 758–761. [Google Scholar] [CrossRef] [Green Version]
- Schooley, J.; Hosler, W.; Ambler, E.; Becker, J.; Cohen, M.; Koonce, C. Dependence of the Superconducting Transition Temperature on Carrier Concentration in Semiconducting SrTiO3. Phys. Rev. Lett. 1965, 14, 305–307. [Google Scholar] [CrossRef]
- Collignon, C.; Lin, X.; Rischau, C.W.; Fauqué, B.; Behnia, K. Metallicity and Superconductivity in Doped Strontium Titanate. Ann. Rev. Condens. Matter Phys. 2019, 10, 25–44. [Google Scholar] [CrossRef]
- Kan, D.; Terashima, T.; Kanda, R.; Masuno, A.; Tanaka, K.; Chu, S.; Kan, H.; Ishizumi, A.; Kanemitsu, Y.; Shimakawa, Y.; et al. Blue-light emission at room temperature from Ar+-irradiated SrTiO3. Nat. Mater. 2005, 4, 816–819. [Google Scholar] [CrossRef]
- Wrighton, M.S.; Ellis, A.B.; Wolczanski, P.T.; Morse, D.L.; Abrahamson, H.B.; Ginley, D.S. Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J. Am. Chem. Soc. 1976, 98, 2774–2779. [Google Scholar] [CrossRef]
- Ohtomo, A.; Hwang, H.Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 2004, 427, 423–426. [Google Scholar] [CrossRef]
- Reyren, N.; Thiel, S.; Caviglia, A.D.; Kourkoutis, L.F.; Hammerl, G.; Richter, C.; Schneider, C.W.; Kopp, T.; Ruetschi, A.S.; Jaccard, D.; et al. Superconducting Interfaces Between Insulating Oxides. Science 2007, 317, 1196–1199. [Google Scholar] [CrossRef]
- Goodenough, J.B. Electronic and ionic transport properties and other physical aspects of perovskites. Rep. Prog. Phys. 2004, 67, 1915–1993. [Google Scholar] [CrossRef]
- Müller, K.A.; Berlinger, W.; Waldner, F. Characteristic Structural Phase Transition in Perovskite-Type Compounds. Phys. Rev. Lett. 1968, 21, 814–817. [Google Scholar] [CrossRef]
- Cowley, R.A. Lattice Dynamics and Phase Transitions of Strontium Titanate. Phys. Rev. 1964, 134, A981–A997. [Google Scholar] [CrossRef]
- Zhong, W.; Vanderbilt, D. Effect of quantum fluctuations on structural phase transitions in SrTiO3 and BaTiO3. Phys. Rev. B 1996, 53, 5047–5050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, W.J.; Pressley, R.J. Stress induced ferroelectricity in SrTiO3. Solid State Commun. 1971, 9, 191–195. [Google Scholar] [CrossRef]
- Uwe, H.; Sakudo, T. Stress-induced ferroelectricity and soft phonon modes in SrTiO3. Phys. Rev. B 1976, 13, 271–286. [Google Scholar] [CrossRef]
- Mishra, S.K.; Ranjan, R.; Pandey, D.; Ranson, P.; Ouillon, R.; Pinan-Lucarre, J.-P.; Pruzan, P. A combined X-ray diffraction and Raman scattering study of the phase transitions in Sr1-xCaxTiO3 (x = 0.04, 0.06, and 0.012). J. Solid State Chem. 2005, 178, 2846–2857. [Google Scholar] [CrossRef]
- Spinelli, A.; Torija, M.A.; Liu, C.; Jan, C.; Leighton, C. Electronic transport in doped SrTiO3: Conduction mechanisms and potential applications. Phys. Rev. B 2010, 81, 155110. [Google Scholar] [CrossRef]
- Ohta, S.; Nomura, T.; Ohta, H.; Koumoto, K. High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 2005, 97, 034106. [Google Scholar] [CrossRef]
- Tufte, O.; Chapman, P. Electron Mobility in Semiconducting Strontium Titanate. Phys. Rev. 1967, 155, 796–802. [Google Scholar] [CrossRef]
- van der Marel, D.; van Mechelen, J.L.M.; Mazin, I.I. Common Fermi-liquid origin of T2 resistivity and superconductivity in n-type SrTiO3. Phys. Rev. B 2011, 84, 205111. [Google Scholar] [CrossRef] [Green Version]
- Gregory, B.; Arthur, J.; Seidel, G. Measurements of the Fermi surface of SrTiO3:Nb. Phys. Rev. B 1979, 19, 1039–1048. [Google Scholar] [CrossRef]
