The Multi-Detectors System of the PANDORA Facility: Focus on the Full-Field Pin-Hole CCD System for X-ray Imaging and Spectroscopy
Abstract
:1. Introduction
2. PANDORA Experimental Setup
- Two spectrometers with different spectral resolutions for the plasma-emitted visible light characterization: the first is the spectrograph SARG (Spettrografo Alta Risoluzione Galileo) with a really high spectral resolution of in the spectral range 370–900 nm [12]. Such a value allows one to identify spectral lines separated up to 0.003 nm at = 500 nm. By this resolution, SARG is in principle able to identify spectral line shifts (due, for example, to isotopic line shift or Doppler effects) in the order of 0.004 nm, where typical isot < 0.01 nm and velocity fields are down to 3 km/s, corresponding to typical ion temperatures in the order of a few eV. Also, this resolution provides reliable results in line with broadening estimates due to collisional (thermal) or Stark effects, down to 0.005 nm, or direct magnetic field estimates due to Zeeman splitting in the order of = 0.2 T [13]. The second consists of a Horiba iHR550 spectrometer, coupled to a Synapse Horiba CCD camera, with a nominal resolution around 0.035 nm (R = 13,900 at = 486 nm) in the spectral range 300–750 nm [10]. This spectrometer was already commissioned and can be considered as a complementary tool to the SARG spectrograph.
- One Incoherent Thomson Scattering (ITS) system used for the direct and non-invasive measurement of electron properties [14]. It is made of (i) a 532 nm Quantel with a 10 Hz Nd:YAG laser of 430 mJ nominal pulse energy, (ii) an Acton Standard Series SP-2756 imaging spectrometer, equipped with three gratings in order to access different spectral ranges (and hence different ranges of electron energies), (iii) a PI-MAX 4: 1024f iCCD camera for photon detection, and (iv) a fiber bundle for light collection from the plasma volume and transmission to the camera detector (Princeton Instruments, Acton, MA, USA). The detection of scattered light occurs at an angle of 90° to the incident laser beam. The area under the spectrum can, with proper calibration, be directly related to the absolute electron density in the volume under investigation. The spectral broadening provides information on the electron energies (the electron energy distribution function), whereas the spectral shift away from the laser wavelength provides information on the global electron velocity. Using the current gratings with dispersions of 2400 lines/mm, 600 lines/mm, and 300 lines/mm, the accessible electron energies (Gaussian spectral widths ) range from 3 to 380 eV. Another grating with the dispersion of 150 lines/mm will allow one to extend the measurement of electron energies in the range of 1500 eV.
- Two Silicon Drift Detectors (SDDs) used to characterize the warm (0.5–30 keV) electrons in the plasma, measuring electron density and temperature [15] by comparing the experimental spectra with the theoretical ones [16]. SDDs have an energy resolution of 160 eV at 5.9 keV, a maximum quantum efficiency in the 2–30 keV energetic range (with a Be window with a thickness of 1 mm), and can operate at a high counting rate. An SDD can also operate in high vacuum conditions as it has a polymeric window which allows for investigations in the lower energy domain (starting from 0.4 keV).
- Twelve High-purity Germanium (HPGe) detectors [7,17] with an average resolution (Full Width at Half Maximum, FWHM) lower than 2.5 keV at 1.3 MeV, placed radially around the PANDORA plasma chamber. The HPGe detectors have a length of 240 mm and a radius of 43.4 mm and are composed of a coaxial hyper-pure crystal with an ∼82 mm length and ∼38 mm radius. The cap aluminum has a thickness of 1 mm. The array of HPGe detectors will be used for the tagging of daughter nuclei. Moreover, the HPGe detector allows one to characterize the hot electrons population (30–400 keV) in the plasma [15,16].
