Validation, Reliability, and Usefulness of the Functional Agility Square Test [FAST]
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Functional Agility Square Test (FAST)
2.3. Participants
2.4. Testing
2.5. Statistical Analysis
3. Results
3.1. Discriminant Validity
3.2. Test–Retest Reliability
3.3. Usefulness
4. Discussion
4.1. Discriminant Validity
4.2. Reliability
4.3. Usefulness
4.4. Median Analysis in Agility Research
4.5. Limitations and Directions for Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FAST | Functional Agility Square Test |
GS | Game Sports |
NGS | Non-Game Sports |
FAST_COG | FAST Cognitive |
FAST_MOT | FAST Motor |
FAST_SAT | FAST Simple Agility Test |
RT | Response Time |
ICC | Intraclass-Correlation-Coefficients |
COD | Change in Direction |
RAI | Reactive Agility Index |
SD | Standard Deviation |
CoV | Coefficient of Variation |
TE | Typical Error |
SWC | Smallest Worthwhile Change |
LB | Lower Bound |
UB | Upper Bound |
SEM | Standard Error of Measurement |
References
- Sheppard, J.M.; Young, W.B. Agility Literature Review: Classifications, Training and Testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.J.; Gabbett, T.J.; Nassis, G.P. Agility in Team Sports: Testing, Training and Factors Affecting Performance. Sports Med. 2016, 46, 421–442. [Google Scholar] [CrossRef]
- Young, W.; Dos’Santos, T.; Harper, D.; Jefferys, I.; Talpey, S. Agility in Invasion Sports: Position Stand of the IUSCA. Int. J. Strength Cond. 2022, 2. [Google Scholar] [CrossRef]
- Young, W.B.; James, R.; Montgomery, I. Is Muscle Power Related to Running Speed with Changes of Direction? J. Sports Med. Phys. Fit. 2002, 42, 282–288. [Google Scholar]
- Young, W.B.; Dawson, B.; Henry, G.J. Agility and Change-of-Direction Speed Are Independent Skills: Implications for Training for Agility in Invasion Sports. Int. J. Sports Sci. Coach. 2015, 10, 159–169. [Google Scholar] [CrossRef]
- Casanova, F.; Oliveira, J.; Williams, M.; Garganta, J. Expertise and Perceptual-Cognitive Performance in Soccer: A Review Perícia e Rendimento Perceptivo-Cognitivo No Futebol: Uma Revisão Da Literatura. Rev. Port. Ciências Desporto 2009, 9, 115–122. [Google Scholar] [CrossRef]
- Williams, A.M. Perceptual Skill in Soccer: Implications for Talent Identification and Development. J. Sports Sci. 2000, 18, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical Demands of Different Positions in FA Premier League Soccer. J. Sports Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Taylor, J.B.; Wright, A.A.; Dischiavi, S.L.; Townsend, M.A.; Marmon, A.R. Activity Demands During Multi-Directional Team Sports: A Systematic Review. Sports Med. 2017, 47, 2533–2551. [Google Scholar] [CrossRef]
- Willberg, C.; Kohler, A.; Zentgraf, K. Construct Validity and Applicability of a Team-Sport-Specific Change of Direction Test. J. Hum. Kinet. 2023, 85, 115–126. [Google Scholar] [CrossRef]
- Huijgen, B.C.H.; Leemhuis, S.; Kok, N.M.; Verburgh, L.; Oosterlaan, J.; Elferink-Gemser, M.T.; Visscher, C. Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17 Years. PLoS ONE 2015, 10, e0144580. [Google Scholar] [CrossRef] [PubMed]
- Nimphius, S.; Callaghan, S.J.; Bezodis, N.E.; Lockie, R.G. Change of Direction and Agility Tests: Challenging Our Current Measures of Performance. Strength Cond. J. 2018, 40, 26–38. [Google Scholar] [CrossRef]
- Born, D.-P.; Zinner, C.; Düking, P.; Sperlich, B. Multi-Directional Sprint Training Improves Change-Of-Direction Speed and Reactive Agility in Young Highly Trained Soccer Players. J. Sports Sci. Med. 2016, 15, 314–319. [Google Scholar] [PubMed]
