Foam Roller Post-High-Intensity Training for CrossFit Athletes: Does It Really Help with Recovery?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Intervention and Procedures
2.3. Recovery
2.3.1. Passive Recovery
2.3.2. Foam Roller Recovery
2.4. Variables
- Time (in seconds) was measured using Polar App software version 3.5.8 (Polar Verity Sense and Polar Team App; Polar Electro OY) on an iPad (iOS Stopwatch) and recorded at three time points: after warm-up (T0), after WOD (T1), and after the recovery protocol (T2).
- HR was monitored using a heart rate monitor (Polar Verity Sense and Polar Team App; Polar Electro OY) and recorded as beats per minute (bpm) and as a percentage of maximum heart rate.
- Blood lactate measurements were taken at three different moments: under basal conditions (LB), 3 min after the WOD (L1), and after the recovery protocol (L2). Lactate measurements were assessed with a capillary device (LactateScout, SensLab GmbH, Leipzig, Germany) and expressed in mmol/L, with an accuracy of ±3% (minimum standard deviation: ±0.2 mmol/L). The first drop of blood was discarded in all measurements.
- The RPE was measured using Foster’s scale [21] before the warm-up (RPE basal), after the WOD (RPE 1), and after recovery (RPE 2) in four areas: global, legs, arms, and cardio.
2.5. Statistical Analysis
3. Results
3.1. WOD Duration
3.2. Physiological Variables
3.2.1. Heart Rate
3.2.2. Blood Lactate
3.2.3. Perceived Exertion (RPE)
4. Discussion
4.1. Practical Implications
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; Souza, H.d.S.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Cardoso Filho, C.A.; Bottaro, M.; Hernandez, A.J.; et al. CrossFit Overview: Systematic Review and Meta-Analysis. Sports Med. Open 2018, 4, 11. [Google Scholar] [CrossRef]
- Leitão, L.; Dias, M.; Campos, Y.; Vieira, J.G.; Sant’Ana, L.; Telles, L.G.; Tavares, C.; Mazini, M.; Novaes, J.; Vianna, J. Physical and Physiological Predictors of FRAN CrossFit® WOD Athlete’s Performance. Int. J. Environ. Res. Public. Health 2021, 18, 4070. [Google Scholar] [CrossRef]
- Mangine, G.T.; Stratton, M.T.; Almeda, C.G.; Roberts, M.D.; Esmat, T.A.; VanDusseldorp, T.A.; Feito, Y. Physiological Differences between Advanced CrossFit Athletes, Recreational CrossFit Participants, and Physically-Active Adults. PLoS ONE 2020, 15, e0223548. [Google Scholar] [CrossRef]
- Heinrich, K.M.; Spencer, V.; Fehl, N.; Poston, W.S.C. Mission Essential Fitness: Comparison of Functional Circuit Training to Traditional Army Physical Training for Active Duty Military. Mil. Med. 2012, 177, 1125–1130. [Google Scholar] [CrossRef]
- Maté-Muñoz, J.L.; Lougedo, J.H.; Barba, M.; Cañuelo-Márquez, A.M.; Guodemar-Pérez, J.; García-Fernández, P.; Lozano-Estevan, M.D.C.; Alonso-Melero, R.; Sánchez-Calabuig, M.A.; Ruíz-López, M.; et al. Cardiometabolic and Muscular Fatigue Responses to Different CrossFit® Workouts. J. Sports Sci. Med. 2018, 17, 668–679. [Google Scholar]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit Training Changes Brain-Derived Neurotrophic Factor and Irisin Levels at Rest, after Wingate and Progressive Tests, and Improves Aerobic Capacity and Body Composition of Young Physically Active Men and Women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar]