- Two X-ray pin-hole CCD systems for 2D/3D space-resolved spectroscopy. The X-ray CCD camera (SOPHIA-XO by Princeton Instruments) is made by a sensor of 27.6 × 27.6 mm and 2048 × 2048 pixels, with an optimal quantum efficiency in the range of 100 eV–30 keV and coupled with a lead pin-hole focusing system and an external X-Ray shutter. A detailed description of the X-ray pin-hole camera system will be presented in Section 3.1. The X-ray pin-hole camera technique allows one to characterize the plasma morphology and to perform space-resolved spectroscopy (thus evidencing the local displacement of electrons at different energies, as well as of plasma ions highlighted by fluorescence lines emission) [18,19] versus the main tuning parameters such as the pumping wave frequency and the strength of the confining magnetic field. It is very useful to investigate the dynamics of plasma versus plasma losses, and, consequently, to study how the operative parameters (the RF pumping frequency and power, magnetic field, and also phenomena such as plasma turbulence) affect the plasma confinement, stability, and turbulence onset.
- A two-pins RF probe [20] connected to a Spectrum Analyzer (SA) in order to characterize the EM emission inside the plasma chamber performing frequency-resolved spectra. The two-pins RF probe is flexible with an outer diameter of 4 mm, a pin length of 3.5 mm, and a pin distance of 2 mm. The Spectrum Analyzer operates in the range of 13–15 GHz with a resolution bandwidth of 3 MHz and a sweep time of 400 ms. This setup is able to detect both the main pumping RF frequency and self-plasma emitted radiations inside the plasma chamber, consisting of sub-harmonics. Since the RF plasma self-emission sub-harmonics can provide signatures of plasma kinetic instabilities (characterized by fast RF and X-ray bursts [21,22]), this tool can be used to detect and characterize turbulent plasma regimes in order to: (a) find a way to damp them [23,24,25] and, consequently, improve the ECRIS (ECR ion source) stability performances [26,27], and (b) reproduce and study these interesting phenomena of interest for astrophysics (such as the so-called Cyclotron Maser Instability, which is a typical kinetic turbulence occurring in astrophysical objects [28]) in laboratory plasmas. The two-pins RF probe connected with the scope and HPGe detector allows one to investigate plasma instability regimes. The radiofrequency and X-ray bursts produced by the unstable plasma can be characterized in a time-resolved way.
- A W-band superheterodyne polarimeter for the measurement of the total line-integrated electron density based on the measurement of the Faraday rotation. The new design involves the use of a THz polarimetry system based on the superheterodyne approach and on the measurement of the Lissajous figures [29]. The system consists of a signal generator for the probing wave and two high-directivity horn antennas, of which the rotatable receiving antenna is connected with an orthomode transducer (OMT) (a waveguide component to combine or separate two orthogonally polarized microwave signal paths). The setup operates following the superheterodyne scheme, which allows one to downshift the detected frequency (1 GHz) compared to the probing one (100 GHz) to be detected in a scope, or through a diode by a different approach [30].
3. X-ray Pin-Hole Camera Measurements on the Flexible Plasma Trap Setup
X-ray Pin-Hole Camera
- Image Acquisition:Recorded thousands of images with very short exposure times (tens to hundreds of milliseconds). Purpose: minimize the chance of multiple photons hitting the same or neighboring pixels in each image frame.
- Grouping/Clustering Process (Gr-p):Necessary even with small exposure times due to occasional pixel clusters’ overlap. Purpose: ensure direct proportionality between Analog-to-Digital Units (ADU) and single-photon energy. Objective: Assign the charge of a pixel cluster to a single photon-detection event. Overlapped clusters are discarded.
- Algorithm Input Parameters:S parameter: Maximum cluster size (in pixels) considered as a single-photon event. Larger clusters are filtered out. L parameter: it is a threshold to remove noise.
- Scanning and Processing:Code scans each image pixel-by-pixel and processes each group of neighboring pixels to determine if they represent a single- or multiple-hit event. During scanning, assigns a variable N to each coordinate (X, Y) in the CCD matrix. N represents the number of photons with energy E detected at position (X, Y). N is incremented if a photon of energy E is detected in the same position in another frame K.
