Psychophysiological Acute Effects of Functional Neurology Intervention on Vestibulo-Ocular Reflex Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Methodology
- Baseline Measurement: Initial evaluations were performed to establish baseline data for each participant’s psychophysiological state and physical capabilities.
- Pre-Intervention Post-Indicator Muscle Failure: Following baseline measurements, we administered a test to induce failure in the anterior deltoid muscle by exposing it to semicircular canal stimuli, documenting the muscle’s natural neurological response to stress before any treatment.
- Post-Functional Neurology Treatment: After inducing muscle failure, participants underwent tailored functional neurology treatments designed to address neuromuscular imbalances and enhance neuroplasticity. Measurements post-treatment assessed immediate changes from the interventions.
- Post-Intervention Post-Indicator Muscle Failure: Finally, we repeated the muscle failure test to evaluate the long-term impact of the treatment on muscle resilience and overall neuromuscular health.
2.3. Environmental Conditions and Instruments
- Body weight measurements: Conducted using a SECA scale, model 714, calibrated and positioned on a hard, level surface. Participants were measured without heavy clothing or footwear [18].
- Pressure pain threshold (PPT): Measured using a Wagner Instruments Inc. (Greenwich, CT, USA) FPK 60 model manual pressure algometer, applied vertically to specific muscle areas until pain onset was indicated by the participant [19].
- Cortical arousal: Assessed using the critical flicker fusion threshold (CFFT) from a Lafayette Instrument Control Unit Model 12021. The Lafayette Instrument Flicker Fusion Control Unit was employed to assess cortical arousal by progressively increasing the flicker frequency of a light stimulus until participants reported a steady visual perception, recording the critical flicker fusion threshold. Changes in CFFT values indicate variations in cortical arousal and processing efficiency [20].
- Isometric handgrip strength: Measured with a TKK 5402 dynamometer from Takei Scientific Instruments Co. Ltd. (Niigata, Japan) Participants were seated with their arm at a 90-degree angle during the test [21].
- Blood oxygen saturation and heart rate: Monitored using a Beurer medical PO 30 pulse oximeter to assess cardiovascular response during the intervention [22].
- VOR cancellation test: The participant is seated upright and instructed to maintain visual fixation on their right thumb, positioned directly in front of them. The participant then actively moves their head horizontally from right to left at a moderate and controlled speed while continuing to track their thumb, allowing evaluation of their ability to suppress the vestibulo-ocular reflex. Semicircular canal stimulation was achieved through active head rotations at approximately 2 Hz along the horizontal axis, requiring continuous VOR cancellation while maintaining visual fixation.
2.4. Functional Neurology Intervention
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Study Limitations and Future Research Lines
4.2. Practical Applications of Functional Neurology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warren, S.; Ross, R.G. Deficient cancellation of the vestibular ocular reflex in schizophrenia. Schizophr. Res. 1998, 34, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Cullen, K.E.; Huterer, M.; Braidwood, D.A.; Sylvestre, P.A. Time course of vestibuloocular reflex suppression during gaze shifts. J. Neurophysiol. 2004, 92, 3408–3422. [Google Scholar] [CrossRef]
- Gordon, C.R.; Caspi, A.; Levite, R.; Zivotofsky, A.Z. Mechanisms of vestibulo-ocular reflex (VOR) cancellation in spinocerebellar ataxia type 3 (SCA-3) and episodic ataxia type 2 (EA-2). Prog. Brain Res. 2008, 171, 519–525. [Google Scholar] [PubMed]
- Sever, E.; Kiliç, G.; Algun, Z.C. The effects of vestibular rehabilitation on kinesiophobia and balance with individuals who has vestibular hypofunction. Indian J. Otolaryngol. Head Neck Surg. 2022, 74 (Suppl. S3), 4319–4324. [Google Scholar] [CrossRef] [PubMed]
- Pick, S.; Goldstein, L.H.; Perez, D.L.; Nicholson, T.R. Emotional processing in functional neurological disorder: A review, biopsychosocial model and research agenda. J. Neurol. Neurosurg. Psychiatry 2019, 90, 704–711. [Google Scholar] [CrossRef]
