Functional Nanoscale Phase Separation and Intertwined Order in Quantum Complex Materials
Abstract
:1. Introduction
2. Results
2.1. Correlated Disorder and Phase Separation in La2CuO4+y
2.2. Correlated Disorder and Phase Separation in HgBa2CuO4+y
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schunck, J.O.; Döring, F.; Rösner, B.; Buck, J.; Engel, R.Y.; Miedema, P.S.; Mahatha, S.K.; Hoesch, M.; Petraru, A.; Kohlstedt, H.; et al. Soft X-ray imaging spectroscopy with micrometer resolution. Optica 2021, 8, 156–160. [Google Scholar] [CrossRef]
- Schülli, T.U.; Leake, S.J. X-ray nanobeam diffraction imaging of materials. Curr. Opin. Solid State Mater. Sci. 2018, 22, 188–201. [Google Scholar] [CrossRef]
- Campi, G. Structural Fluctuations at Nanoscale in Complex Functional Materials. In Synchrotron Radiation Science and Applications; Springer: Cham, Switzerland, 2021; pp. 181–189. [Google Scholar]
- Poccia, N.; Chorro, M.; Ricci, A.; Xu, W.; Marcelli, A.; Campi, G.; Bianconi, A. Percolative superconductivity in La2CuO4.06 by lattice granularity patterns with scanning micro X-ray absorption near edge structure. Appl. Phys. Lett. 2014, 104, 221903. [Google Scholar] [CrossRef] [Green Version]
- Campi, G.; Ricci, A.; Poccia, N.; Fratini, M.; Bianconi, A. X-rays Writing/Reading of charge density waves in the CuO2 plane of a simple cuprate superconductor. Condens. Matter. 2017, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Campi, G.; Bianconi, A. Evolution of complexity in out-of-equilibrium systems by time-resolved or space-resolved synchrotron radiation techniques. Condens. Matter. 2019, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.; Zhigadlo, N.D.; Kazakov, S.M.; et al. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 2015, 525, 359–362. [Google Scholar] [CrossRef]
- Dagotto, E. Complexity in strongly correlated electronic systems. Science 2005, 309, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Campi, G.; Bianconi, A. High-Temperature Superconductivity in a Hyperbolic Geometry of Complex Matter from Nanoscale to Mesoscopic Scale. J. Supercond. Nov. Magn. 2016, 29, 627–631. [Google Scholar] [CrossRef]
- Carlson, E.W. Condensed-matter physics: Charge topology in superconductors. Nature 2015, 525, 329–330. [Google Scholar] [CrossRef]
- Bishop, A.R. HTC oxides: A collusion of spin, charge and lattice. J. Phys. Conf. Ser. 2008, 108, 012027. [Google Scholar] [CrossRef] [Green Version]
- Littlewood, P. Superconductivity: An X-ray oxygen regulator. Nat. Mater. 2011, 10, 726–727. [Google Scholar] [CrossRef]
- Amabilino, D.B.; Stoddart, J.F. Interlocked and intertwined structures and superstructures. Chem. Rev. 1995, 95, 2725–2828. [Google Scholar] [CrossRef]
- Živković, J.M.; Stanković, I.M.; Ninković, D.B.; Zarić, S.D. Decisive Influence of Environment on Aromatic/Aromatic Interaction Geometries. Comparison of Aromatic/Aromatic Interactions in Crystal Structures of Small Molecules and in Protein Structures. Cryst. Growth Des. 2021, 21, 1898–1904. [Google Scholar] [CrossRef]
- Mazziotti, M.V.; Valletta, A.; Campi, G.; Innocenti, D.; Perali, A.; Bianconi, A. Possible Fano resonance for high-Tc multi-gap superconductivity in p-Terphenyl doped by K at the Lifshitz transition. EPL Europhys. Lett. 2017, 118, 3700. [Google Scholar] [CrossRef] [Green Version]
- Mazziotti, M.V.; Jarlborg, T.; Bianconi, A.; Valletta, A. Room temperature superconductivity dome at a Fano resonance in superlattices of wires. EPL Europhys. Lett. 2021, 134, 17001. [Google Scholar] [CrossRef]