- Result:After scanning all frames, a dataset made of a multi-dimensional array (X, Y, E, Ntot) is obtained. Ntot is the total number of photons with energy E at position (X, Y). Plotting Ntot vs. E over the whole image provides the full X-ray spectrum for the full-frame CCD.
- Energy-Filtered Imaging:Selects pixels in an image with energy corresponding to a specific ΔE. Selecting energy intervals corresponding to fluorescence peaks provides images of the distribution of a single element’s fluorescence. For example, when applying energy filters in the Ar-K and K lines range, the spatial distribution of Ar-plasma can be visualized. Similar filters for Ti or Ta lines visualize X-radiation from chamber walls.
4. X-Ray Maps for PANDORA Plasma Trap
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mascali, D.; Palmerini, S.; Torrisi, G.; De Angelis, G.; Santonocito, D.; Kratz, K.-L. (Eds.) Nuclear Physics and Astrophysics in Plasma Traps; Frontiers Media SA: Lausanne, Switzerland, 2023. [Google Scholar]
- Mascali, D.; Santonocito, D.; Amaducci, S.; Andò, L.; Antonuccio, V.; Biri, S.; Bonanno, A.; Bonanno, V.P.; Briefi, S.; Busso, M.; et al. A Novel Approach to β-decay: PANDORA, a New Experimental Setup for Future In-Plasma Measurements. Universe 2022, 8, 80. [Google Scholar] [CrossRef]
- Takahashi, K.; Boyd, R.N.; Mathews, G.J.; Yokoi, K. Bound-state beta decay of highly ionized atoms. Phys. Rev. C 1987, 36, 1522. [Google Scholar] [CrossRef] [PubMed]
- Litvinov, Y.; Bosch, F.; Geissel, H.; Kurcewicz, J.; Patyk, K.; Winckler, N.; Batist, L.; Beckert, K.; Boutin, D.; Brandau, C.; et al. Measurement of the β+ and Orbital Electron-Capture Decay Rates in Fully Ionized, Hydrogenlike, and Heliumlike 140Pr Ions. Phys. Rev. Lett. 2007, 99, 262501. [Google Scholar] [CrossRef]
- Bosch, F.; Faestermann, T.; Friese, J.; Heine, F.; Kienle, P.; Wefers, E.; Zeitelhack, K.; Beckert, K.; Franzke, B.; Klepper, O.; et al. Observation of Bound-State β− Decay of Fully Ionized 187Re:187Re-187Os Cosmochronometry. Phys. Rev. Lett. 1996, 77, 5190. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Bosch, F.; Beckert, K.; Eickhoff, H.; Folger, H.; Franzke, B.; Gruber, A.; Kienle, P.; Klepper, O.; Koenig, W.; et al. First observation of bound-state β− decay. Phys. Rev. Lett. 1992, 69, 2164. [Google Scholar] [CrossRef] [PubMed]
- Naselli, E.; Santonocito, D.; Amaducci, S.; Celona, L.; Galatà, A.; Goasduff, A.; Mauro, G.S.; Mazzaglia, M.; Mishra, B.; Napoli, D.R.; et al. Design study of a HPGe detector array for β-decay investigation in laboratory ECR plasmas. Front. Phys. 2022, 10, 935728. [Google Scholar] [CrossRef]
- Naselli, E.; Mascali, D.; Biri, S.; Caliri, C.; Castro, G.; Celona, L.; Cosentino, L.G.; Galatà, A.; Gammino, S.; Giarrusso, M.; et al. Multidiagnostics setups for magnetoplasmas devoted to astrophysics and nuclear astrophysics research in compact traps. J. Instrum. 2019, 14, 10008. [Google Scholar] [CrossRef]
- Mascali, D.; Naselli, E.; Torrisi, G. Microwave techniques for electron cyclotron resonance plasma diagnostics. Rev. Sci. Instrum. 2022, 93, 033302. [Google Scholar] [CrossRef] [PubMed]