- Lee, S.U.; Kim, J.S.; Kim, H.J.; Choi, J.Y.; Park, J.Y.; Kim, J.M.; Yang, X. Evolution of the vestibular function during head impulses in spinocerebellar ataxia type 6. J. Neurol. 2020, 267, 1672–1678. [Google Scholar] [CrossRef]
- Peinado-Rubia, A.B.; Osuna-Pérez, M.C.; Cortés-Pérez, I.; Rojas-Navarrete, A.; Ibancos-Losada, M.D.R.; Lomas-Vega, R. Effectiveness of Vestibular Rehabilitation in Improving Health Status and Balance in Patients with Fibromyalgia Syndrome: A Single-Blind Randomized Controlled Trial. Biomedicines 2023, 11, 1297. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, G.P.; Piker, E.G.; Do, C.; McCaslin, D.L.; Hood, L. Suppression of the vestibulo-ocular reflex using visual and nonvisual stimuli. Am. J. Audiol. 2012, 21, 226–232. [Google Scholar] [CrossRef]
- Fobian, A.D.; Elliott, L. A review of functional neurological symptom disorder etiology and the integrated etiological summary model. J. Psychiatry Neurosci. 2019, 44, 8–18. [Google Scholar] [CrossRef]
- Kumar, J.; Patel, T.; Sugandh, F.; Dev, J.; Kumar, U.; Adeeb, M.; Kachhadia, M.P.; Puri, P.; Prachi, F.; Zaman, M.U.; et al. Innovative approaches and therapies to enhance neuroplasticity and promote recovery in patients with neurological disorders: A narrative review. Cureus 2023, 15, e41914. [Google Scholar] [CrossRef]
- McElligott, J.G.; Spencer, R.F. Neuropharmacological aspects of the vestibulo-ocular reflex. In Neurochemistry of the Vestibular System; Routledge: London, UK, 2023; pp. 199–222. [Google Scholar]
- Robinson, D.A. Basic framework of the vestibulo-ocular reflex. Prog. Brain Res. 2022, 267, 131–153. [Google Scholar] [PubMed]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35 (Suppl. S2), ii7–ii11. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.; Lifshitz, J. Traumatic brain injury and vestibulo-ocular function: Current challenges and future prospects. Eye Brain 2016, 8, 153–164. [Google Scholar] [CrossRef]
- Sedeño-Vidal, A.; Hita-Contreras, F.; Montilla-Ibáñez, M.A. The Effects of Vestibular Rehabilitation and Manual Therapy on Patients with Unilateral Vestibular Dysfunction: A Randomized and Controlled Clinical Study. Int. J. Environ. Res. Public Health 2022, 19, 15080. [Google Scholar] [CrossRef]
- Bronstein, A.M.; Patel, M.; Arshad, Q. A brief review of the clinical anatomy of the vestibular-ocular connections—How much do we know? Eye 2015, 29, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Srulijes, K.; Mack, D.J.; Klenk, J.; Schwickert, L.; Ihlen, E.A.F.; Schwenk, M.; Lindemann, U.; Meyer, M.; Srijana, K.C.; Hobert, M.A.; et al. Association between vestibulo-ocular reflex suppression, balance, gait, and fall risk in ageing and neurodegenerative disease: Protocol of a one-year prospective follow-up study. BMC Neurol. 2015, 15, 192. [Google Scholar] [CrossRef]
- Tapia-Serrano, M.A.; Esteban-Cornejo, I.; Rodriguez-Ayllon, M.; Vaquero-Solís, M.; Sánchez-Oliva, D.; Sánchez-Miguel, P.A. Adherence to the Mediterranean diet and academic performance in adolescents: Does BMI status moderate this association? Clin. Nutr. 2021, 40, 4465–4472. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Fuentes-García, J.P.; Castro, M.A.; Tornero-Aguilera, J.F.; Martínez-Guardado, I. The Effect of Acute Physical Fatigue on Information Processing, Pain Threshold and Muscular Performance. Appl. Sci. 2024, 14, 2036. [Google Scholar] [CrossRef]
- Aguilera, J.F.T.; Elias, V.F.; Clemente-Suárez, V.J. Autonomic and cortical response of soldiers in different combat scenarios. BMJ Mil. Health 2021, 167, 172–176. [Google Scholar] [CrossRef]
- Suwannakul, B.; Sangkarit, N.; Thammachai, A.; Tapanya, W. Effects of Surya Namaskar yoga on perceived stress, anthropometric parameters, and physical fitness in overweight and obese female university students: A randomized controlled trial. Hong Kong Physiother. J. 2024, 45, 23–33. [Google Scholar] [CrossRef]
- Alassafi, M.O.; Aziz, W.; AlGhamdi, R.; Alshdadi, A.A.; Nadeem, M.S.A.; Khan, I.R.; Bahaddad, A.; Altalbe, A.; Albishry, N. Complexity reduction of oxygen saturation variability signals in COVID-19 patients: Implications for cardiorespiratory control. J. Infect. Public Health 2024, 17, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Rey-Mota, J.; Escribano-Colmena, G.; Fernandez-Lucas, J.; Parraça, J.A.; Clemente-Suárez, V.J. Impact of Professional Experience on Clinical Judgment and Muscular Response in Various Neuromuscular Tests. Physiol. Behav. 2024, 283, 114602. [Google Scholar] [CrossRef]
