Performance Evaluation of Photonics-Based Coherent MIMO Radar Systems for Maritime Surveillance
Abstract
:1. Introduction
2. Coherent Multi-Band MIMO Radar
2.1. MIMO Signal Model and Processing
2.2. System Simulator
2.3. RCS Modeling
Algorithm 1. Pseudo-code of proposed methodology for RCS estimation |
Set Simulation Parameters |
DO: Get displacement D from vessel of length L; |
FOR l = 1: L (Number of Frequency Carriers) |
DO: Calculate for ship model of length , using (5) |
DO: Calculate for ship model of length and displacement D, using (5) |
END |
Calculate Monostatic/Bistatic RCS |
FOR m = 1: M (Number of Transmitters) |
DO: Evaluate illumination angle ; |
FOR n = 1: N (Number of Receivers) |
DO: Evaluate bistatic angle given transmitter-target-receiver geometry; |
DO: calculate ratio between bistatic and monostatic RCS; |
FOR l = 1: L (Number of Frequency Carriers) |
DO: Calculate using POFACETS tool; |
DO: Calculate using (6); |
DO: Calculate using (7); |
END |
END |
END |
2.4. Assessment of Simulation Tool
3. Key Performance Indicators
3.1. Peak-to-Sidelobe Ratios of MIMO Ambiguity Functions
3.2. Range, Cross-Range and Area Resolution
4. Simulation Scenarios
4.1. Shipborne MIMO Radar Network
4.2. Ground-Based MIMO Radar Network
- RH1: [10°17′29.6″ E, 43°33′30.1″ N]
- RH2: [10°17′50.1″ E, 43°33′11.2″ N]
- RH3: [10°17′45.3″ E, 43°32′57.3″ N]
5. Simulation Results and Analysis
5.1. Single-Band MIMO Radar
5.2. Multi-Band MIMO Radar
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skolnik, M.I. Radar Handbook; McGraw-Hill Education: New York, NY, USA, 2008. [Google Scholar]
- IEEE Std 686-2017 (Revision of IEEE Std 686-2008); IEEE Standard for Radar Definitions. IEEE: New York, NY, USA, 13 September 2017; pp. 1–54. [CrossRef]
- Li, J.; Stoica, P. MIMO Radar with Colocated Antennas. IEEE Signal Process. Mag. 2007, 24, 106–114. [Google Scholar] [CrossRef]
- Haimovich, A.M.; Blum, R.S.; Cimini, L.J. MIMO Radar with Widely Separated Antennas. IEEE Signal Process. Mag. 2008, 25, 116–129. [Google Scholar] [CrossRef]
- He, Q.; Yang, Y.; Blum, R.S. MIMO Radar with Widely Separated Antennas—From Concepts to Designs. In Book Chapter for E-Reference Signal Processing; Elsevier Science Direct: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Capmany, J.; Novak, D. Microwave photonics combines two worlds. Nat. Photonics 2007, 1, 6. [Google Scholar] [CrossRef]
- Zhang, F.; Gao, B.; Pan, S. Photonics-based MIMO radar with high-resolution and fast detection capability. Opt. Express 2018, 26, 17529–17540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, H.; Zhang, F.; Yang, Y.; Pan, S. Photonics-based integrated communication and radar system. In Proceedings of the 2019 International Topical Meeting on Microwave Photonics (MWP), Ottawa, ON, Canada, 7–9 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Serafino, G.; Maresca, S.; Amir, M.M.H.; Malacarne, A.; Ghelfi, P.; Bogoni, A. Key Performance Indicators for System Analysis of MIMO Radars with Widely Separated Antennas. In Proceedings of the 2022 19th European Radar Conference (EuRAD), Milan, Italy, 28–30 September 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Berry, P.E.; Dahal, N.; Venkataraman, K. On the design of an optimal coherent multistatic radar network configuration. IET Radar Sonar Navig. 2022, 16, 869–884. [Google Scholar] [CrossRef]
- Sharma, V.; Kbashi, H.J.; Sergeyev, S. MIMO-employed coherent photonic-radar (MIMO-Co-PHRAD) for detection and ranging. Wirel. Netw. 2021, 27, 2549–2558. [Google Scholar] [CrossRef]
- Simulate an Automotive 4D Imaging MIMO Radar—MATLAB & Simulink—MathWorks Italia. Available online: https://it.mathworks.com/help/radar/ug/simulate-an-automotive-4d-imaging-mimo-radar.html#SimulateAnAutomotive4DImagingMIMORadarExample-11 (accessed on 4 August 2023).