- Pidatella, A.; Mascali, D.; Bezmalinovich, M.; Emma, G.; Mazzaglia, M.; Mishra, B.; Finocchiaro, G.; Galatà, A.; Marletta, S.; Mauro, G.S.; et al. Experimental and numerical investigation of magneto-plasma optical properties toward measurements of opacity relevant for compact binary objects. Front. Astron. Space Sci. 2022, 9, 931744. [Google Scholar] [CrossRef]
- Mauro, G.; Celona, L.; Torrisi, G.; Pidatella, A.; Naselli, E.; Russo, F.; Mazzaglia, M.; Galatà, A.; Maimone, F.; Lang, R.; et al. An Innovative Superconducting Magnetic Trap for Probing β-decay in Plasmas. Front. Phys. 2022, 10, 931953. [Google Scholar] [CrossRef]
- Gratton, R.G.; Bonanno, G.; Bruno, P.; CalÍ, A.; Claudi, R.U.; Cosentino, R.; Desidera, S.; Diego, F.; Farisato, G.; Martorana, G.; et al. SARG: The High Resolution Spectrograph of TNG. Exp. Astron. 2001, 12, 107–143. [Google Scholar] [CrossRef]
- Giarrusso, M.; Avila, G.; Del Zanna, G.; Landi, E.; Leone, F.; Munari, M.; Castro, G.; Celona, L.; Gammino, S.; Mascali, D.; et al. High resolution spectropolarimetry: From Astrophysics to ECR plasmas. J. Instrum. 2018, 13, C11020. [Google Scholar] [CrossRef]
- Tsikata, S.; Maunoury, L.; Ducret, J.-E. Incoherent Thomson scattering: Future implementation and measurement capabilities on the PANDORA experiment. Front. Astron. Space Sci. 2022, 9, 936532. [Google Scholar] [CrossRef]
- Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F.P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; et al. Electromagnetic diagnostics of ECR-Ion Sources plasmas: Optical/X-ray imaging and spectroscopy. J. Instrum. 2017, 12, C12047. [Google Scholar] [CrossRef]
- Gumberidze, A.; Trassinelli, M.; Adrouche, N.; Szabo, C.I.; Indelicato, P.; Haranger, F.; Isac, J.-M.I.; Lamour, E.; Le Bigot, E.-O.; Mérot, J.; et al. Electronic temperatures, densities, and plasma X-ray emission of a 14.5 GHz electron-cyclotron resonance ion source. Rev. Sci. Instrum. 2010, 81, 033303. [Google Scholar] [CrossRef] [PubMed]
- Goasduff, A.; Santonocito, D.; Menegazzo, R.; Capra, S.; Pullia, A.; Raniero, W.; Rosso, D.; Toniolo, N.; Zago, L.; Naselli, E.; et al. A high resolution γ-ray array for the pandora plasma trap. Front. Phys. 2022, 10, 936081. [Google Scholar] [CrossRef]
- Naselli, E.; Rácz, R.; Biri, S.; Mazzaglia, M.; Galat`a, A.; Celona, L.; Gammino, S.; Torrisi, G.; Mascali, D. Quantitative analysis of an ECR Ar plasma structure by X-ray spectroscopy at high spatial resolution. J. Instrum. 2022, 17, C01009. [Google Scholar] [CrossRef]
- Biri, S.; Rácz, R.; Perduk, Z.; Pálinkás, J.; Naselli, E.; Mazzaglia, M.; Torrisi, G.; Castro, G.; Celona, L.; Gammino, S.; et al. Innovative experimental setup for X-ray imaging to study energetic magnetized plasmas. J. Instrum. 2021, 16, P03003. [Google Scholar] [CrossRef]
- Torrisi, G.; Mascali, D.; Sorbello, G.; Castro, G.; Celona, L.; Gammino, S. Numerical and Experimental Characterization of RF Waves Propagation in Ion Sources Magnetoplasmas. IEEE Trans. Antennas Propag. 2019, 67, 2884807. [Google Scholar] [CrossRef]