- Büchel, D.; Gokeler, A.; Heuvelmans, P.; Baumeister, J. Increased Cognitive Demands Affect Agility Performance in Female Athletes-Implications for Testing and Training of Agility in Team Ball Sports. Rev. Port. Ciências Desporto 2022, 129, 1074–1088. [Google Scholar] [CrossRef]
- Düking, P.; Born, D.-P.; Sperlich, B. The SpeedCourt: Reliability, Usefulness, and Validity of a New Method to Determine Change-of-Direction Speed. Int. J. Sports Physiol. Perform. 2016, 11, 130–134. [Google Scholar] [CrossRef]
- Friebe, D.; Hülsdünker, T.; Giesche, F.; Banzer, W.; Pfab, F.; Haser, C.; Vogt, L. Reliability and Usefulness of the Skillcourt as a Computerized Agility and Motor-Cognitive Testing Tool. Med. Sci. Sports Exerc. 2023, 55, 1265–1273. [Google Scholar] [CrossRef]
- Friebe, D.; Sieland, J.; Both, H.; Giesche, F.; Haser, C.; Hülsdünker, T.; Pfab, F.; Vogt, L.; Banzer, W. Validity of a Motor-Cognitive Dual-Task Agility Test in Elite Youth Football Players. Eur. J. Sport Sci. 2024, 24, 1056–1066. [Google Scholar] [CrossRef]
- Hülsdünker, T.; Friebe, D.; Giesche, F.; Vogt, L.; Pfab, F.; Haser, C.; Banzer, W. Validity of the SKILLCOURT® Technology for Agility and Cognitive Performance Assessment in Healthy Active Adults. J. Exerc. Sci. Fit. 2023, 21, 260–267. [Google Scholar] [CrossRef]
- Ballmann, C.G.; Rogers, R.R. American Football Headgear Impairs Visuomotor Drill Performance in Division I NCAA Football Athletes. J. Funct. Morphol. Kinesiol. 2024, 9, 169. [Google Scholar] [CrossRef]
- Jansen, M.; Elferink-Gemser, M.; Hoekstra, A.; Faber, I.; Huijgen, B. Design of a Tennis-Specific Agility Test (TAT) for Monitoring Tennis Players. J. Hum. Kinet. 2021, 80, 239–250. [Google Scholar] [CrossRef]
- Lima, R.; Rico-González, M.; Pereira, J.; Caleiro, F.; Clemente, F. Reliability of a Reactive Agility Test for Youth Volleyball Players. Pol. J. Sport Tour. 2021, 28, 8–12. [Google Scholar] [CrossRef]
- Mackala, K.; Vodičar, J.; Žvan, M.; Križaj, J.; Stodolka, J.; Rauter, S.; Šimenko, J.; Čoh, M. Evaluation of the Pre-Planned and Non-Planed Agility Performance: Comparison between Individual and Team Sports. Int. J. Environ. Res. Public Health 2020, 17, 975. [Google Scholar] [CrossRef]
- Rauter, S.; Coh, M.; Vodicar, J.; Zvan, M.; Krizaj, J.; Simenko, J.; Szmajda, L.; Mackala, K. Analysis of Reactive Agility and Change-of-Direction Speed between Soccer Players and Physical Education Students. Hum. Mov. 2018, 19, 68–74. [Google Scholar] [CrossRef]
- Morral-Yepes, M.; Moras, G.; Bishop, C.; Gonzalo-Skok, O. Assessing the Reliability and Validity of Agility Testing in Team Sports: A Systematic Review. J. Strength Cond. Res. 2020, 36, 2035–2049. [Google Scholar] [CrossRef]
- Smith, E.M.; Sherman, D.A.; Duncan, S.; Murray, A.; Chaput, M.; Murray, A.; Bazett-Jones, D.M.; Norte, G.E. Test–Retest Reliability and Visual Perturbation Performance Costs During 2 Reactive Agility Tasks. J. Sport Rehabil. 2024, 33, 444–451. [Google Scholar] [CrossRef]
- Wilke, J.; Vogel, O.; Ungricht, S. Can We Measure Perceptual-Cognitive Function during Athletic Movement? A Framework for and Reliability of a Sports-Related Testing Battery. Phys. Ther. Sport 2020, 43, 120–126. [Google Scholar] [CrossRef]
- Vilagut, G. Test-Retest Reliability. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 6622–6625. ISBN 978-94-007-0753-5. [Google Scholar]
- Rousselet, G.A.; Wilcox, R.R. Reaction Times and Other Skewed Distributions: Problems with the Mean and the Median. Meta-Psychology 2020, 4. [Google Scholar] [CrossRef]