- de Sousa Neto, I.V.; de Sousa, N.M.F.; Neto, F.R.; Falk Neto, J.H.; Tibana, R.A. Time Course of Recovery Following CrossFit® Karen Benchmark Workout in Trained Men. Front. Physiol. 2022, 13, 899652. [Google Scholar] [CrossRef]
- Shaw, S.B.; Dullabh, M.; Forbes, G.; Brandkamp, J.-L.; Shaw, I. Analysis of Physiological Determinants during a Single Bout of Crossfit. Int. J. Perform. Anal. Sport 2015, 15, 809–815. [Google Scholar] [CrossRef]
- Meier, N.; Thaden, T.; Schmidt, A. Delayed Increase in Blood Lactate Concentration after a Short, Intense CrossFit® Workout. Arch. Clin. Med. Case Rep. 2021, 5, 468–478. [Google Scholar] [CrossRef]
- Pinto, M.W.; Mohamad, H.A. Levels of blood lactate and VO2max in CrossFit athletes. Fiep Bull. 2019, 89, 39–43. [Google Scholar] [CrossRef]
- Martínez-Gómez, R.; Valenzuela, P.L.; Lucia, A.; Barranco-Gil, D. Comparison of Different Recovery Strategies After High-Intensity Functional Training: A Crossover Randomized Controlled Trial. Front. Physiol. 2022, 13, 819588. [Google Scholar] [CrossRef]
- Peacock, C.A.; Krein, D.D.; Silver, T.A.; Sanders, G.J.; VON Carlowitz, K.-P.A. An Acute Bout of Self-Myofascial Release in the Form of Foam Rolling Improves Performance Testing. Int. J. Exerc. Sci. 2014, 7, 202–211. [Google Scholar] [CrossRef]
- Wiewelhove, T.; Döweling, A.; Schneider, C.; Hottenrott, L.; Meyer, T.; Kellmann, M.; Pfeiffer, M.; Ferrauti, A. A Meta-Analysis of the Effects of Foam Rolling on Performance and Recovery. Front. Physiol. 2019, 10, 376. [Google Scholar] [CrossRef]
- Rey, E.; Padrón-Cabo, A.; Costa, P.B.; Barcala-Furelos, R. Effects of Foam Rolling as a Recovery Tool in Professional Soccer Players. J. Strength Cond. Res. 2019, 33, 2194–2201. [Google Scholar] [CrossRef]
- Padrón-Cabo, A.; Alonso-Calvete, A.; Radzimiński, Ł.; Rey, E.; Lorenzo-Martínez, M. Acute Effects of Foam Rolling vs. Vibration Foam Rolling on Blood Flow Parameters in Professional Soccer Players: A Randomized Crossover Design. J. Strength Cond. Res. 2024, 38, 1885–1890. [Google Scholar] [CrossRef]
- Polydorou, R.; Kyriacou-Rossi, A.; Hadjipantelis, A.; Ioannides, C.; Zaras, N. The Role of Physical Fitness on FRAN CrossFit® Workout Performance. Appl. Sci. 2024, 14, 3317. [Google Scholar] [CrossRef]
- Silva de Souza, R.A.; Barreto, G.; Alves Freire, P.A.; de Abreu, W.C.; Saunders, B.; da Silva, S.F. Sodium Bicarbonate Improved CrossFit® Benchmark Fran, but Not Subsequent 500 m Rowing Performance. Res. Sports Med. 2024, 32, 965–980. [Google Scholar] [CrossRef]
- Fernández, J.F.; Solana, R.S.; Moya, D.; Marin, J.M.S.; Ramón, M.M. Acute Physiological Responses during Crossfit® Workouts. Eur. J. Hum. Mov. 2015, 35, 114–124. [Google Scholar]
- Alonso-Calvete, A.; Lorenzo-Martínez, M.; Pérez-Ferreirós, A.; Couso-Bruno, A.; Carracedo-Rodríguez, E.; Barcala-Furelos, M.; Barcala-Furelos, R.; Padrón-Cabo, A. Why Percussive Massage Therapy Does Not Improve Recovery after a Water Rescue? A Preliminary Study with Lifeguards. Healthcare 2022, 10, 693. [Google Scholar] [CrossRef]