- Shalashov, A.G.; Viktorov, M.E.; Mansfeld, D.A.; Golubev, S.V. Kinetic instabilities in a mirror-confined plasma sustained by high-power microwave radiation. Phys. Plasmas 2017, 24, 032111. [Google Scholar] [CrossRef]
- Izotov, I.; Tarvainen, O.; Mansfeld, D.; Skalyga, V.; Koivisto, H.; Kalvas, T.; Komppula, J.; Kronholm, R.; Laulainen, J. Microwave emission related to cyclotron instabilities in a minimum-B electron cyclotron resonance ion source plasma. Plasma Sources Sci. Technol. 2015, 24, 045017. [Google Scholar] [CrossRef]
- Naselli, E.; Mascali, D.; Mazzaglia, M.; Biri, S.; Rácz, R.; Pálinkás, J.; Perduk, Z.; Galatá, A.; Castro, G.; Celona, L.; et al. Impact of two-close-frequency heating on ECR ion source plasma radio emission and stability. Plasma Sources Sci. Technol. 2019, 28, 085021. [Google Scholar] [CrossRef]
- Rácz, R.; Biri, S.; Perduk, Z.; Pálinkás, J.; Mascali, D.; Mazzaglia, M.; Naselli, E.; Torrisi, G.; Castro, G.; Celona, L.; et al. Effect of the two-close-frequency heating to the extracted ion beam and to the X-ray flux emitted by the ECR plasma. J. Instrum. 2018, 13, C12012. [Google Scholar] [CrossRef]
- Mascali, D.; Naselli, E.; Rácz, R.; Biri, S.; Celona, L.; Galatà, A.; Gammino, S.; Mazzaglia, M.; Torrisi, G. Experimental study of single vs. two-close-frequency heating impact on confinement and losses dynamics in ECR Ion Sources plasmas by means of X-ray spectroscopy and imaging. Plasma Phys. Control. Fusion 2022, 64, 035020. [Google Scholar] [CrossRef]
- Gammino, S.; Mascali, D.; Celona, L.; Maimone, F.; Ciavola, G. Considerations on the role of the magnetic field gradient in ECR ion sources and build-up of hot electron component. Plasma Sources Sci. Technol. 2009, 18, 045016. [Google Scholar] [CrossRef]
- Tarvainen, O.; Izotov, I.; Mansfeld, D.; Skalyga, V.; Golubev, S.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; et al. Beam current oscillations driven by cyclotron instabilities in a minimum-B electron cyclotron resonance ion source plasma. Plasma Sources Sci. Technol. 2014, 23, 025020. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Feng, H.Q.; Wu, D.J.; Chen, L.; Tang, J.F.; Liu, Q. Cyclotron maser emission from power-law electrons with strong pitch-angle anisotropy. Astrophys. J. 2016, 822, 58. [Google Scholar] [CrossRef]
- Torrisi, G.; Naselli, E.; Mascali, D.; Di Donato, L.; Sorbello, G. Mm-wave polarimeter and profilometry design study for retrieving plasma density in the PANDORA experiment. Front. Astron. Space Sci. 2022, 9, 949920. [Google Scholar] [CrossRef]
- Cano, J.L.; Villa, E.; Teran, V.; Gonzalez, E.; De la Fuente, L.; Artal, E.; Mediavilla, A. A W-band polarimeter for radio astronomy applications: Design and simulation. In Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA), Torino, Italy, 7–11 September 2015; pp. 452–455. [Google Scholar]
- Fantz, U.; Tarvainen, O. Preface for the special topic on “ion source diagnostics”. Rev. Sci. Instrum. 2022, 93, 101601. [Google Scholar] [CrossRef] [PubMed]
- Thuillier, T.; Benitez, J.; Biri, S.; Rácz, R. X-ray diagnostics of ECR ion sources—Techniques, results, and challenges. Rev. Sci. Instrum. 2022, 93, 021102. [Google Scholar] [CrossRef]