- Mazziotti, M.V.; Raimondi, R.; Valletta, A.; Campi, G.; Bianconi, A. Resonant multigap superconductivity at room temperature near a Lifshitz topological transition in sulfur hydrides. arXiv 2021, arXiv:2106.14394. [Google Scholar]
- Bianconi, A.; Jarlborg, T. Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. Nov. Supercond. Mater. 2015, 1, 37–49. [Google Scholar] [CrossRef]
- Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Metalorganic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483–493. [Google Scholar] [CrossRef]
- Kochev, V.D.; Kesharpu, K.K.; Grigoriev, P.D. Anisotropic zero-resistance onset in organic superconductors. Phys. Rev. B 2021, 103, 014519. [Google Scholar] [CrossRef]
- Bianconi, A.; Missori, M. High Tc superconductivity by quantum confinement. J. Phys. I 1994, 4, 361–365. [Google Scholar]
- Bianconi, A. On the possibility of new high Tc superconductors by producing metal heterostructures as in the cuprate perovskites. Solid State Commun. 1994, 89, 933–936. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, A.; Missori, M.; Oyanagi, H.; Yamaguchi, H.; Ha, D.H.; Nishiara, Y.; Della Longa, S. The measurement of the polaron size in the metallic phase of cuprate superconductors. EPL Europhys. Lett. 1995, 31, 41. [Google Scholar] [CrossRef]
- Della Longa, S.; Soldatov, A.; Pompa, M.; Bianconi, A. Atomic and electronic structure probed by X-ray absorption spectroscopy: Full multiple scattering analysis with the G4XANES package. Comput. Mater. Sci. 1995, 4, 199–210. [Google Scholar] [CrossRef]
- Saini, N.L.; Lanzara, A.; Missori, M.; Rossetti, T.; Bianconi, A.; Oyanagi, H.; Yamaguchi, H.; Oka, K.; Ito, T. Local lattice instability of CuO2 plane in La1.85 Sr0.15 CuO4 by polarized Cu K edge absorption. Phys. C Supercond. 1995, 251, 383–388. [Google Scholar] [CrossRef]
- Bianconi, A.; Saini, N.L.; Rossetti, T.; Lanzara, A.; Perali, A.; Missori, M.; Oyanagi, H.; Yamaguchi, H.; Nishihara, Y.; Ha, D.H. Stripe structure in the CuO2 plane of perovskite superconductors. Phys. Rev. B 1996, 54, 12018. [Google Scholar] [CrossRef]
- Bianconi, A.; Saini, N.L.; Lanzara, A.; Missori, M.; Rossetti, T.; Oyanagi, H.; Yamaguchi, H.; Oka, K.; Ito, T. Determination of the Local Lattice Distortions in the CuO2 Plane of La1.85Sr0.15CuO4. Phys. Rev. Lett. 1996, 76, 3412. [Google Scholar] [CrossRef] [Green Version]
- Saini, N.L.; Oyanagi, H.; Ito, T.; Scagnoli, V.; Filippi, M.; Agrestini, S.; Campi, G.; Oka, K.; Bianconi, A. Temperature dependent local Cu-O displacements from underdoped to overdoped La-Sr-Cu-O superconductor. Eur. Phys. J. B Condens. Matter. Complex Syst. 2003, 36, 75–80. [Google Scholar] [CrossRef]
- Bianconi, A. Shape resonances in superstripes. Nat. Phys. 2013, 9, 536–537. [Google Scholar] [CrossRef]
- Krockenberger, Y.; Ikeda, A.; Yamamoto, H. Atomic Stripe Formation in Infinite-Layer Cuprates. ACS Omega 2021, 6, 21884–21891. [Google Scholar] [CrossRef]
- Hsu, C.C.; Huang, B.C.; Schnedler, M.; Lai, M.Y.; Wang, Y.L.; Dunin-Borkowski, R.E.; Chang, C.S.; Lee, T.K.; Ebert, P.; Chiu, Y.P. Atomically-resolved interlayer charge ordering and its interplay with superconductivity in YBa2Cu3O6.81. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Izquierdo, M.; Freitas, D.C.; Colson, D.; Garbarino, G.; Forget, A.; Raffy, H.; Itié, J.P.; Ravy, S.; Fertey, P.; Núñez-Regueiro, M. Charge Order and Suppression of Superconductivity in HgBa2CuO4+d at High Pressures. Condens. Matter. 2021, 6, 25. [Google Scholar] [CrossRef]
