Combined Neuromuscular Electrical Stimulation and Elastic Taping Improves Ankle Range of Motion Equivalent to Static Stretching in Untrained Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statements
2.2. Study Design and Population
2.3. Randomization
2.4. Intervention
2.4.1. CI
2.4.2. SS
2.5. Outcome Measures
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ROM | range of motion |
SS | static stretching |
NMES | neuromuscular electrical stimulation |
CI | combined intervention |
DFA | ankle dorsiflexion angle |
FFD | finger-floor distance |
SLR | straight leg raise |
PFS | plantar flexor strength |
KFS | knee flexor strength |
ANOVA | analysis of variance |
References
- Somers, K.; Aune, D.; Horten, A.; Kim, J.; Rogers, J. Acute Effects of Gastrocnemius/Soleus Self-Myofascial Release Versus Dynamic Stretching on Closed-Chain Dorsiflexion. J. Sport. Rehabil. 2020, 29, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Fong, C.M.; Blackburn, J.T.; Norcross, M.F.; McGrath, M.; Padua, D.A. Ankle-dorsiflexion range of motion and landing biomechanics. J. Athl. Train. 2011, 46, 5–10. [Google Scholar] [CrossRef]
- Menz, H.B.; Lord, S.R. The contribution of foot problems to mobility impairment and falls in community-dwelling older people. J. Am. Geriatr. Soc. 2001, 49, 1651–1656. [Google Scholar]
- Radford, J.A.; Burns, J.; Buchbinder, R.; Landorf, K.B.; Cook, C. Does stretching increase ankle dorsiflexion range of motion? A systematic review. Br. J. Sports Med. 2006, 40, 870–875. [Google Scholar] [CrossRef]
- Cramer, J.T.; Housh, T.J.; Johnson, G.O.; Miller, J.M.; Coburn, J.W.; Beck, T.W. Acute effects of static stretching on peak torque in women. J. Strength. Cond. Res. 2004, 18, 236–241. [Google Scholar]
- Behm, D.G.; Blazevich, A.J.; Kay, A.D.; McHugh, M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Appl. Physiol. Nutr. Metab. 2016, 41, 1–11. [Google Scholar] [CrossRef]
- Doucet, B.M.; Lam, A.; Griffin, L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J. Biol. Med. 2012, 85, 201–215. [Google Scholar]
- Walsh, D.M.; Lowe, A.S.; McCormack, K.; Willer, J.C.; Baxter, G.D.; Allen, J.M. Transcutaneous electrical nerve stimulation: Effect on peripheral nerve conduction, mechanical pain threshold, and tactile threshold in humans. Arch. Phys. Med. Rehabil. 1998, 79, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Broderick, B.J.; Kennedy, C.; Breen, P.P.; Kearns, S.R.; ÓLaighin, G. Patient tolerance of neuromuscular electrical stimulation (NMES) in the presence of orthopaedic implants. Med. Eng. Phys. 2011, 33, 56–61. [Google Scholar] [CrossRef]
- Igawa, T.; Ito, R.; Takeuchi, A.; Arai, S.; Kaga, N.; Mashimo, N.; Miyamae, R.; Urata, R.; Kubo, A. Does elastic taping on soles improve flexibility? A randomized controlled trial with equivalence test design. J. Back. Musculoskelet. Rehabil. 2024, 37, 427–435. [Google Scholar] [CrossRef]
- Fukui, T. Skin movement rules relative to joint motions. Clin. Res. Foot Ankle 2017, 5, 2. [Google Scholar] [CrossRef]