- Nebem, D.; Fogleman, J.; Isherwood, B.; Leitner, D.; Machicoane, G.; Renteria, S.; Stetson, J.; Tobos, L. X-ray investigation on the Superconducting Source for Ions (SuSI). JINST 2019, 14, C02008. [Google Scholar] [CrossRef]
- Li, J.B.; Li, L.X.; Li, L.B.; Guo, J.W.; Hitz, D.; Lu, W.; Feng, J.C.; Zhang, W.H.; Zhang, X.Z.; Zhao, H.Y.; et al. Influence of electron cyclotron resonance ion source parameters on high energy electrons. Rev. Sci. Instrum. 2020, 91, 083302. [Google Scholar] [CrossRef] [PubMed]
- Barué, C.; Lamoureux, M.; Briand, P.; Girard, A.; Melin, G. Investigation of hot electrons in electron-cyclotron-resonance ion sources. J. Appl. Phys. 1994, 76, 2662. [Google Scholar] [CrossRef]
- Ropponen, T.; Tarvainen, O.; Izotov, I.; Noland, J.; Toivanen, V.; Machicoane, G.; Leitner, D.; Koivisto, H.; Kalvas, T.; Peura, P.; et al. Studies of plasma breakdown and electron heating on a 14 GHz ECR ion source through measurement of plasma bremsstrahlung. Plasma Sources Sci. Technol. 2011, 20, 055007. [Google Scholar] [CrossRef]
- Isherwood, B.; Machicoane, G. Measurement of the energy distribution of electrons escaping confinement from an electron cyclotron resonance ion source. Rev. Sci. Instrum. 2020, 91, 025104. [Google Scholar] [CrossRef]
- Benitez, J.; Lyneis, C.; Phair, L.; Todd, D.; Xie, D. Dependence of the bremsstrahlung spectral temperature in minimum-B electron cyclotron resonance ion sources. IEEE Trans. Plasma Sci. 2017, 45, 1746. [Google Scholar] [CrossRef]
- Rácz, R.; Biri, S.; Pxaxlinkxaxs, J.; Mascali, D.; Castro, G.; Caliri, C.; Romano, F.P.; Gammino, S. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics. Rev. Sci. Instrum. 2016, 87, 02A741. [Google Scholar] [CrossRef] [PubMed]
- Biri, S.; Valek, A.; Suta, T.; Takács, E.; Szabó, C.; Hudson, L.T.; Radics, B.; Imrek, J.; Juhász, B.; Pálinkás, J. Imaging of ECR plasmas with a pinhole X-ray camera. Rev. Sci. Instrum. 2004, 75, 1420. [Google Scholar] [CrossRef]
- Anton, M.; Weisen, H.; Dutch, M.J.; Von Der Linden, W.; Buhlmann, F.; Chavan, R.; Marletaz, B.; Marmillod, P.; Paris, P. X-ray tomography on the TCV tokamak. Plasma Phys. Control. Fusion 1996, 1849, 38. [Google Scholar] [CrossRef]
- Petrasso, R.; Gerassimenko, M.; Seguin, F.H.; Ting, J.; Krogstad, R.; Gauthier, P.; Hamilton, W.; Ramsey, A.T.; Burstein, P.; Granetz, R. Soft x-ray imaging instrument for the Alcator A tokamak. Rev. Sci. Instrum. 1980, 51, 585–590. [Google Scholar] [CrossRef]
- Pacella, D.; Leigheb, M.; Bellazzini, R.; Brez, A.; Finkenthal, M.; Stutman, D.; Kaita, R.; Sabbagh, S.A. Soft X-ray tangential imaging of the NSTX core plasma by means of an MPGD pinhole camera. Plasma Phys. Control. Fusion 2004, 46, 1075. [Google Scholar] [CrossRef]
- Jang, S.; Lee, S.G.; Lim, C.H.; Kim, H.O.; Kim, S.Y.; Lee, S.H.; Hong, J.; Jang, J.; Jeon, T.; Moon, M.K.M.; et al. Preliminary result of an advanced tangential X-ray pinhole camera system with a duplex MWPC on KSTAR plasma. Curr. Appl. Phys. 2013, 13, 5. [Google Scholar] [CrossRef]
