A 0.18 μm CMOS Millimeter Wave Antenna-on-Chip with Artificial Magnetic Conductor Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parameter Analysis of Antenna Slot
2.2. Parameter Analysis of Antenna Branches
2.3. Parameter Analysis of the Number of AMCs
2.4. Current Distribution
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Wu, R.; Pang, J.; You, D.; Fadila, A.A.; Saengchan, R.; Fu, X.; Matsumoto, D.; Nakamura, T.; Kubozoe, R.; et al. A 39-GHz 64-Element Phased-Array Transceiver with Built-In Phase and Amplitude Calibrations for Large-Array 5G NR in 65-nm CMOS. IEEE J. Solid-State Circuits 2020, 55, 1249–1269. [Google Scholar] [CrossRef]
- Li, J.; Matos, C.; Chen, S.; Ghalichechian, N. Fundamental Improvement to the Efficiency of On-Chip mmWave Phased Arrays Using MEMS Suspension. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 473–477. [Google Scholar] [CrossRef]
- Haseeb, K.; Saba, T.; Rehman, A.; Ahmed, Z.; Song, H.H.; Wang, H.H. Trust Management with Fault-Tolerant Supervised Routing for Smart Cities Using Internet of Things. IEEE Internet Things J. 2022, 9, 22608–22617. [Google Scholar] [CrossRef]
- Jamshed, M.A.; Ali, K.; Abbasi, Q.H.; Imran, M.A.; Ur-Rehman, M. Challenges, Applications, and Future of Wireless Sensors in Internet of Things: A Review. IEEE Sens. J. 2022, 22, 5482–5494. [Google Scholar] [CrossRef]
- Zhu, P.; Yoshida, Y.; Kanno, A.; Kitayama, K.-I. DSP-enhanced radio-over-fiber technologies for 5G-and-beyond wired-wireless convergence: Publisher’s note. J. Opt. Commun. Netw. 2022, 14, 997. [Google Scholar] [CrossRef]
- Guo, Q.; Tang, F.; Kato, N. Federated Reinforcement Learning-Based Resource Allocation in D2D-Enabled 6G. IEEE Netw. 2022, 1–7. [Google Scholar] [CrossRef]
- Shehab, M.J.; Kassem, I.; Kutty, A.A.; Kucukvar, M.; Onat, N.; Khattab, T. 5G Networks Towards Smart and Sustainable Cities: A Review of Recent Developments, Applications and Future Perspectives. IEEE Access 2021, 10, 2987–3006. [Google Scholar] [CrossRef]
- Hedayati, M.K.; Abdipour, A.; Shirazi, R.S.; Ammann, M.J.; John, M.; Cetintepe, C.; Staszewski, R.B. Challenges in On-Chip Antenna Design and Integration with RF Receiver Front-End Circuitry in Nanoscale CMOS for 5G Communication Systems. IEEE Access 2019, 7, 43190–43204. [Google Scholar] [CrossRef]
- De Kok, M.; Smolders, A.B.; Johannsen, U. A Review of Design and Integration Technologies for D-Band Antennas. IEEE Open J. Antennas Propag. 2021, 2, 746–758. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Khalily, M.; See, C.H.; Abd-Alhameed, R.; Falcone, F.; Denidni, T.A.; Limiti, E. High-Gain On-Chip Antenna Design on Silicon Layer with Aperture Excitation for Terahertz Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1576–1580. [Google Scholar] [CrossRef]
- Kong, S.; Shum, K.M.; Yang, C.; Gao, L.; Chan, C.H. Wide Impedance-Bandwidth and Gain-Bandwidth Terahertz On-Chip Antenna with Chip-Integrated Dielectric Resonator. IEEE Trans. Antennas Propag. 2021, 69, 4269–4278. [Google Scholar] [CrossRef]