- Chao, Y.W.; Lin, J.J.; Yang, J.L.; Wang, W.T. Kinesio taping and manual pressure release: Short-term effects in subjects with myofasical trigger point. J. Hand Ther. 2016, 29, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Özkan, F.Ü.; Boy, F.N.; Kılıç, S.E.; Külcü, D.G.; Özdemir, G.B.; Hartevioğlu, H.Ç.; Akpınar, P.; Aktaş, İ. Clinical and radiological outcomes of kinesiotaping in patients with chronic neck pain: A double-blinded, randomized, placebo-controlled study. Turk. J. Phys. Med. Rehabil. 2020, 66, 459–467. [Google Scholar] [CrossRef]
- Ito, R.; Igawa, T.; Urata, R.; Ito, S.; Suzuki, K.; Suzuki, M.; Kubo, A. Immediate effects of elastic tape application on the foot sole: A randomized controlled trial. J. Phys. Ther. Sci. 2023, 35, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Ito, R.; Igawa, T.; Urata, R.; Ito, S.; Suzuki, K.; Takahashi, H.; Toda, M.; Fujita, M.; Kubo, A. Effects of simultaneous short-term neuromuscular electrical stimulation and static stretching on calf muscles. J. Phys. Ther. Sci. 2024, 36, 447–451. [Google Scholar] [CrossRef]
- Medeiros, D.M.; Martini, T.F. Chronic effect of different types of stretching on ankle dorsiflexion range of motion: Systematic review and meta-analysis. Foot (Edinb) 2018, 34, 28–35. [Google Scholar] [CrossRef]
- Snapinn, S.M. Noninferiority trials. Curr. Control Trials Cardiovasc. Med. 2000, 1, 19–21. [Google Scholar] [CrossRef]
- Food and Drug Administration. Noninferiority Clinical Trials to Establish Effectiveness: Guidance for Industry; FDA: Silver Spring, MD, USA, 2016. Available online: https://downloads.regulations.gov/FDA-2010-D-0075-0027/attachment_1.pdf (accessed on 23 December 2024).
- Fowles, J.R.; Sale, D.G.; MacDougall, J.D. Reduced strength after passive stretch of the human plantarflexors. J. Appl. Physiol. 2000, 89, 1179–1188. [Google Scholar] [CrossRef]
- Power, K.; Behm, D.; Cahill, F.; Carroll, M.; Young, W. An acute bout of static stretching: Effects on force and jumping performance. Med. Sci. Sports Exerc. 2004, 36, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Maffiuletti, N.A.; Gondin, J.; Place, N.; Stevens-Lapsley, J.; Vivodtzev, I.; Minetto, M.A. Clinical Use of Neuromuscular Electrical Stimulation for Neuromuscular Rehabilitation: What Are We Overlooking? Arch. Phys. Med. Rehabil. 2018, 99, 806–812. [Google Scholar] [CrossRef]
- Ito, R.; Igawa, T.; Urata, R.; Ito, S.; Suzuki, K.; Takahashi, H.; Toda, M.; Fujita, M.; Kubo, A. Effects of simultaneous neuromuscular electrical stimulation and static stretching on flexibility and strength: A randomized controlled trial. J. Phys. Ther. Sci. 2024, 36, 628–632. [Google Scholar] [CrossRef]
- Pérez-Bellmunt, A.; Casasayas, O.; Navarro, R.; Simon, M.; Martin, J.C.; Pérez-Corbella, C.; Blasi, M.; Ortiz, S.; Álvarez, P.; Pacheco, L. Effectiveness of low-frequency electrical stimulation in proprioceptive neuromuscular facilitation techniques in healthy males: A randomized controlled trial. J. Sports Med. Phys. Fitness 2019, 59, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Richard, R.; Ford, J.; Miller, S.F.; Staley, M. Photographic measurement of volar forearm skin movement with wrist extension: The influence of elbow position. J. Burn. Care Rehabil. 1994, 15, 58–61. [Google Scholar] [CrossRef]