- Ohgoe, T.; Hirayama, M.; Misawa, T.; Ido, K.; Yamaji, Y.; Imada, M. Ab initio study of superconductivity and inhomogeneity in a Hg-based cuprate superconductor. Phys. Rev. B 2020, 101, 045124. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, A. Shape resonances in multi-condensate granular superconductors formed by networks of nanoscale-striped puddles. J. Phys. Conf. Ser. 2013, 449, 012002. [Google Scholar] [CrossRef] [Green Version]
- Jarlborg, T.; Bianconi, A. Fermi surface reconstruction of superoxygenated La2CuO4 superconductors with ordered oxygen interstitials. Phys. Rev. B 2013, 87, 054514. [Google Scholar] [CrossRef] [Green Version]
- Ricci, A.; Poccia, N.; Campi, G.; Coneri, F.; Barba, L.; Arrighetti, G.; Polentarutti, M.; Burghammer, M.; Sprung, M.; v Zimmermann, M.; et al. Networks of superconducting nano-puddles in 1/8 doped YBa2Cu3O6.5+y controlled by thermal manipulation. N. J. Phys. 2014, 16, 053030. [Google Scholar] [CrossRef] [Green Version]
- Campi, G.; Ricci, A.; Poccia, N.; Barba, L.; Arrighetti, G.; Burghammer, M.; Caporale, A.S.; Bianconi, A. Scanning micro-X-ray diffraction unveils the distribution of oxygen chain nanoscale puddles in YBa2Cu3O6.33. Phys. Rev. B 2013, 87, 014517. [Google Scholar] [CrossRef] [Green Version]
- Fratini, M.; Poccia, N.; Ricci, A.; Campi, G.; Burghammer, M.; Aeppli, G.; Bianconi, A. Scale-free structural organization of oxygen interstitials in La2CuO4+y. Nature 2010, 466, 841–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poccia, N.; Ricci, A.; Campi, G.; Fratini, M.; Puri, A.; Di Gioacchino, D.; Marcelli, A.; Reynolds, M.; Burghammer, M.; Saini, N.L.; et al. Optimum inhomogeneity of local lattice distortions in La2CuO4+y. Proc. Natl. Acad. Sci. USA 2012, 109, 15685–15690. [Google Scholar] [CrossRef] [Green Version]
- Ricci, A.; Poccia, N.; Joseph, B.; Innocenti, D.; Campi, G.; Zozulya, A.; Westermeier, F.; Schavkan, A.; Coneri, F.; Bianconi, A.; et al. Direct observation of nanoscale interface phase in the superconducting chalcogenide KxFe2-ySe2 with intrinsic phase separation. Phys. Rev. B 2015, 91, 020503. [Google Scholar] [CrossRef] [Green Version]
- Ricci, A.; Joseph, B.; Poccia, N.; Campi, G.; Saini, N.L.; Bianconi, A. Temperature Dependence of √2 x √2 Phase in Superconducting K0.8Fe1.6Se2 Single Crystal. J. Supercond. Nov. Magn. 2014, 27, 1003–1007. [Google Scholar] [CrossRef] [Green Version]
- Weyeneth, S.; Bendele, M.; Von Rohr, F.; Dluzewski, P.; Puzniak, R.; Krzton-Maziopa, A.; Bosma, S.; Guguchia, Z.; Khasanov, R.; Shermadini, Z.; et al. Superconductivity and magnetism in RbxFe2−ySe2: Impact of thermal treatment on mesoscopic phase separation. Phys. Rev. B 2012, 86, 134530. [Google Scholar] [CrossRef] [Green Version]
- Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K. Superconductivity in alkali metal intercalated iron selenides. J. Phys. Condens. Matter. 2016, 28, 293002. [Google Scholar] [CrossRef] [PubMed]
- Hazi, J.; Mousavi, T.; Dudin, P.; van der Laan, G.; Maccherozzi, F.; Krzton-Maziopa, A.; Pomjakushina, E.; Conder, K.; Speller, S.C. Magnetic imaging of antiferromagnetic and superconducting phases in RbxFe2−ySe2 crystals. Phys. Rev. B 2018, 97, 054509. [Google Scholar] [CrossRef] [Green Version]
- Gebreyohannes, M.G.; Singh, P. Possible coexistence of charge density wave and superconductivity and enhancement of the transition temperature for the layered quasi-two-dimensional superconductor 2H-NbSe2. J. Phys. Commun. 2021, 5, 105010. [Google Scholar] [CrossRef]