- Cheema, H.M.; Shamim, A. The last barrier: On-chip antennas. IEEE Microw. Mag. 2013, 14, 79–91. [Google Scholar] [CrossRef]
- Deng, X.-D.; Li, Y.; Liu, C.; Wu, W.; Xiong, Y.-Z. 340 GHz On-Chip 3-D Antenna With 10 dBi Gain and 80% Radiation Efficiency. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 619–627. [Google Scholar] [CrossRef]
- Van Berkel, S.; Malotaux, E.S.; De Martino, C.; Spirito, M.; Cavallo, D.; Neto, A.; Llombart, N. Wideband Double Leaky Slot Lens Antennas in CMOS Technology at Submillimeter Wavelengths. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 540–553. [Google Scholar] [CrossRef]
- Khan, W.T.; Ulusoy, A.C.; Dufour, G.; Kaynak, M.; Tillack, B.; Cressler, J.D.; Papapolymerou, J. A D-Band Micromachined End-Fire Antenna in 130-nm SiGe BiCMOS Technology. IEEE Trans. Antennas Propag. 2015, 63, 2449–2459. [Google Scholar] [CrossRef]
- Yuan, S.; Trasser, A.; Schumacher, H. 56 GHz bandwidth FMCW radar sensor with on-chip antennas in SiGe BiCMOS. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Lee, C.; Jeong, J. THz CMOS On-Chip Antenna Array Using Defected Ground Structure. Electronics 2020, 9, 1137. [Google Scholar] [CrossRef]
- He, Y.; Chen, Y.; Zhang, L.; Wong, S.-W.; Chen, Z.N. An overview of terahertz antennas. China Commun. 2020, 17, 124–165. [Google Scholar] [CrossRef]
- Wu, L.; Huang, J.; Sun, B.; Chang, H.; Huang, S.; Liu, H. Miniaturized broadband monopole antenna in 130 nm CMOS with gain improvement. IEICE Electron. Express 2022, 19, 20220076. [Google Scholar] [CrossRef]
- Mustacchio, C.; Boccia, L.; Arnieri, E.; Amendola, G. A Gain Levelling Technique for On-Chip Antennas Based on Split-Ring Resonators. IEEE Access 2021, 9, 90750–90756. [Google Scholar] [CrossRef]
- Burasa, P.; Djerafi, T.; Wu, K. A 28 GHz and 60 GHz dual-band on-chip antenna for 5G-compatible IoT-served sensors in standard CMOS process. IEEE Trans. Antennas Propag. 2021, 69, 2940–2945. [Google Scholar] [CrossRef]
- Zhang, H.; Shamim, A. Gain Enhancement of Millimeter-Wave On-Chip Antenna Through an Additively Manufactured Functional Package. IEEE Trans. Antennas Propag. 2020, 68, 4344–4353. [Google Scholar] [CrossRef]
- Song, Y.; Xu, Q.; Tian, Y.; Yang, J.; Wu, Y.; Tang, X.; Kang, K. An On-Chip Frequency-Reconfigurable Antenna For Q-Band Broadband Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2232–2235. [Google Scholar] [CrossRef]
- Yu, Y.; Akhter, Z.; Shamim, A. Ultra-Thin Artificial Magnetic Conductor for Gain Enhancement of Antenna-on-Chip. IEEE Trans. Antennas Propag. 2022, 70, 4319–4330. [Google Scholar] [CrossRef]
- Liu, Q.; van den Biggelaar, A.J.; Johannsen, U.; van Beurden, M.C.; Smolders, A.B. On-Chip Metal Tiling for Improving Grounded mm-Wave Antenna-on-Chip Performance in Standard Low-Cost Packaging. IEEE Trans. Antennas Propag. 2019, 68, 2638–2645. [Google Scholar] [CrossRef]