- Song, I.; Jang, J.; Jeon, T.; Pacella, D.; Claps, G.; Murtas, F.; Lee, S.H.; Choe, W. Tomographic 2-D X-ray imaging of toroidal fusion plasma using a tangential pinhole camera with gas electron multiplier detector. Curr. Appl. Phys. 2016, 16, 10. [Google Scholar] [CrossRef]
- Pablant, N.A.; Delgado-Aparicio, L.; Bitter, M.; Brandstetter, S.; Eikenberry, E.; Ellis, R.; Hill, K.W.; Hofer, P.; Schneebeli, M. Novel energy resolving X-ray pinhole camera on Alcator C-Mod. Rev. Sci. Instrum. 2012, 83, 10E526. [Google Scholar] [CrossRef] [PubMed]
- Takács, E.; Radics, B.; Szabó, C.I.; Biri, S.; Hudson, L.T.; Imrek, J.; Juhász, B.; Suta, T.; Valek, A.; Pálinkás, J. Spatially resolved x-ray spectroscopy of an ECR plasma–indication for evaporative cooling. Nucl. Instrum. Methods Phys. Res. 2005, 235, 120–125. [Google Scholar] [CrossRef]
- McPherson, L.A.; Ampleford, D.J.; Coverdale, C.A.; Argo, J.W.; Owen, A.C.; Jaramillo, D.M. High energy X-ray pinhole imaging at the Z facility. Rev. Sci. Instrum. 2016, 87, 063502. [Google Scholar] [CrossRef] [PubMed]
- Naselli, E.; Ràcz, R.; Biri, S.; Mazzaglia, M.; Celona, L.; Gammino, S.; Torrisi, G.; Perduk, Z.; Galatxax, A.; Mascali, D. Innovative analytical method for X-ray imaging and space-resolved spectroscopy of ECR plasmas. Condens. Matter 2022, 7, 5. [Google Scholar] [CrossRef]
- Mishra, B.; Pidatella, A.; Biri, S.; Galatà, A.; Naselli, E.; Rácz, R.; Torrisi, G.; Mascali, D. A novel numerical tool to study electron energy distribution functions of spatially anisotropic and non-homogeneous ECR plasmas. Phys. Plasmas 2021, 28, 102509. [Google Scholar] [CrossRef]
- Douysset, G.; Khodja, H.; Girard, A.; Briand, J.P. Highly charged ion densities and ion confinement properties in an electron-cyclotron-resonance ion source. Phys. Rev. E 2000, 61, 3. [Google Scholar] [CrossRef]
- Santos, J.P.; Costa, A.M.; Marques, J.P.; Martins, M.C.; Indelicato, P.; Parente, F. X-ray-spectroscopy analysis of electron-cyclotron-resonance ion-source plasmas. Phys. Rev. A 2010, 82, 062516. [Google Scholar] [CrossRef]
- Sakildien, M.; Kronholm, R.; Tarvainen, O.; Kalvas, T.; Jones, P.; Thomae, R.; Koivisto, H. Inner shell ionization of argon in ECRIS plasma. Nucl. Inst. Methods Phys. Res. A 2018, 900, 40–52. [Google Scholar] [CrossRef]
- Mishra, B.; Pidatella, A.; Galatà, A.; Biri, S.; Rácz, R.; Naselli, E.; Mazzaglia, M.; Torrisi, G.; Mascali, D. Probing Electron Properties in ECR Plasmas Using X-ray Bremsstrahlung and Fluorescence Emission. Condens. Matter 2021, 6, 41. [Google Scholar] [CrossRef]
- Galatà, A.; Mascali, D.; Mishra, B.; Naselli, E.; Pidatella, A.; Torrisi, G. On the Numerical Determination of the Density and Energy Spatial Distributions relevant for in-Plasma β-Decay Emission Estimation. Front. Phys. 2022, 10, 947194. [Google Scholar]
- Lotz, W. Electron-impact ionization cross-sections for atoms up to Z=108. Z. Phys. 1970, 232, 101–107. [Google Scholar] [CrossRef]
- Kramers, H. XCIII. On the theory of X-ray absorption and of the continuous X-ray spectrum. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1923, 46, 836–871. [Google Scholar] [CrossRef]