- Kalén, A.; Pérez-Ferreirós, A.; Barcala-Furelos, R.; Fernández-Méndez, M.; Padrón-Cabo, A.; Prieto, J.A.; Ríos-Ave, A.; Abelairas-Gómez, C. How Can Lifeguards Recover Better? A Cross-over Study Comparing Resting, Running, and Foam Rolling. Am. J. Emerg. Med. 2017, 35, 1887–1891. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Behm, D.G.; Wilke, J. Do Self-Myofascial Release Devices Release Myofascia? Rolling Mechanisms: A Narrative Review. Sports Med. 2019, 49, 1173–1181. [Google Scholar] [CrossRef]
- Hotfiel, T.; Swoboda, B.; Krinner, S.; Grim, C.; Engelhardt, M.; Uder, M.; Heiss, R.U. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound. J. Strength Cond. Res. 2017, 31, 893–900. [Google Scholar] [CrossRef]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Acute Effects of Self-Myofascial Release Using a Foam Roller on Arterial Function. J. Strength Cond. Res. 2014, 28, 69–73. [Google Scholar] [CrossRef]
- Macdonald, G.Z.; Button, D.C.; Drinkwater, E.J.; Behm, D.G. Foam Rolling as a Recovery Tool after an Intense Bout of Physical Activity. Med. Sci. Sports Exerc. 2014, 46, 131–142. [Google Scholar] [CrossRef]
- Monedero, J.; Donne, B. Effect of Recovery Interventions on Lactate Removal and Subsequent Performance. Int. J. Sports Med. 2000, 21, 593–597. [Google Scholar] [CrossRef]
- Alonso-Calvete, A.; Lage-Rey, A.; Lorenzo-Martínez, M.; Rey, E. Does a Short Intervention with Vibration Foam Roller Recover Lifeguards Better after a Water Rescue? A Pilot Study. Am. J. Emerg. Med. 2021, 49, 71–75. [Google Scholar] [CrossRef]
- Borg, E.; Kaijser, L. A Comparison between Three Rating Scales for Perceived Exertion and Two Different Work Tests. Scand. J. Med. Sci. Sports 2006, 16, 57–69. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Coutts, A.J.; Sassi, A.; Marcora, S.M. Use of RPE-Based Training Load in Soccer. Med. Sci. Sports Exerc. 2004, 36, 1042–1047. [Google Scholar] [CrossRef]
- Weerapong, P.; Hume, P.A.; Kolt, G.S. The Mechanisms of Massage and Effects on Performance, Muscle Recovery and Injury Prevention. Sports Med. 2005, 35, 235–256. [Google Scholar] [CrossRef]
Passive Recovery (PR) | Foam Rolling Recovery (FR) | p-Value (ES) | |||||
---|---|---|---|---|---|---|---|
Variables | T0 (Before WOD) | T1 (WOD) | T2 (After Recovery) | T0 (Before WOD) | T1 (WOD) | T2 (After Recovery) | |
Heart rate (bpm) | 78 ± 17 (68–88) | - | 108 ± 9 (104–113) | 79 ± 15 (70–88) | - | 119 ± 10 (114–125) | T0 vs. T2 PR: p < 0.001 (2.38) FR: p < 0.001 (3.27) PR vs. FR T0: p = 0.86 T2: p = 0.002 (1.22) |
Max heart rate (bpm) | - | 172 ± 12 (166–179) | - | - | 176 ± 7 (172–180) | - | PR vs. FR p = 0.06 |
Mean heart rate (bpm) | - | 152 ± 16 (142–161) | - | - | 158 ± 11 (152–165) | - | PR vs. FR p = 0.09 |
Variable | Passive Recovery (PR) | Foam Rolling Recovery (FR) | p-Value (ES) | ||||
---|---|---|---|---|---|---|---|
T0 (Before WOD) | T1 (WOD) | T2 (After Recovery) | T0 (Before WOD) | T1 (WOD) | T2 (After Recovery) | ||
Lactate (mmol/L) | 1.6 (1.2–2.1) | 13.9 (13.3–18.1) | 14.9 (13.6–16.8) | 1.8 (1.3–2.3) | 16.7 (15.0–17.9) | 15.3 (13.0–18.3) | Passive recovery T0 vs. T1: p = 0.001 (0.76) T0 vs. T2: p = 0.001 (0.78) T1 vs. T2: p = 1.00 Foam Rolling recovery T0 vs. T1: p < 0.001 (0.92) T0 vs. T2: p = 0.002 (0.73) T1 vs. T2: p = 1.00 Passive recovery vs. Foam Rolling T0: p = 1.00 T1: p = 1.00 T2: p = 1.00 |