- Chen, H.; Zhao, Y.; Li, D.; Liu, C.; Wang, W. Least squares approach to the design of frequency invariant beamformer with sensor delay lines in subbands. In Proceedings of the IET International Radar Conference 2013, Xi’an, China, 14–16 April 2013; pp. 1–8. [Google Scholar] [CrossRef]
- Kılıç, B.; Arıkan, O. Capon’s Beamformer and Minimum Mean Square Error Beamforming Techniques in Direction of Arrival Estimation. In Proceedings of the 2021 29th Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkey, 9–11 June 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, Y.; Sun, S.; Liu, X. Self-steered Robust Capon Beamformer against Large Look Direction Error. In Proceedings of the 2023 4th Information Communication Technologies Conference (ICTC), Nanjing, China, 17–19 May 2023; pp. 228–231. [Google Scholar] [CrossRef]
- Knott, E.F. Radar Cross Section, 2nd ed.; Artech House: Boston, MA, USA, 1993. [Google Scholar]
- Mahafza, B.R. Radar Systems Analysis and Design Using MATLAB, 3rd ed.; Chapman and Hall/CRC: New York, NY, USA, 2013. [Google Scholar]
- Ahmed, T.I.O.; Mirghani, M. Estimation of Radar Cross Sectional Area of Target using Simulation Algorithm. Int. J. Res. Stud. Electr. Electron. Eng. 2018, 4, 20–24. [Google Scholar]
- Jenn, D. POfacets4.5. MATLAB Central File Exchange. 2023. Available online: https://www.mathworks.com/matlabcentral/fileexchange/50602-pofacets4-5 (accessed on 4 August 2023).
- Nathanson, F.E.; Reilly, J.P.; Cohen, M.N. Radar Design Principles: Signal Processing and the Environment, 2nd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Williams, P.D.L.; Cramp, H.D.; Curtis, K. Experimental study of the radar cross-section of maritime targets. IEE J. Electron. Circuits Syst. 1978, 2, 121. [Google Scholar] [CrossRef]
- Chatzigeorgiadis, F. Development of Code for a Physical Optics Radar Cross Section Prediction and Analysis Application. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2004. [Google Scholar]
- Ewell, G.; Zehner, S. Bistatic radar cross section of ship targets. IEEE J. Ocean. Eng. 1980, 5, 211–215. [Google Scholar] [CrossRef]
- Willis, N.J. Bistatic Radar; SciTech Publishing: Raleigh, NC, USA, 2005. [Google Scholar]
- Malacarne, A.; Maresca, S.; Scotti, F.; Ghelfi, P.; Serafino, G.; Bogoni, A. Coherent Dual-Band Radar-Over-Fiber Network With VCSEL-Based Signal Distribution. J. Light. Technol. 2020, 38, 6257–6264. [Google Scholar] [CrossRef]
- Maresca, S.; Serafino, G.; Noviello, C.; Scotti, F.; Fornaro, G.; Sansosti, E.; Bogoni, A.; Ghelfi, P. Field Trial of a Coherent, Widely Distributed, Dual-Band Photonics-Based MIMO Radar with ISAR Imaging Capabilities. J. Light. Technol. 2022, 40, 6626–6635. [Google Scholar] [CrossRef]
- Malacarne, A.; Maresca, S.; Pandey, G.; Amir, M.M.H.; Bogoni, A.; Scaffardi, M. Robustness of Photonics-based Coherent Multi-Band MIMO Radar to Fiber-based Signal Distribution. In Proceedings of the European Radar Conference (EuRAD), Berlin, Germany, 20–22 September 2023. [Google Scholar]
Parameters | Values |
---|---|
RF Carrier (Single-band) | 9 GHz |
RF Carrier (Multi-band) | 8, 9, 10 GHz |
Modulation | Linear Frequency Chirp (LFM) |
Bandwidth | 600 MHz |
Pulse Repetition Interval (PRI) | 20 |
Pulse Duration | 200 |
Transmitted Power | 20 W |
RHs antenna gain | 20 dBi |
System Noise |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amir, M.M.H.; Maresca, S.; Pandey, G.; Malacarne, A.; Bogoni, A.; Scaffardi, M. Performance Evaluation of Photonics-Based Coherent MIMO Radar Systems for Maritime Surveillance. Inventions 2023, 8, 99. https://doi.org/10.3390/inventions8040099
Amir MMH, Maresca S, Pandey G, Malacarne A, Bogoni A, Scaffardi M. Performance Evaluation of Photonics-Based Coherent MIMO Radar Systems for Maritime Surveillance. Inventions. 2023; 8(4):99. https://doi.org/10.3390/inventions8040099
Chicago/Turabian StyleAmir, Malik Muhammad Haris, Salvatore Maresca, Gaurav Pandey, Antonio Malacarne, Antonella Bogoni, and Mirco Scaffardi. 2023. "Performance Evaluation of Photonics-Based Coherent MIMO Radar Systems for Maritime Surveillance" Inventions 8, no. 4: 99. https://doi.org/10.3390/inventions8040099
APA StyleAmir, M. M. H., Maresca, S., Pandey, G., Malacarne, A., Bogoni, A., & Scaffardi, M. (2023). Performance Evaluation of Photonics-Based Coherent MIMO Radar Systems for Maritime Surveillance. Inventions, 8(4), 99. https://doi.org/10.3390/inventions8040099