Several Aspects of Interaction between Chrome and Nanodiamond Particles in Metal Matrix Composites When Being Heated
Abstract
:1. Introduction
2. Materials, Equipment, and Methods
3. Results and Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dastjerdi, S.; Akgöz, B. On the statics of fullerene structures. Int. J. Eng. Sci. 2019, 142, 125–144. [Google Scholar] [CrossRef]
- Bhardwaj, J.; Vishnoi, R.; Sharma, G.D.; Asokan, K.; Singhal, R. Mapping the local structure of fullerene C60 and Cu–C60 nanocomposite thin films by gamma rays irradiation. Mater. Chem. Phys. 2020, 252, 123192. [Google Scholar] [CrossRef]
- Chernysheva, M.G.; Sinolits, A.V.; Votyakova, V.S.; Popov, A.G.; Badun, G.A. Preparation and properties of Miramistin–hyaluronic acid coatings on the nanodiamond surface. Mendeleev Commun. 2022, 32, 501–503. [Google Scholar] [CrossRef]
- Kuznetsov, V.L.; Aleksandrov, M.N.; Zagoruiko, I.V.; Chuvilin, A.L.; Moroz, E.M.; Kolomiichuk, V.N.; Likholobov, V.A.; Brylyakov, P.M.; Sakovitch, G.V. Study of Ultra Disperse Diamond Obtained Using Explosion Energy. Carbon 1991, 29, 665–668. [Google Scholar] [CrossRef]
- Basso, L.; Cazzanelli, M.; Orlandi, M.; Miotello, A. Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. Appl. Sci 2020, 10, 4094. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol 2012, 7, 11–23. [Google Scholar] [CrossRef]
- Balakin, S.; Dennison, N.R.; Klemmed, B.; Spohn, J.; Cuniberti, G.; Römhildt, L.; Opitz, J. Immobilization of Detonation Nanodiamonds on Macroscopic Surfaces. Appl. Sci. 2019, 9, 1064. [Google Scholar] [CrossRef]
- Tinwala, H.; Wairkar, S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater. Sci. Eng. C 2019, 97, 913–931. [Google Scholar] [CrossRef]
- Mironov, E.; Koretz, A.; Petrov, E. Detonation synthesis ultradispersed diamond structural properties investigation by infrared absorption. Diam. Relat. Mater. 2002, 11, 872–876. [Google Scholar] [CrossRef]
- Volkov, D.S.; Proskurnin, M.A.; Korobov, M.V. Elemental analysis of nanodiamonds by inductively-coupled plasma atomic emission spectroscopy. Carbon 2014, 74, 1–13. [Google Scholar] [CrossRef]
- Krueger, A.; Boedeker, T. Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diam. Relat. Mater. 2008, 17, 1367–1370. [Google Scholar] [CrossRef]
- Shvidchenko, A.V.; Dideikin, A.T.; Zhukov, A.N. Counterion condensation in hydrosols of single-crystalline detonation nanodiamond particles obtained by air annealing of their agglomerates. Colloid J. 2017, 79, 567–569. [Google Scholar] [CrossRef]
- Shvidchenko, A.V.; Eidelman, E.D.; Vul, A.Y.; Kuznetsov, N.M.; Stolyarova, D.Y.; Belousov, S.I.; Chvalun, S.N. Colloids of detonation nanodiamond particles for advanced applications. Adv. Colloid Interface Sci. 2019, 268, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Stelmakh, S.; Skrobas, K.; Gierlotka, S.; Palosz, D. The shape and surface structure of detonation nanodiamond purified in oxidizing chemical environment. Diam. Relat. Mater. 2021, 113, 108286. [Google Scholar] [CrossRef]
- Kırgız, M.S. Green cement composite concept reinforced by graphite nano-engineered particle suspension for infrastructure renewal material. Compos. Part B Eng. 2018, 154, 423–429. [Google Scholar] [CrossRef]
- Parvizi, S.; Ahmadi, Z.; Zamharir, M.J.; Asl, M.S. Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB2 nanocomposites. Int. J. Refract. Met. Hard Mater. 2018, 75, 10–17. [Google Scholar] [CrossRef]
- Gong, H.; Shao, W.; Ma, W.; Cui, Z. Absorption properties of a multilayer composite nanoparticle for solar thermal utilization. Opt. Laser Technol. 2022, 150, 107914. [Google Scholar] [CrossRef]
- Elsherbini, A.M.; Sabra, S.A. Nanoparticles-in-nanofibers composites: Emphasis on some recent biomedical applications. J. Control. Release 2022, 348, 57–83. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Z.; Guo, Z.; Xie, W.; Tang, A.; Huang, G. A Computational Model for Characterizing Electrical Properties of Flexible Polymer Composite Filled with CNT/GNP Nanoparticles. Mater. Today Commun. 2022, 32, 104177. [Google Scholar] [CrossRef]
- Islam, A.; Sharma, V.K.; Mausam, K. An analytical study of nano carbon materials for developing metal matrix nano composites. Mater. Today Proc. 2021, 45 Pt 2, 2867–2870. [Google Scholar] [CrossRef]
- Reddy, S.N.; Manohar, H.S.; Anand, S.N. Effect of carbon black nano-fillers on tribological properties of Al6061-Aluminium metal matrix composites. Mater. Today Proc. 2020, 20 Pt 2, 202–207. [Google Scholar] [CrossRef]