- Grieve, R.; Goodwin, F.; Alfaki, M.; Bourton, A.J.; Jeffries, C.; Scott, H. The immediate effect of bilateral self myofascial release on the plantar surface of the feet on hamstring and lumbar spine flexibility: A pilot randomised controlled trial. J. Bodyw. Mov. Ther. 2015, 19, 544–552. [Google Scholar] [CrossRef]
- Burk, C.; Perry, J.; Lis, S.; Dischiavi, S.; Bleakley, C. Can Myofascial Interventions Have a Remote Effect on ROM? A Systematic Review and Meta-Analysis. J. Sport. Rehabil. 2019, 29, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Wilke, J.; Krause, F.; Vogt, L.; Banzer, W. What Is Evidence-Based About Myofascial Chains: A Systematic Review. Arch. Phys. Med. Rehabil. 2016, 97, 454–461. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, Y. Effect of Dynamic Taping versus Kinesiology Taping on Pain, Foot Function, Balance, and Foot Pressure in 3 Groups of Plantar Fasciitis Patients: A Randomized Clinical Study. Med. Sci. Monit. 2023, 29, e941043. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, I.; Fujita, M.; Shimadu, N.; Takashima, K. Effects of muscle contraction induced by electrical stimulation on fascial gliding: Evaluation by ultrasonography. J. Bodyw. Mov. Ther. 2024, 40, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Krause, F.; Wilke, J.; Vogt, L.; Banzer, W. Intermuscular force transmission along myofascial chains: A systematic review. J. Anat. 2016, 228, 910–918. [Google Scholar] [CrossRef]
- Wilke, J.; Debelle, H.; Tenberg, S.; Dilley, A.; Maganaris, C. Ankle Motion Is Associated With Soft Tissue Displacement in the Dorsal Thigh: An in vivo Investigation Suggesting Myofascial Force Transmission Across the Knee Joint. Front. Physiol. 2020, 11, 180. [Google Scholar] [CrossRef] [PubMed]
- Stecco, A.; Macchi, V.; Stecco, C.; Porzionato, A.; Day, A.J.; Delmas, V.; Caro, D.R. Anatomical study of myofascial continuity in the anterior region of the upper limb. J. Bodyw. Mov. Ther. 2009, 13, 53–62. [Google Scholar] [CrossRef] [PubMed]
Total (n = 83) | Group A (n = 41) CI First | Group B (n = 42) SS First | |
---|---|---|---|
Age, years | 20.7 ± 0.9 | 20.6 ± 0.9 | 20.9 ± 0.8 |
Sex, n (%) | |||
Male | 42 (51) | 21 (51.2) | 21 (50) |
Female | 41 (49) | 20 (48.8) | 21 (50) |
Height, cm | 165.1 ± 7.9 | 165.2 ± 7.7 | 165.1 ± 8.2 |
Weight, kg | 59.4 ± 11.4 | 60.0 ± 10.7 | 58.9 ± 12.2 |
BMI, kg/m2 | 21.6 ± 2.9 | 21.9 ± 3.0 | 21.4 ± 2.9 |
Group A | Group B | Mean Difference | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|---|---|
Lower | Upper | |||||
DFA, ° | 39.6 ± 6.3 | 41.7 ± 6.3 | −2.1 | −4.8 | 0.7 | 0.143 |
FFD, cm | 2.2 ± 9.4 | 4.1 ± 8.4 | −1.9 | −5.7 | 2.0 | 0.345 |
SLR, ° | 68.0 ± 15.4 | 69.0 ± 14.4 | −1.0 | −7.5 | 5.5 | 0.754 |
PFS, Nm/kg | 1.61 ± 0.42 | 1.61 ± 0.34 | 0.00 | −0.16 | 0.17 | 0.962 |