- Kinyanjui, M.K.; Ebad-Allah, J.; Krottenmüller, M.; Kuntscher, C.A. Atomic-scale mapping of pressure-induced deformations and phase defects in the charge density wave order parameter. Phys. Rev. B 2021, 104, 125106. [Google Scholar] [CrossRef]
- Lee, J.; Nagao, M.; Mizuguchi, Y.; Ruff, J. Direct observation of an incommensurate charge density wave in the BiS2-based superconductor NdO1−xFxBiS2. Phys. Rev. B 2021, 103, 245120. [Google Scholar] [CrossRef]
- Grandadam, M.; Pépin, C. Pole structure of the electronic self-energy with coexistence of charge order and superconductivity. Phys. Rev. B 2021, 103, 224507. [Google Scholar] [CrossRef]
- Huang, H.Y.; Singh, A.; Mou, C.Y.; Johnston, S.; Kemper, A.F.; Brink, J.; Chen, P.J.; Lee, T.K.; Okamoto, J.; Chu, Y.Y.; et al. Quantum fluctuations of charge order induce phonon softening in a superconducting cuprate. arXiv 2021, arXiv:2108.11425. [Google Scholar]
- Zhao, H.; Porter, Z.; Chen, X.; Wilson, S.D.; Wang, Z.; Zeljkovic, I. Imaging antiferromagnetic domain fluctuations and the effect of atomic-scale disorder in a doped spin-orbit Mott insulator. arXiv 2021, arXiv:2105.12648. [Google Scholar]
- Mukhin, S.I. Euclidean Q-balls of fluctuating SDW/CDW in the ‘nested’ Hubbard model of high-Tc superconductors as the origin of pseudogap and superconducting behavior. arXiv 2021, arXiv:2108.10372. [Google Scholar]
- Banerjee, S.; Atkinson, W.A.; Kampf, A.P. Emergent charge order from correlated electron-phonon physics in cuprates. Commun. Phys. 2020, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Uehara, M.; Mori, S.; Chen, C.H.; Cheong, S.W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 1999, 399, 560–563. [Google Scholar] [CrossRef]
- Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 2006, 69, 797–851. [Google Scholar] [CrossRef]
- Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Saxena, A.; Aeppli, G. Phase transitions at the nanoscale in functional materials. MRS Bull. 2009, 34, 804–813. [Google Scholar] [CrossRef]
- Bryant, B.; Renner, C.; Tokunaga, Y.; Tokura, Y.; Aeppli, G. Imaging oxygen defects and their motion at a manganite surface. Nat. Commun. 2011, 2, 212. [Google Scholar] [CrossRef]
- Campi, G.; Cappelluti, E.; Proffen, T.; Qiu, X.; Bozin, E.S.; Billinge, S.J.L.; Agrestini, S.; Saini, N.L.; Bianconi, A. Study of temperature dependent atomic correlations in MgB2. Eur. Phys. J. B 2006, 52, 15–21. [Google Scholar] [CrossRef]
- Agrestini, S.; Metallo, C.; Filippi, M.; Simonelli, L.; Campi, G.; Sanipoli, C.; Liarokapis, E.; De Negri, S.; Giovannini, M.; Saccone, A.; et al. Substitution of Sc for Mg in MgB2: Effects on transition temperature and Kohn anomaly. Phys. Rev. B 2004, 70, 134514. [Google Scholar] [CrossRef] [Green Version]
- Bauer, E.; Paul, C.; Berger, S.; Majumdar, S.; Michor, H.; Giovannini, M.; Saccone, A.; Bianconi, A. Thermal conductivity of superconducting MgB2. J. Phys. Condens. Matter. 2001, 13, L487. [Google Scholar] [CrossRef]
- Wadhawan, V.K. Smart Structures: Blurring the Distinction Between the Living and the Nonliving; Monographs on the Physics and Chemistry of Materials 65; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Campi, G.; Fratini, M.; Bukreeva, I.; Ciasca, G.; Burghammer, M.; Brun, F.; Tromba, G.; Mastrogiacomo, M.; Cedola, A. Imaging collagen packing dynamics during mineralization of engineered bone tissue. Acta Biomater. 2015, 23, 309–316. [Google Scholar] [CrossRef]