- Čoh, M.; Vodičar, J.; Žvan, M.; Šimenko, J.; Stodolka, J.; Rauter, S.; Maćkala, K. Are Change-of-Direction Speed and Reactive Agility Independent Skills Even When Using the Same Movement Pattern? J. Strength Cond. Res. 2018, 32, 1929–1936. [Google Scholar] [CrossRef]
- Young, W.; Rayner, R.; Talpey, S. It’s Time to Change Direction on Agility Research: A Call to Action. Sports Med.-Open 2021, 7, 12. [Google Scholar] [CrossRef]
- Brinkman, C.; Baez, S.E.; Quintana, C.; Andrews, M.L.; Heebner, N.R.; Hoch, M.C.; Hoch, J.M. The Reliability of an Upper- and Lower-Extremity Visuomotor Reaction Time Task. J. Sport Rehabil. 2021, 30, 828–831. [Google Scholar] [CrossRef]
- Sekulic, D.; Krolo, A.; Spasic, M.; Uljevic, O.; Peric, M. The Development of a New Stop’n’go Reactive-Agility Test. J. Strength Cond. Res. 2014, 28, 3306. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Bujang, M.A.; Baharum, N. A Simplified Guide to Determination of Sample Size Requirements for Estimating the Value of Intraclass Correlation Coefficient: A Review. Arch. Orofac. Sci. 2017, 12, 1–11. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Taylor and Francis: Hoboken, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Atkinson, G.; Nevill, A.M. Statistical Methods for Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Schabort, E.J.; Hawley, J.A. Reliability of Power in Physical Performance Tests. Sports Med. 2001, 31, 211–234. [Google Scholar] [CrossRef]
- Hopkins, W.G. How to Interpret Changes in an Athletic Performance Test. Sportscience 2004, 8, 1–7. [Google Scholar]
- Hopkins, W.G. Measures of Reliability in Sports Medicine and Science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef]
- Popowczak, M.; Domaradzki, J.; Rokita, A.; Zwierko, M.; Zwierko, T. Predicting Visual-Motor Performance in a Reactive Agility Task from Selected Demographic, Training, Anthropometric, and Functional Variables in Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 5322. [Google Scholar] [CrossRef]
- Zwierko, M.; Jedziniak, W.; Popowczak, M.; Rokita, A. Reactive Agility in Competitive Young Volleyball Players: A Gender Comparison of Perceptual-Cognitive and Motor Determinants. J. Hum. Kinet. 2023, 85, 87–96. [Google Scholar] [CrossRef]
- Zwierko, T.; Nowakowska, A.; Jedziniak, W.; Popowczak, M.; Domaradzki, J.; Kubaszewska, J.; Kaczmarczyk, M.; Ciechanowicz, A. Contributing Factors to Sensorimotor Adaptability in Reactive Agility Performance in Youth Athletes. J. Hum. Kinet. 2022, 83, 39–48. [Google Scholar] [CrossRef]
- Bekris, E.; Gissis, I.; Ispyrlidis, I.; Mylonis, E.; Axeti, G. Combined Visual and Dribbling Performance in Young Soccer Players of Different Expertise. Res. Sports Med. 2018, 26, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Altmann, S.; Ringhof, S.; Neumann, R.; Woll, A.; Rumpf, M.C. Validity and Reliability of Speed Tests Used in Soccer: A Systematic Review. PLoS ONE 2019, 14, e0220982. [Google Scholar] [CrossRef] [PubMed]
- Tajik, M.; Azarbayjani, M.A.; Peeri, M. A Review of Reactive and Non-Reactive Agility Tests Concerning Neurologic Aspects. Thrita 2022, 11, e129744. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; McBurnie, A.; Comfort, P.; Jones, P.A. Biomechanical Determinants of Performance and Injury Risk During Cutting: A Performance-Injury Conflict? Sports Med. 2021, 51, 1983–1998. [Google Scholar] [CrossRef]
- Parada, F.J. Understanding Natural Cognition in Everyday Settings: 3 Pressing Challenges. Front. Hum. Neurosci. 2018, 12, 386. [Google Scholar] [CrossRef]