KFS, Nm/kg | 1.26 ± 0.32 | 1.88 ± 4.30 | −0.63 | −1.96 | 0.71 | 0.355 |
Mean Square | F | p-Value | ||
---|---|---|---|---|
DFA | Period × Intervention | 18.09 | 0.579 | 0.448 |
Period | 0.24 | 0.008 | 0.931 | |
Intervention | 22.36 | 0.715 | 0.399 | |
FFD | Period × Intervention | 134.72 | 1.871 | 0.173 |
Period | 1.05 | 0.015 | 0.904 | |
Intervention | 0.02 | 0.000 | 0.988 | |
SLR | Period × Intervention | 66.29 | 0.327 | 0.568 |
Period | 0.00 | 0.000 | 0.999 | |
Intervention | 0.60 | 0.003 | 0.957 | |
PFS | Period × Intervention | 1.81 | 1.155 | 0.284 |
Period | 1.26 | 0.803 | 0.371 | |
Intervention | 0.71 | 0.455 | 0.501 | |
KFS | Period × Intervention | 0.01 | 0.076 | 0.784 |
Period | 0.01 | 0.130 | 0.718 | |
Intervention | 0.14 | 1.464 | 0.228 |
Post-Intervention | Mean Change from Baseline | CI-SS (95% Confidence Interval) | |||||
---|---|---|---|---|---|---|---|
CI | SS | CI (95% Confidence Interval) | p-Value | SS (95% Confidence Interval) | p-Value | ||
DFA, ° | 38.5 ± 5.4 | 37.7 ± 5.7 | −2.8 (−3.4 to −2.1) | <0.001 | −2.6 (−3.2 to −1.9) | <0.001 | 0.21 (−0.72 to 1.15) |
FFD, cm | 4.7 ± 8.3 | 4.2 ± 8.7 | 2.0 (1.5 to 2.4) | <0.001 | 2.1 (1.7 to 2.5) | <0.001 | 0.1 (−0.5 to 0.6) |
SLR, ° | 70.6 ± 14.2 | 70.5 ± 14.2 | 2.6 (1.5 to 3.6) | <0.001 | 3.1 (1.9 to 4.3) | <0.001 | 0.6 (−0.9 to 2.0) |
PFS, Nm/kg | 1.66 ± 0.43 | 1.79 ± 1.72 | 0.07 (−0.00 to 0.14) | 0.065 | 0.16 (−0.22 to 0.53) | 0.407 | 0.09 (−0.30 to 0.47) |
KFS, Nm/kg | 1.26 ± 0.30 | 1.20 ± 0.31 | −0.38 (−1.09 to 0.32) | 0.279 | −0.03 (−0.07 to 0.01) | 0.091 | 0.35 (−0.35 to 1.06) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, R.; Igawa, T.; Urata, R.; Ito, S.; Suzuki, K.; Takahashi, H.; Toda, M.; Fujita, M.; Kubo, A. Combined Neuromuscular Electrical Stimulation and Elastic Taping Improves Ankle Range of Motion Equivalent to Static Stretching in Untrained Subjects. J. Funct. Morphol. Kinesiol. 2025, 10, 58. https://doi.org/10.3390/jfmk10010058
Ito R, Igawa T, Urata R, Ito S, Suzuki K, Takahashi H, Toda M, Fujita M, Kubo A. Combined Neuromuscular Electrical Stimulation and Elastic Taping Improves Ankle Range of Motion Equivalent to Static Stretching in Untrained Subjects. Journal of Functional Morphology and Kinesiology. 2025; 10(1):58. https://doi.org/10.3390/jfmk10010058
Chicago/Turabian StyleIto, Riyaka, Tatsuya Igawa, Ryunosuke Urata, Shomaru Ito, Kosuke Suzuki, Hiroto Takahashi, Mika Toda, Mio Fujita, and Akira Kubo. 2025. "Combined Neuromuscular Electrical Stimulation and Elastic Taping Improves Ankle Range of Motion Equivalent to Static Stretching in Untrained Subjects" Journal of Functional Morphology and Kinesiology 10, no. 1: 58. https://doi.org/10.3390/jfmk10010058
APA StyleIto, R., Igawa, T., Urata, R., Ito, S., Suzuki, K., Takahashi, H., Toda, M., Fujita, M., & Kubo, A. (2025). Combined Neuromuscular Electrical Stimulation and Elastic Taping Improves Ankle Range of Motion Equivalent to Static Stretching in Untrained Subjects. Journal of Functional Morphology and Kinesiology, 10(1), 58. https://doi.org/10.3390/jfmk10010058