- Lin, X.; Bridoux, G.; Gourgout, A.; Seyfarth, G.; Krämer, S.; Nardone, M.; Fauqué, B.; Behnia, K. Critical Doping for the Onset of a Two-Band Superconducting Ground State in SrTiO3. Phys. Rev. Lett. 2014, 112, 207002. [Google Scholar] [CrossRef] [Green Version]
- Schooley, J.F.; Hosler, W.R.; Cohen, M.L. Superconductivity in Semiconducting SrTiO3. Phys. Rev. Lett. 1964, 12, 474–475. [Google Scholar] [CrossRef]
- Koonce, C.S.; Cohen, M.L.; Schooley, J.F.; Hosler, W.R.; Pfeiffer, E.R. Superconducting Transition Temperatures of Semiconducting SrTiO3. Phys. Rev. 1967, 163, 380–390. [Google Scholar] [CrossRef]
- Appel, J. Soft-Mode Superconductivity in SrTiO3-x. Phys. Rev. 1969, 180, 508–516. [Google Scholar] [CrossRef]
- Bussmann-Holder, A.; Simon, A.; Büttner, H. Possibility of a common origin to ferroelectricity and superconductivity in oxides. Phys. Rev. B 1989, 39, 207–214. [Google Scholar] [CrossRef]
- Edge, J.M.; Kedem, Y.; Aschauer, U.; Spaldin, N.A.; Balatsky, A.V. Quantum Critical Origin of the Superconducting Dome in SrTiO3. Phys. Rev. Lett. 2015, 115, 247002. [Google Scholar] [CrossRef] [Green Version]
- Kahn, A.H.; Leyendecker, A.J. Electronic Energy Bands in Strontium Titanate. Phys. Rev. 1964, 135, A1321–A1325. [Google Scholar] [CrossRef]
- Cohen, M.L. Superconductivity in Many-Valley Semiconductors and in Semimetals. Phys. Rev. 1964, 134, A511–A521. [Google Scholar] [CrossRef]
- Mattheiss, L.F. Energy Bands for KNiF3, SrTiO3, KMoO3, and KTaO3. Phys. Rev. B 1972, 6, 4718–4740. [Google Scholar] [CrossRef]
- Binnig, G.; Baratoff, A.; Hoenig, H.E.; Bednorz, J.G. Two-Band Superconductivity in Nb-Doped SrTiO3. Phys. Rev. Lett. 1980, 45, 1352–1355. [Google Scholar] [CrossRef]
- van Mechelen, J.L.M.; van der Marel, D.; Grimaldi, C.; Kuzmenko, A.B.; Armitage, N.P.; Reyren, N.; Hagemann, H.; Mazin, I.I. Electron-Phonon Interaction and Charge Carrier Mass Enhancement in SrTiO3. Phys. Rev. Lett. 2008, 100, 226403. [Google Scholar] [CrossRef] [Green Version]
- McCalla, E.; Gastiasoro, M.N.; Cassuto, G.; Fernandes, R.M.; Leighton, C. Low-temperature specific heat of doped SrTiO3: Doping dependence of the effective mass and Kadowaki-Woods scaling violation. Phys. Rev. Mater. 2019, 3, 022001. [Google Scholar] [CrossRef] [Green Version]
- Devreese, J.T.; Klimin, S.N.; van Mechelen, J.L.M.; van der Marel, D. Many-body large polaron optical conductivity in SrTi1-xNbxO3. Phys. Rev. B 2010, 81, 125119. [Google Scholar] [CrossRef] [Green Version]
- Eagles, D.M. Possible Pairing without Superconductivity at Low Carrier Concentrations in Bulk and Thin-Film Superconducting Semiconductors. Phys. Rev. 1969, 186, 456–463. [Google Scholar] [CrossRef]
- Ngai, K.L. Two-Phonon Deformation Potential and Superconductivity in Degenerate Semiconductors. Phys. Rev. Lett. 1974, 32, 215–218. [Google Scholar] [CrossRef]
- Gor’kov, L.P. Phonon mechanism in the most dilute superconductor n-type SrTiO3. Proc. Natl. Acad. Sci. USA 2016, 113, 4646–4651. [Google Scholar] [CrossRef] [Green Version]
- Klimin, S.N.; Tempere, J.; van der Marel, D.; Devreese, J.T. Microscopic mechanisms for the Fermi-liquid behavior of Nb-doped strontium titanate. Phys. Rev. B 2012, 86, 045113. [Google Scholar] [CrossRef] [Green Version]
- Enderlein, C.; Ferreira de Oliveira, J.; Tompsett, D.A.; Baggio Saitovitch, E.; Saxena, S.S.; Lonzarich, G.G.; Rowley, S.E. Superconductivity mediated by polar modes in ferroelectric metals. Nat. Commun. 2020, 11, 4852. [Google Scholar] [CrossRef] [PubMed]