- Altmann, S.; Neumann, R.; Härtel, S.; Kurz, G.; Stein, T.; Woll, A. Agility Testing in Amateur Soccer: A Pilot Study of Selected Physical and Perceptual-Cognitive Contributions. PLoS ONE 2021, 16, e0253819. [Google Scholar] [CrossRef]
- Fiorilli, G.; Mitrotasios, M.; Iuliano, E.; Pistone, E.M.; Aquino, G.; Calcagno, G.; DI Cagno, A. Agility and Change of Direction in Soccer: Differences According to the Player Ages. J. Sports Med. Phys. Fit. 2017, 57, 1597–1604. [Google Scholar] [CrossRef]
- Gabbett, T.J.; Kelly, J.N.; Sheppard, J.M. Speed, Change of Direction Speed, and Reactive Agility of Rugby League Players. J. Strength Cond. Res. 2008, 22, 174–181. [Google Scholar] [CrossRef]
- McGrath, S.; Zhao, X.; Qin, Z.Z.; Steele, R.; Benedetti, A. One-sample Aggregate Data Meta-analysis of Medians. Stat. Med. 2019, 38, 969–984. [Google Scholar] [CrossRef]
- Khorana, A.; Pareek, A.; Ollivier, M.; Madjarova, S.J.; Kunze, K.N.; Nwachukwu, B.U.; Karlsson, J.; Marigi, E.M.; Williams, R.J. Choosing the Appropriate Measure of Central Tendency: Mean, Median, or Mode? Knee Surg Sports Traumatol. Arthrosc. 2023, 31, 12–15. [Google Scholar] [CrossRef]
- Petrie, A.; Sabin, C. Medical Statistics at a Glance, 2nd ed.; Wiley-Blackwell: Malden, MA, USA, 2007; ISBN 978-1-4051-2780-6. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; SAGE Publications: Thousand Oaks, CA, USA, 2017; ISBN 978-1-5264-1952-1. [Google Scholar]
- Krolo, A.; Gilic, B.; Foretic, N.; Pojskic, H.; Hammami, R.; Spasic, M.; Uljevic, O.; Versic, S.; Sekulic, D. Agility Testing in Youth Football (Soccer)Players; Evaluating Reliability, Validity, and Correlates of Newly Developed Testing Protocols. Int. J. Environ. Res. Public Health 2020, 17, 294. [Google Scholar] [CrossRef] [PubMed]
- Pojskic, H.; Åslin, E.; Krolo, A.; Jukic, I.; Uljevic, O.; Spasic, M.; Sekulic, D. Importance of Reactive Agility and Change of Direction Speed in Differentiating Performance Levels in Junior Soccer Players: Reliability and Validity of Newly Developed Soccer-Specific Tests. Front. Physiol. 2018, 9, 506. [Google Scholar] [CrossRef] [PubMed]
- Sekulic, D.; Foretic, N.; Gilic, B.; Esco, M.R.; Hammami, R.; Uljevic, O.; Versic, S.; Spasic, M. Importance of Agility Performance in Professional Futsal Players; Reliability and Applicability of Newly Developed Testing Protocols. Int. J. Environ. Res. Public Health 2019, 16, 3246. [Google Scholar] [CrossRef] [PubMed]
- Kutlu, M.; Doğan, Ö. Test-Retest Reliability and Validity of Three Different Agility Tests for Various Team Sports in Young Male Athletes. Cent. Eur. J. Sport Sci. Med. 2018, 22, 33–38. [Google Scholar] [CrossRef]
- Lambrichts, Y.; Jaspers, A.; Meeus, N. Surface Traction Properties Affect Agility Performance and Perception in Female Soccer Players. SPSR 2024, 228, 1–5. [Google Scholar]
Validation | Reliability | |||
---|---|---|---|---|
Game Sports | Non-Game Sports | Game Sports | ||
Mean ± SD | p | Mean ± SD | ||
Female/Male | 22/0 | 22/0 | 20/16 | |
Age (years) | 23.4 ± 3.0 | 23.7 ± 3.4 | 0.709 | 23.39 ± 2.93 |
Height (cm) | 169.4 ± 5.3 | 166.3 ± 6.8 | 0.098 | 175.36 ± 8.41 |
Weight (kg) | 63.2 ± 8.7 | 59.8 ± 11.2 | 0.267 | 69.09 ± 10.10 |
Sporting experience (years) | 15.8 ± 3.5 | 11.8 ± 5.7 | 0.009 * | 14.23 ± 5.51 |
Sports | Soccer (18) Handball (3) Ultimate Frisbee (1) | Track and Field (6) Dance (3) Fitness (3) Gymnastics (3) Swimming (2) CrossFit (1) Equestrian sports (1) Kickboxing (1) Rhythmic gymnastics (1) | Soccer (13/14) Handball (4/0) Basketball (0/1) American Football (0/1) Ultimate Frisbee (1/0) Volleyball (0/1) Tennis (0/1) |