Variable | Passive Recovery (PR) | Foam Rolling Recovery (FR) | p-Value (ES) | ||||
---|---|---|---|---|---|---|---|
T0 (Before WOD) | T1 (WOD) | T2 (After Recovery) | T0 (Before WOD) | T1 (WOD) | T2 (After Recovery) | ||
General RPE | 4 (3–7) | 9 (8–10) | 6 (5–8) | 3 (1–5) | 8 (8–9) | 7 (5–7) | Passive recovery T0 vs. T1: p < 0.001 (0.86) T0 vs. T2: p = 1.00 T1 vs. T2: p = 0.015 (0.62) Foam Rolling recovery T0 vs. T1: p < 0.001 (0.95) T0 vs. T2: p = 0.30 T1 vs. T2: p = 0.10 Passive vs. Foam Rolling T0: p = 1.00 T1: p = 1.00 T2: p = 1.00 |
Legs RPE | 4 (2–6) | 8 (7–8) | 6 (4–7) | 3 (2–3) | 8 (7–9) | 5 (5–7) | Passive recovery T0 vs. T1: p = 0.005 (0.68) T0 vs. T2: p = 1.00 T1 vs. T2: p = 0.13 Foam Rolling recovery T0 vs. T1: p < 0.001 (0.85) T0 vs. T2: p = 1.00 T1 vs. T2: p = 0.051 Passive vs. Foam Rolling T0: p = 1.00 T1: p = 1.00 T2: p = 1.00 |
Arms RPE | 2 (2–3) | 9 (8–10) | 6 (3–7) | 2 (1–3) | 8 (6–9) | 7 (4–7) | Passive recovery T0 vs. T1: p < 0.001 (0.85) T0 vs. T2: p = 1.00 T1 vs. T2: p = 0.051 Foam Rolling recovery T0 vs. T1: p < 0.001 (0.91) T0 vs. T2: p = 0.031 (0.58) T1 vs. T2: p = 1.00 Passive vs. Foam Rolling T0: p = 1.00 T1: p = 1.00 T2: p = 1.00 |
Cardio RPE | 0 (0–2) | 9 (7–10) | 5 (3–5) | 0 (0–2) | 9 (8–9) | 6 (3–7) | Passive recovery T0 vs. T1: p < 0.001 (1.05) T0 vs. T2: p = 0.35 T1 vs. T2: p = 0.015 (0.62) Foam Rolling recovery T0 vs. T1: p < 0.001 (1.02) T0 vs. T2: p = 0.07 T1 vs. T2: p = 0.15 Passive vs. Foam Rolling T0: p = 1.00 T1: p = 1.00 T2: p = 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarzosa-Alonso, F.; Alonso-Calvete, A.; Otero-Agra, M.; Fernández-Méndez, M.; Fernández-Méndez, F.; Martín-Rodríguez, F.; Barcala-Furelos, R.; Santos-Folgar, M. Foam Roller Post-High-Intensity Training for CrossFit Athletes: Does It Really Help with Recovery? J. Funct. Morphol. Kinesiol. 2025, 10, 91. https://doi.org/10.3390/jfmk10010091
Zarzosa-Alonso F, Alonso-Calvete A, Otero-Agra M, Fernández-Méndez M, Fernández-Méndez F, Martín-Rodríguez F, Barcala-Furelos R, Santos-Folgar M. Foam Roller Post-High-Intensity Training for CrossFit Athletes: Does It Really Help with Recovery? Journal of Functional Morphology and Kinesiology. 2025; 10(1):91. https://doi.org/10.3390/jfmk10010091
Chicago/Turabian StyleZarzosa-Alonso, Fernando, Alejandra Alonso-Calvete, Martín Otero-Agra, María Fernández-Méndez, Felipe Fernández-Méndez, Francisco Martín-Rodríguez, Roberto Barcala-Furelos, and Myriam Santos-Folgar. 2025. "Foam Roller Post-High-Intensity Training for CrossFit Athletes: Does It Really Help with Recovery?" Journal of Functional Morphology and Kinesiology 10, no. 1: 91. https://doi.org/10.3390/jfmk10010091
APA StyleZarzosa-Alonso, F., Alonso-Calvete, A., Otero-Agra, M., Fernández-Méndez, M., Fernández-Méndez, F., Martín-Rodríguez, F., Barcala-Furelos, R., & Santos-Folgar, M. (2025). Foam Roller Post-High-Intensity Training for CrossFit Athletes: Does It Really Help with Recovery? Journal of Functional Morphology and Kinesiology, 10(1), 91. https://doi.org/10.3390/jfmk10010091