Diagnostic Tool | Sensitive Range | Measurement | Resolution-Measure Error |
---|---|---|---|
2 visible light camera | 1–12 eV | Optical Emission Spectroscopy: cold electrons’ temperature and density | = 0.035 nm R = 13,900 |
1 Inelastic Thomson Scattering | 0.5–500 eV | EEDF, absolute electron density | Condition-dependent (a function of spectral width, dependent on temperature, and area, dependent on density |
2 SDD | 1–30 keV | Volumetric soft X-ray spectroscopy: warm electrons’ temperature and density | Resolution∼120 eV |
12 HPGe detector | 30–2000 keV | Volumetric hard X-ray spectroscopy: hot electrons’ temperature and density | * FWHM < 2.4 keV |
2 X-ray pin-hole camera | 2–15 keV | 2D space-resolved spectroscopy and soft X-ray imaging | Energy resolution∼0.3 k Spatial resolution∼0.5 mm |
2 Multi-pins RF probe | 10–26.5 GHz | Local EM field intensity | 0.073–0.138 dB |
Multi-pins RF probe + Spectrum Analyzer (SA) | 10–26.5 GHz (probe range) | Frequency-domain RF wave | SA resolution bandwidth: RBW = 3 MHz |
Multi-pins RF probe + Scope + HPGe detector | 10–26.5 GHz (probe range) | Time-resolved RF burst and X-ray time-resolved spectroscopy | 80 Gs/s (scope) Time scales below ns |
Multi-pins RF probe + X-ray pin-hole camera | 10–26.5 GHz (probe range) | Time-resolved RF burst and X-ray spatial and time-resolved spectroscopy | 80 Gs/s (scope) Time scales below ns |
Microwave Imaging Profilometry (MIP) | 60–100 GHz | Electron density profile | 1–13% |
1 W-band superheterodyne polarimeter | W-band 90–100 GHz | Plasma-induced Faraday rotation: line-integrated electron density |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascali, D.; Naselli, E.; Biri, S.; Finocchiaro, G.; Galatà, A.; Mauro, G.S.; Mazzaglia, M.; Mishra, B.; Passarello, S.; Pidatella, A.; et al. The Multi-Detectors System of the PANDORA Facility: Focus on the Full-Field Pin-Hole CCD System for X-ray Imaging and Spectroscopy. Condens. Matter 2024, 9, 28. https://doi.org/10.3390/condmat9020028
Mascali D, Naselli E, Biri S, Finocchiaro G, Galatà A, Mauro GS, Mazzaglia M, Mishra B, Passarello S, Pidatella A, et al. The Multi-Detectors System of the PANDORA Facility: Focus on the Full-Field Pin-Hole CCD System for X-ray Imaging and Spectroscopy. Condensed Matter. 2024; 9(2):28. https://doi.org/10.3390/condmat9020028
Chicago/Turabian StyleMascali, David, Eugenia Naselli, Sandor Biri, Giorgio Finocchiaro, Alessio Galatà, Giorgio Sebastiano Mauro, Maria Mazzaglia, Bharat Mishra, Santi Passarello, Angelo Pidatella, and et al. 2024. "The Multi-Detectors System of the PANDORA Facility: Focus on the Full-Field Pin-Hole CCD System for X-ray Imaging and Spectroscopy" Condensed Matter 9, no. 2: 28. https://doi.org/10.3390/condmat9020028
APA StyleMascali, D., Naselli, E., Biri, S., Finocchiaro, G., Galatà, A., Mauro, G. S., Mazzaglia, M., Mishra, B., Passarello, S., Pidatella, A., Rácz, R., Santonocito, D., & Torrisi, G. (2024). The Multi-Detectors System of the PANDORA Facility: Focus on the Full-Field Pin-Hole CCD System for X-ray Imaging and Spectroscopy. Condensed Matter, 9(2), 28. https://doi.org/10.3390/condmat9020028