- Bukreeva, I.; Campi, G.; Fratini, M.; Spanò, R.; Bucci, D.; Battaglia, G.; Giove, F.; Bravin, A.; Uccelli, A.; Venturi, C.; et al. Quantitative 3D investigation of Neuronal network in mouse spinal cord model. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ciasca, G.; Campi, G.; Battisti, A.; Rea, G.; Rodio, M.; Papi, M.; Pernot, P.; Tenenbaum, A.; Bianconi, A. Continuous thermal collapse of the intrinsically disordered protein tau is driven by its entropic flexible domain. Langmuir 2012, 28, 13405–13410. [Google Scholar] [CrossRef]
- Ciasca, G.; Papi, M.; Chiarpotto, M.; Rodio, M.; Campi, G.; Rossi, C.; De Sole, P.; Bianconi, A. Transient state kinetic investigation of ferritin iron release. Appl. Phys. Lett. 2012, 100, 073703. [Google Scholar] [CrossRef]
- Campi, G.; Cristofaro, F.; Pani, G.; Fratini, M.; Pascucci, B.; Corsetto, P.A.; Weinhausen, B.; Cedola, A.; Rizzo, A.M.; Visai, L.; et al. Heterogeneous and self-organizing mineralization of bone matrix promoted by hydroxyapatite nanoparticles. Nanoscale 2017, 9, 17274–17283. [Google Scholar] [CrossRef] [Green Version]
- Mannhart, J.; Schlom, D.G. Oxide interfaces an opportunity for electronics. Science 2010, 327, 1607–1611. [Google Scholar] [CrossRef]
- Hwang, H.Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater. 2012, 11, 103–113. [Google Scholar] [CrossRef]
- Bert, J.A.; Kalisky, B.; Bell, C.; Kim, M.; Hikita, Y.; Hwang, H.Y.; Moler, K.A. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys. 2011, 7, 767–771. [Google Scholar] [CrossRef]
- Drees, Y.; Li, Z.W.; Ricci, A.; Rotter, M.; Schmidt, W.; Lamago, D.; Sobolev, O.; Rutt, U.; Gutowski, O.; Sprung, M.; et al. Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides. Nat. Commun. 2014, 5, 5731. [Google Scholar] [CrossRef]
- Campi, G.; Poccia, N.; Joseph, B.; Bianconi, A.; Mishra, S.; Lee, J.; Roy, S.; Nugroho, A.A.; Buchholz, M.; Braden, M.; et al. Direct visualization of spatial inhomogeneity of spin stripes order in La1.72Sr0.28NiO4. Condens. Matter. 2019, 4, 77. [Google Scholar] [CrossRef] [Green Version]
- Poccia, N.; Bianconi, A.; Campi, G.; Fratini, M.; Ricci, A. Size evolution of the oxygen interstitial nanowires in La2CuO4+y by thermal treatments and X-ray continuous illumination. Supercond. Sci. Technol. 2012, 25, 124004. [Google Scholar] [CrossRef]
- Poccia, N.; Fratini, M.; Ricci, A.; Campi, G.; Barba, L.; Vittorini-Orgeas, A.; Bianconi, G.; Aeppli, G.; Bianconi, A. Evolution and control of oxygen order in a cuprate superconductor. Nat. Mater. 2011, 10, 733–736. [Google Scholar] [CrossRef]
- Sidorenko, A.S. Fractal geometry in superconductivity. Mold. J. Phys. Sci. 2002, 1, 102–105. [Google Scholar]
- Gabovich, A.M.; Moiseev, D.P.; Panaitov, G.I.; Sidorenko, A.S.; Postinov, V.M. Relaxation of the magnetization in superconducting oxides. Mod. Phys. Lett. B. 1989, 3, 1503–1509. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campi, G.; Bianconi, A. Functional Nanoscale Phase Separation and Intertwined Order in Quantum Complex Materials. Condens. Matter 2021, 6, 40. https://doi.org/10.3390/condmat6040040
Campi G, Bianconi A. Functional Nanoscale Phase Separation and Intertwined Order in Quantum Complex Materials. Condensed Matter. 2021; 6(4):40. https://doi.org/10.3390/condmat6040040
Chicago/Turabian StyleCampi, Gaetano, and Antonio Bianconi. 2021. "Functional Nanoscale Phase Separation and Intertwined Order in Quantum Complex Materials" Condensed Matter 6, no. 4: 40. https://doi.org/10.3390/condmat6040040
APA StyleCampi, G., & Bianconi, A. (2021). Functional Nanoscale Phase Separation and Intertwined Order in Quantum Complex Materials. Condensed Matter, 6(4), 40. https://doi.org/10.3390/condmat6040040