- Tan, W.; Jiang, X.; Shao, Z.; Sun, H.; Fang, Y.; Shu, F. Fabrication and mechanical properties of nano-carbon reinforced laminated Cu matrix composites. Powder Technol. 2022, 395, 377–390. [Google Scholar] [CrossRef]
- Popov, V. The impact of the diamond reinforcing particle size on their interaction with the aluminum matrix of composites in the course of heating. Surf. Interface Anal. 2018, 50, 1106–1109. [Google Scholar] [CrossRef]
- Popov, V.; Borunova, A.; Senatulin, B.; Shelekhov, E.; Kirichenko, A. Peculiarities of fullerenes and carbon onions application for reinforcing the aluminum matrix in the metal matrix composites. Surf. Interface Anal. 2020, 52, 127–131. [Google Scholar] [CrossRef]
- Popov, V.; Borunova, A.; Shelekhov, E.; Khodos, I.; Senatilin, B.; Matveev, D.; Versinina, E. Peculiarities of chemical interaction of some carbon nanoreinforcements with aluminum matrix in metal matrix composite (MMC). Mater. Sci. Eng. Technol. 2022, 53, 602–607. [Google Scholar] [CrossRef]
- Hirota, K.; Mitani, K.; Yoshinaka, M.; Yamaguchi, O. Simultaneous synthesis and consolidation of chromium carbides (Cr3C2, Cr7C3 and Cr23C6) by pulsed electric-current pressure sintering. Mater. Sci. Eng. A 2005, 395, 154–160. [Google Scholar] [CrossRef]
- Tripathy, S.; Behera, A.; Pati, S.; Roy, S. Corrosion resistant nickel coating on mild steel by cold gas dynamic spraying. Mater. Today Proc. 2021, 46 Pt 10, 4395–4399. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Chen, G.; Ramachandran, C.S. Mechanical, tribological and corrosion physiognomies of CNT-Al metal matrix composite (MMC) coatings deposited by cold gas dynamic spray (CGDS) process. Surf. Coat. Technol. 2020, 403, 126380. [Google Scholar] [CrossRef]
- Belevskiy, L.; Popov, V.; Tulupov, S.; Smirnov, O. Enhancement of Reliability of Machines and Materials by Friction Plating. Adv. Mater. Res. 2009, 59, 46–50. [Google Scholar] [CrossRef]
- Garbade, R.R.; Dhokey, N.B. Effect of mechanical alloying of Ti and B in pre alloyed gas atomized powder on carbide dispersed austenitic matrix of Iron based hardfacing alloy. Mater. Charact. 2022, 191, 112134. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1. [Google Scholar] [CrossRef]
- Benjamin, J.; Volin, T. The mechanism of mechanical alloying. Metall. Trans. 1974, 5, 1929. [Google Scholar] [CrossRef]
- Popov, V. X-ray micro-absorption enhancement for non-agglomerated nanodiamonds in mechanically alloyed aluminium matrix composites. Phys. Status Solidi A 2015, 212, 2722–2726. [Google Scholar] [CrossRef]
- Popov, V.; Többens, D.; Prosviryakov, A. Identification of non-agglomerated nanodiamonds inside metal matrix composites by synchrotron radiation. Phys. Status Solidi A 2014, 211, 2353–2358. [Google Scholar] [CrossRef]
- Zhao, Z.; Hu, W. Synthesis and characterization of chromium carbide nanopowders processed by mechanical alloying assisted microwave heating route. Int. J. Refract. Met. Hard Mater. 2016, 58, 206–210. [Google Scholar] [CrossRef]
- Popov, V.; Prosviryakov, A.S.; Senatulin, B.R.; Shelekhov, E.V.; Vershinina, E.V. Study of composites with nanodiamond reinforcing particles. In Proceedings of the XV International Conference on Thermal Analysis and Caloremetry in Russia (RTAC-2016), Sankt-Petersburg, Russia, 19–23 September 2016. [Google Scholar]
- Popov, V. Composite Material and Its Manufacturing Method; Bul.14, 20.05.2022. Patent of Russian Federation 2,772,480, 1 February 2022. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popov, V.; Borunova, A.; Shelekhov, E.; Cheverikin, V.; Khodos, I. Several Aspects of Interaction between Chrome and Nanodiamond Particles in Metal Matrix Composites When Being Heated. Inventions 2022, 7, 75. https://doi.org/10.3390/inventions7030075
Popov V, Borunova A, Shelekhov E, Cheverikin V, Khodos I. Several Aspects of Interaction between Chrome and Nanodiamond Particles in Metal Matrix Composites When Being Heated. Inventions. 2022; 7(3):75. https://doi.org/10.3390/inventions7030075
Chicago/Turabian StylePopov, Vladimir, Anna Borunova, Evgeny Shelekhov, Vladimir Cheverikin, and Igor Khodos. 2022. "Several Aspects of Interaction between Chrome and Nanodiamond Particles in Metal Matrix Composites When Being Heated" Inventions 7, no. 3: 75. https://doi.org/10.3390/inventions7030075
APA StylePopov, V., Borunova, A., Shelekhov, E., Cheverikin, V., & Khodos, I. (2022). Several Aspects of Interaction between Chrome and Nanodiamond Particles in Metal Matrix Composites When Being Heated. Inventions, 7(3), 75. https://doi.org/10.3390/inventions7030075