- Jarlborg, T. Tuning of the electronic screening and electron-phonon coupling in doped SrTiO3 and WO3. Phys. Rev. B 2000, 61, 9887–9890. [Google Scholar] [CrossRef]
- Rowley, S.E.; Spalek, L.J.; Smith, R.P.; Dean, M.P.M.; Itoh, M.; Scott, J.F.; Lonzarich, G.G.; Saxena, S.S. Ferroelectric quantum criticality. Nat. Phys. 2014, 10, 367. [Google Scholar] [CrossRef] [Green Version]
- Stucky, A.; Scheerer, G.W.; Ren, Z.; Jaccard, D.; Poumirol, J.M.; Barreteau, C.; Giannini, E.; van der Marel, D. Isotope effect in superconducting n-doped SrTiO3. Sci. Rep. 2016, 6, 37582. [Google Scholar] [CrossRef] [Green Version]
- Tomioka, Y.; Shirakawa, N.; Shibuya, K.; Inoue, I.H. Enhanced superconductivity close to a non-magnetic quantum critical point in electron-doped strontium titanate. Nat. Commun. 2019, 10, 738. [Google Scholar] [CrossRef]
- Rischau, C.W.; Lin, X.; Grams, C.P.; Finck, D.; Harms, S.; Engelmayer, J.; Lorenz, T.; Gallais, Y.; Fauqué, B.; Hemberger, J.; et al. A ferroelectric quantum phase transition inside the superconducting dome of Sr1-xCaxTiO3-δ. Nat. Phys. 2017, 13, 643. [Google Scholar] [CrossRef]
- Ruhman, J.; Lee, P.A. Superconductivity at very low density: The case of strontium titanate. Phys. Rev. B 2016, 94, 224515. [Google Scholar] [CrossRef] [Green Version]
- Bussmann-Holder, A.; Bishop, A.R.; Simon, A. Enhancement of Tc in BCS theory extended by interband two-phonon exchange. Z. Phys. B Condens. Matter 1993, 90, 183–186. [Google Scholar] [CrossRef]
- van der Marel, D.; Barantani, F.; Rischau, C.W. Possible mechanism for superconductivity in doped SrTiO3. Phys. Rev. Res. 2019, 1, 013003. [Google Scholar] [CrossRef] [Green Version]
- Santander-Syro, A.F.; Copie, O.; Kondo, T.; Fortuna, F.; Pailhes, S.; Weht, R.; Qiu, X.G.; Bertran, F.; Nicolaou, A.; Taleb-Ibrahimi, A.; et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO3. Nature 2011, 469, 189–193. [Google Scholar] [CrossRef]
- Meevasana, W.; King, P.D.C.; He, R.H.; Mo, S.K.; Hashimoto, M.; Tamai, A.; Songsiriritthigul, P.; Baumberger, F.; Shen, Z.X. Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nat. Mater. 2011, 10, 114–118. [Google Scholar] [CrossRef]
- Kim, M.; Kozuka, Y.; Bell, C.; Hikita, Y.; Hwang, H.Y. Intrinsic spin-orbit coupling in superconducting δ-doped SrTiO3 heterostructures. Phys. Rev. B 2012, 86, 085121. [Google Scholar] [CrossRef] [Green Version]
- Thiel, S.; Hammerl, G.; Schmehl, A.; Schneider, C.W.; Mannhart, J. Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures. Science 2006, 313, 1942–1945. [Google Scholar] [CrossRef]
- Bristowe, N.C.; Ghosez, P.; Littlewood, P.B.; Artacho, E. The origin of two-dimensional electron gases at oxide interfaces: Insights from theory. J. Phys. Condens. Matter 2014, 26, 143201. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Zunger, A. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces. Nat. Commun. 2014, 5, 5118. [Google Scholar] [CrossRef] [Green Version]
- Tinkham, M. Effect of Fluxoid Quantization on Transitions of Superconducting Films. Phys. Rev. 1963, 129, 2413–2422. [Google Scholar] [CrossRef]
- Reyren, N.; Gariglio, S.; Caviglia, A.D.; Jaccard, D.; Schneider, T.; Triscone, J.M. Anisotropy of the superconducting transport properties of the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 2009, 94, 112506. [Google Scholar] [CrossRef] [Green Version]