MEAN | MEDIAN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | p | t/U | ES | Mean | SD | p | t | ES | ||
FAST_COG | GS | 523.15 | 45.44 | 0.023 MWU * | 145 MWU | −0.34 | 529 | 42.77 | 0.009 * | −2.47 | −0.74 |
NGS | 575.78 | 78.09 | 573.55 | 73.02 | |||||||
FAST_MOT | GS | 1097.37 | 89.79 | 0.013 * | −2.32 | −0.7 | 1094.45 | 90.67 | 0.018 * | −2.17 | −0.65 |
NGS | 1179.11 | 139.06 | 1173.36 | 144.78 | |||||||
FAST_SAT | GS | 1458.71 | 101.62 | 0.010 * | −2.40 | −0.73 | 1410.82 | 82.62 | 0.023 * | −2.06 | −0.62 |
NGS | 1546.23 | 137.21 | 1480.05 | 134.17 | |||||||
RAI | GS | 361.34 | 110.86 | 0.438 | −0.157 | −0.047 | 316.36 | 99.17 | 0.382 | −1.46 | 0.091 |
NGS | 367.12 | 131.79 | 306.68 | 112.13 |
MEAN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Session I RT | Session II RT | ICC [LB UB] | SEM [LB UB] | CoV (%) [LB UB] | Session II RT | Session III RT | ICC [LB UB] | SEM [LB UB] | CoV (%) [LB UB] | |
FAST_MOT | 1088.69 | 1058.70 | 0.60 [0.35–0.77] | 78.17 [99.95–58.90] | 7.28 [9.31–5.49] | 1058.70 | 1032.85 | 0.74 [0.54–0.86] | 59.36 [78.48–43.77] | 5.68 [7.50–4.19] |
FAST_SAT | 1427.67 | 1389.99 | 0.57 [0.29–0.75] | 68.91 [88.05–51.94] | 4.89 [6.25–3.69] | 1389.99 | 1369.75 | 0.50 [0.22–0.71] | 76.63 [96.18–58.49] | 5.55 [6.97–4.24] |
RAI | 338.98 | 331.29 | 0.56 [0.28–0.75] | 85.03 [108.35–64.22] | 25.37 [32.33–19.16] | 331.29 | 336.90 | 0.44 [0.13–0.67] | 84.10 [104.77–64.56] | 25.17 [31.36–19.32] |
MEDIAN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Session I RT | Session II RT | ICC [LB UB] | SEM [LB UB] | CoV (%) [LB UB] | Session II RT | Session III RT | ICC [LB UB] | SEM [LB UB] | CoV (%) [LB UB] | |
FAST_MOT | 1058 | 1059 | 0.71 [0.51–0.84] | 60.47 [79.22–44.84] | 5.61 [7.35–4.16] | 1059 | 1033 | 0.83 [0.67–0.91] | 47.20 [65.38–33.88] | 4.48 [6.21–3.22] |
FAST_SAT | 1362 | 1358 | 0.77 [0.59–0.87] | 43.65 [57.79–32.16] | 3.20 [4.24–2.36] | 1358 | 1356 | 0.59 [0.33–0.76] | 61.12 [77.87–46.16] | 4.54 [5.78–3.43] |
RAI | 287 | 275 | 0.57 [0.30–0.75] | 68.06 [86.72–51.40] | 23.87 [30.41–18.02] | 275 | 321 | 0.44 [0.14–0.67] | 70.20 [87.56–58.83] | 23.98 [29.91–18.39] |
MEAN | MEDIAN | ||||||
---|---|---|---|---|---|---|---|
Parameter | Session I | Session II | Session III | Session I | Session II | Session III | |
FAST_MOT | TE SWC 0.5 Rating | 134.7 104.3 Marginal | 89.9 73.3 Marginal | 55.1 61.3 Good | 56.8 63.9 Good | 46.6 57.5 Good | 40.4 58.9 Good |
FAST_SAT | TE SWC 0.5 Rating | 122.3 76.4 Marginal | 104.1 67.5 Marginal | 78.7 70.9 Marginal | 82.2 55.8 Marginal | 78.7 59.3 Marginal | 44.4 54.5 Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, R.; Büchel, D.; Baumeister, J. Validation, Reliability, and Usefulness of the Functional Agility Square Test [FAST]. J. Funct. Morphol. Kinesiol. 2025, 10, 126. https://doi.org/10.3390/jfmk10020126
Müller R, Büchel D, Baumeister J. Validation, Reliability, and Usefulness of the Functional Agility Square Test [FAST]. Journal of Functional Morphology and Kinesiology. 2025; 10(2):126. https://doi.org/10.3390/jfmk10020126
Chicago/Turabian StyleMüller, Romina, Daniel Büchel, and Jochen Baumeister. 2025. "Validation, Reliability, and Usefulness of the Functional Agility Square Test [FAST]" Journal of Functional Morphology and Kinesiology 10, no. 2: 126. https://doi.org/10.3390/jfmk10020126
APA StyleMüller, R., Büchel, D., & Baumeister, J. (2025). Validation, Reliability, and Usefulness of the Functional Agility Square Test [FAST]. Journal of Functional Morphology and Kinesiology, 10(2), 126. https://doi.org/10.3390/jfmk10020126