Features of Light-Matter Coupling in Non-Ideal Lattice of Coupled Microcavities Containing Quantum Dots
Abstract
:1. Introduction
2. Theoretical Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Söllner, I.; Mahmoodian, S.; Hansen, S.L.; Midolo, L.; Javadi, A.; Kiršanskė, G.; Pregnolato, T.; El-Ella, H.; Lee, E.H.; Song, J.D.; et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 2015, 10, 775. [Google Scholar] [CrossRef] [PubMed]
- Lodahl, P. Quantum-dot based photonic quantum networks. Quantum Sci. Technol. 2018, 3, 013001. [Google Scholar] [CrossRef]
- Sedov, E.S.; Alodjants, A.P.; Arakelian, S.M.; Chuang, Y.-L.; Lin, Y.Y.; Yang, W.-X.; Lee, R.-K. Tunneling-assisted optical information storage with lattice polariton solitons in cavity-QED arrays. Phys. Rev. A 2014, 89, 033828. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Johnso, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals. In Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Kaliteevskii, M.A. Coupled vertical microcavities. Tech. Phys. Lett. 1997, 23, 120–121. [Google Scholar] [CrossRef]
- Vahala, K.J. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Tighineanu, P.; Sørensen, A.S.; Stobbe, S.; Lodahl, P. The Mesoscopic Nature of Quantum Dots in Photon Emission. In Quantum Dots for Quantum Information Technologies; Michler, P., Ed.; Nano-Optics and Nanophotonics; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Alodjants, A.P.; Barinov, I.O.; Arakelian, S.M. Strongly localized polaritons in an array of trapped two-level atoms interacting with a light field. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 095502. [Google Scholar] [CrossRef]
- Rumyantsev, V.V.; Fedorov, S.A.; Gumennyk, K.V.; Gurov, D.A.; Kavokin, A.V. Effects of elastic strain and structural defects on slow light modes in a one-dimensional array of microcavities. Superlattices Microstruct. 2018, 120, 642–649. [Google Scholar] [CrossRef]
- Rumyantsev, V.V.; Fedorov, S.A.; Gumennyk, K.V.; Sychanova, M.V.; Kavokin, A.V. Exciton-like electromagnetic excitations in non-ideal microcavity supercrystals. Nat. Sci. Rep. 2014, 4, 6945. [Google Scholar] [CrossRef] [PubMed]
- Rumyantsev, V.V.; Fedorov, S.A.; Gumennyk, K.V.; Sychanova, M.V.; Kavokin, A.V. Polaritons in a nonideal periodic array of microcavities. Superlattices Microstruct. 2016, 89, 409–418. [Google Scholar] [CrossRef]
- Dmitriev, S.V.; Baimova, Y.A. Effect of elastic deformation on phonon spectrum and characteristics of gap discrete breathers in crystal with NaCl-type structure. Tech. Phys. Lett. 2011, 37, 451–454. [Google Scholar] [CrossRef]
- Rumyantsev, V.V.; Fedorov, S.A.; Gumennyk, K.V.; Paladyan, Y.A. Electromagnetic excitations in a non-ideal two-sublattice microcavity chain. Phys. B Condens. Matter. 2019, 571, 296–300. [Google Scholar] [CrossRef]
- Agranovich, V.M. Theory of Excitons; Nauka: Moscow, Russia, 1968. [Google Scholar]
- Los’, V.F. Projection operator method in the theory of disordered systems. I. Spectra of quasiparticles. Theor. Math. Phys. 1987, 73, 85–102. [Google Scholar] [CrossRef]
- Ziman, J.M. Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Rumyantsev, V.V.; Fedorov, S.A. Novel Materials Based on Nonideal Supercrystal Formed by a Tunnel Connected Array of Microcavities Containing Ensembles of Quantum Dots. J. Mater. Polym. Sci. 2022, 2, 1–8. [Google Scholar]
- Rumyantsev, V.V.; Fedorov, S.A.; Gumennyk, K.V.; Rybalka, A.; Zavorotnev, Y.D. Polaritonic crystal formed of a tunnel-coupled microcavity array and an ensemble of quantum dots. J. Phys. Conf. Series 2021, 2052, 012036. [Google Scholar] [CrossRef]
- Yao, P.; Pathak, P.K.; Illes, E.; Hughes, S.; Münch, S.; Reitzenstein, S.; Franeck, P.; Löffler, A.; Heindel, T.; Höfling, S.; et al. Nonlinear photoluminescence spectra from a quantum-dot–cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED. Phys. Rev. B 2010, 81, 033309. [Google Scholar] [CrossRef]
- Diguna, L.J.; Darma, Y.; Birowosuto, M.D. The coupling of single-photon exciton–biexciton quantum dot and cavity. J. Nonlinear Opt. Phys. Mater. 2017, 26, 1750029. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumyantsev, V.V.; Fedorov, S.A.; Gumennyk, K.V.; Rybalka, A.Y. Features of Light-Matter Coupling in Non-Ideal Lattice of Coupled Microcavities Containing Quantum Dots. Condens. Matter 2023, 8, 41. https://doi.org/10.3390/condmat8020041
Rumyantsev VV, Fedorov SA, Gumennyk KV, Rybalka AY. Features of Light-Matter Coupling in Non-Ideal Lattice of Coupled Microcavities Containing Quantum Dots. Condensed Matter. 2023; 8(2):41. https://doi.org/10.3390/condmat8020041
Chicago/Turabian StyleRumyantsev, Vladimir V., Stanislav A. Fedorov, Konstantin V. Gumennyk, and Alexey Ye. Rybalka. 2023. "Features of Light-Matter Coupling in Non-Ideal Lattice of Coupled Microcavities Containing Quantum Dots" Condensed Matter 8, no. 2: 41. https://doi.org/10.3390/condmat8020041
APA StyleRumyantsev, V. V., Fedorov, S. A., Gumennyk, K. V., & Rybalka, A. Y. (2023). Features of Light-Matter Coupling in Non-Ideal Lattice of Coupled Microcavities Containing Quantum Dots. Condensed Matter, 8(2), 41. https://doi.org/10.3390/condmat8020041