- Ben Shalom, M.; Sachs, M.; Rakhmilevitch, D.; Palevski, A.; Dagan, Y. Tuning Spin-Orbit Coupling and Superconductivity at the SrTiO3/LaAlO3 Interface: A Magnetotransport Study. Phys. Rev. Lett. 2010, 104, 126802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gariglio, S.; Gabay, M.; Mannhart, J.; Triscone, J.M. Interface superconductivity. Phys. C Superconduct. Appl. 2015, 514, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Caviglia, A.D.; Gariglio, S.; Reyren, N.; Jaccard, D.; Schneider, T.; Gabay, M.; Thiel, S.; Hammerl, G.; Mannhart, J.; Triscone, J.M. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 2008, 456, 624–627. [Google Scholar] [CrossRef] [Green Version]
- Gariglio, S.; Gabay, M.; Triscone, J.M. Research Update: Conductivity and beyond at the LaAlO3/SrTiO3 interface. APL Mater. 2016, 4, 060701. [Google Scholar] [CrossRef] [Green Version]
- Cancellieri, C.; Reyren, N.; Gariglio, S.; Caviglia, A.D.; Fete, A.; Triscone, J.M. Influence of the growth conditions on the LaAlO3/SrTiO3 interface electronic properties. EPL (Europhys. Lett.) 2010, 91, 17004. [Google Scholar] [CrossRef]
- Gariglio, S.; Reyren, N.; Caviglia, A.D.; Triscone, J.M. Superconductivity at the LaAlO3/SrTiO3 interface. J. Phys. Condens. Matter 2009, 21, 164213. [Google Scholar] [CrossRef] [Green Version]
- Unoki, H.; Sakudo, T. Electron Spin Resonance of Fe3+ in SrTiO3 with Special Reference to the 110° K Phase Transition. J. Phys. Soc. Jpn 1967, 23, 546–552. [Google Scholar] [CrossRef]
- Shirane, G.; Yamada, Y. Lattice-Dynamical Study of the 110° K Phase Transition in SrTiO3. Phys. Rev. 1969, 177, 858–863. [Google Scholar] [CrossRef]
- Tao, Q.; Loret, B.; Xu, B.; Yang, X.; Rischau, C.W.; Lin, X.; Fauqué, B.; Verstraete, M.J.; Behnia, K. Nonmonotonic anisotropy in charge conduction induced by antiferrodistortive transition in metallic SrTiO3. Phys. Rev. B 2016, 94, 035111. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, L.; Rischau, C.W.; Xu, Z.; Ren, Z.; Lorenz, T.; Lin, X.; Behnia, K. Charge transport in a polar metal. npj Quantum Mater. 2019, 4, 61. [Google Scholar] [CrossRef] [Green Version]
- Tuvia, G.; Frenkel, Y.; Rout, P.K.; Silber, I.; Kalisky, B.; Dagan, Y. Ferroelectric Exchange Bias Affects Interfacial Electronic States. Adv. Mater. 2020, 32, 2000216. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheerer, G.; Boselli, M.; Pulmannova, D.; Rischau, C.W.; Waelchli, A.; Gariglio, S.; Giannini, E.; van der Marel, D.; Triscone, J.-M. Ferroelectricity, Superconductivity, and SrTiO3—Passions of K.A. Müller. Condens. Matter 2020, 5, 60. https://doi.org/10.3390/condmat5040060
Scheerer G, Boselli M, Pulmannova D, Rischau CW, Waelchli A, Gariglio S, Giannini E, van der Marel D, Triscone J-M. Ferroelectricity, Superconductivity, and SrTiO3—Passions of K.A. Müller. Condensed Matter. 2020; 5(4):60. https://doi.org/10.3390/condmat5040060
Chicago/Turabian StyleScheerer, Gernot, Margherita Boselli, Dorota Pulmannova, Carl Willem Rischau, Adrien Waelchli, Stefano Gariglio, Enrico Giannini, Dirk van der Marel, and Jean-Marc Triscone. 2020. "Ferroelectricity, Superconductivity, and SrTiO3—Passions of K.A. Müller" Condensed Matter 5, no. 4: 60. https://doi.org/10.3390/condmat5040060
APA StyleScheerer, G., Boselli, M., Pulmannova, D., Rischau, C. W., Waelchli, A., Gariglio, S., Giannini, E., van der Marel, D., & Triscone, J. -M. (2020). Ferroelectricity, Superconductivity, and SrTiO3—Passions of K.A. Müller. Condensed Matter, 5(4), 60. https://doi.org/10.3390/condmat5040060