- Khan, M.S.; Tahir, F.A.; Meredov, A.; Shamim, A.; Cheema, H.M. A W-Band EBG-Backed Double-Rhomboid Bowtie-Slot On-Chip Antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1046–1050. [Google Scholar] [CrossRef]
- Van den Brande, Q.; Lemey, S.; Cuyvers, S.; Poelman, S.; De Brabander, L.; Caytan, O.; Bogaert, L.; De Paula, I.L.; Verstuyft, S.; Reniers, A.C.F.; et al. A Hybrid Integration Strategy for Compact, Broadband, and Highly Efficient Millimeter-Wave On-Chip Antennas. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2424–2428. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.S.; Shamim, A. Utilizing Wideband AMC Structures for High-Gain Inkjet-Printed Antennas on Lossy Paper Substrate. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 76–79. [Google Scholar] [CrossRef]
Parameter | Value (μm) | Parameter | Value(μm) |
---|---|---|---|
W | 1200 | L | 1200 |
W1 | 537 | L1 | 30 |
W2 | 512 | L2 | 650 |
W3 | 490 | L3 | 270 |
W4 | 50 | L4 | 50 |
W5 | 170 | L5 | 210 |
W6 | 140 | L6 | 50 |
W7 | 208 | L7 | 790 |
W8 | 20 | L8 | 50 |
W9 | 50 | L9 | 50 |
W10 | 50 | L10 | 150 |
W11 | 200 |
Parameter | Value (μm) | Parameter | Value (μm) |
---|---|---|---|
d | 30 | s | 30 |
d1 | 10 | s1 | 10 |
Ref. | Process | Frequency (GHz) | * FBW (%) | Gain (dBi) | Size (λ2) |
---|---|---|---|---|---|
This Work | 0.18 μm CMOS | 72.5 | 103.4 | −6.23 | 1 × 1 |
[8] | 0.28 μm CMOS | 33 | 16.3 | 14 | 0.25 × 0.32 |
[19] | 0.13 μm CMOS | 81 | 31.4 | −0.35 | 0.09 × 0.04 |
[20] | 0.13 μm SiGe CMOS | 81.5 | 12.1 | 1.61 | 1.21 × 1.41 |
[21] | 0.65 μm CMOS | 28, 60 | 5.3, 5.9 | −10, 0 | 0.17 × 0.2 |
[22] | 0.18 μm CMOS | 71 | 9.4 | 8.8 | 1.22 × 1.22 |
[23] | 0.18 μm CMOS | 40 | 53.4 | 3.3 | 0.5 × 0.78 |
[24] | CMOS | 94 | 6.3 | 5.85 | 3 × 3 |
[25] | CMOS | 60 | 9.8 | −2.32 | 1.03 × 0.51 |
[26] | 0.13 μm BiCMOS | 84 | 11.7 | −0.58 | 0.3 × 0.09 |
[27] | MEMS | 28.5 | 13 | 6.6 | 0.17 × 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, M.-A.; Hsu, C.-C.; Huang, S.-R.; Huang, P.-R. A 0.18 μm CMOS Millimeter Wave Antenna-on-Chip with Artificial Magnetic Conductor Design. Inventions 2023, 8, 78. https://doi.org/10.3390/inventions8030078
Chung M-A, Hsu C-C, Huang S-R, Huang P-R. A 0.18 μm CMOS Millimeter Wave Antenna-on-Chip with Artificial Magnetic Conductor Design. Inventions. 2023; 8(3):78. https://doi.org/10.3390/inventions8030078
Chicago/Turabian StyleChung, Ming-An, Chia-Chun Hsu, Siao-Rong Huang, and Pin-Rui Huang. 2023. "A 0.18 μm CMOS Millimeter Wave Antenna-on-Chip with Artificial Magnetic Conductor Design" Inventions 8, no. 3: 78. https://doi.org/10.3390/inventions8030078
APA StyleChung, M. -A., Hsu, C. -C., Huang, S. -R., & Huang, P. -R. (2023). A 0.18 μm CMOS Millimeter Wave Antenna-on-Chip with Artificial Magnetic Conductor Design. Inventions, 8(3), 78. https://doi.org/10.3390/inventions8030078