- Rey-Mota, J.; Escribano-Colmena, G.; Álvarez, D.M.C.; Vasquez Perez, J.; Navarro-Jimenez, E.; Clemente-Suárez, V.J. Application of Functional Neurology Therapy in a Lactose-Intolerant Patient. Life 2024, 14, 978. [Google Scholar] [CrossRef]
- Castien, R.F.; Coppieters, M.W.; Durge, T.S.; Scholten-Peeters, G.G. High concurrent validity between digital and analogue algometers to measure pressure pain thresholds in healthy participants and people with migraine: A cross-sectional study. J. Headache Pain 2021, 22, 69. [Google Scholar] [CrossRef]
- Rasmussen, G.H.F.; Kristiansen, M.; Arroyo-Morales, M.; Voigt, M.; Madeleine, P. Absolute and relative reliability of pain sensitivity and functional outcomes of the affected shoulder among women with pain after breast cancer treatment. PLoS ONE 2020, 15, e0234118. [Google Scholar] [CrossRef] [PubMed]
- Alfonsin, M.M.; Chapon, R.; de Souza, C.A.; Genro, V.K.; Mattia, M.M.; Cunha-Filho, J.S. Correlations among algometry, the visual analogue scale, and the numeric rating scale to assess chronic pelvic pain in women. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019, 3, 100037. [Google Scholar] [CrossRef] [PubMed]
- Tu, F.F.; Fitzgerald, C.M.; Kuiken, T.; Farrell, T.; Norman, H.R. Comparative measurement of pelvic floor pain sensitivity in chronic pelvic pain. Obstet. Gynecol. 2007, 110, 1244–1248. [Google Scholar] [CrossRef]
- Hewett, T.E.; Paterno, M.V.; Myer, G.D. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin. Orthop. Relat. Res. 2002, 402, 76–94. [Google Scholar] [CrossRef]
- Gonçalves, C.; Parraca, J.A.; Bravo, J.; Abreu, A.; Pais, J.; Raimundo, A.; Clemente-Suárez, V.J. Influence of two exercise programs on heart rate variability, body temperature, central nervous system fatigue, and cortical arousal after a heart attack. Int. J. Environ. Res. Public Health 2022, 20, 199. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J. The application of cortical arousal assessment to control neuromuscular fatigue during strength training. J. Mot. Behav. 2017, 49, 429–434. [Google Scholar] [CrossRef]
- Yang, X.; Geng, F. Corticotropin-releasing factor signaling and its potential role in the prefrontal cortex-dependent regulation of anxiety. J. Neurosci. Res. 2023, 101, 1781–1794. [Google Scholar] [CrossRef]
- Alexander, J.K.; Hillier, A.; Smith, R.M.; Tivarus, M.E.; Beversdorf, D.Q. Beta-adrenergic modulation of cognitive flexibility during stress. J. Cogn. Neurosci. 2007, 19, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, A. Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Res. 2006, 145, 79–83. [Google Scholar] [CrossRef]
- Wilson, M.A.; McNaughton, B.L. Reactivation of hippocampal ensemble memories during sleep. Science 1994, 265, 676–679. [Google Scholar] [CrossRef] [PubMed]
- De la Vega, R.; Jiménez-Castuera, R.; Leyton-Román, M. Impact of weekly physical activity on stress response: An experimental study. Front. Psychol. 2021, 11, 608217. [Google Scholar] [CrossRef] [PubMed]
- Dietzek, M.; Finn, S.; Karvouniari, P.; Zeller, M.A.; Klingner, C.M.; Guntinas-Lichius, O.; Witte, O.W.; Axer, H. In older patients treated for dizziness and vertigo in multimodal rehabilitation somatic deficits prevail while anxiety plays a minor role compared to young and middle aged patients. Front. Aging Neurosci. 2018, 10, 345. [Google Scholar] [CrossRef]
- Ribeiro Sr, M.B.N.; Mancini, P.C.; Bicalho, M.A.C. Improvement of cognitive skills in elderly undergoing vestibular rehabilitation. Alzheimers Dement. 2023, 19, e070908. [Google Scholar] [CrossRef]
- Tretter, V.; Zach, M.L.; Böhme, S.; Ullrich, R.; Markstaller, K.; Klein, K.U. Investigating disturbances of oxygen homeostasis: From cellular mechanisms to the clinical practice. Front. Physiol. 2020, 11, 947. [Google Scholar] [CrossRef]
- Ramat, S.; Straumann, D.; Zee, D.S. Interaural translational VOR: Suppression, enhancement, and cognitive control. J. Neurophysiol. 2005, 94, 2391–2402. [Google Scholar] [CrossRef]
- Wilson, D.F. Quantifying the role of oxygen pressure in tissue function. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H11–H13. [Google Scholar] [CrossRef]
- Nemcova, A.; Jordanova, I.; Varecka, M.; Smisek, R.; Marsanova, L.; Smital, L.; Vitek, M. Monitoring of heart rate, blood oxygen saturation, and blood pressure using a smartphone. Biomed. Signal Process. Control. 2020, 59, 101928. [Google Scholar] [CrossRef]
- Dutra, R.M.F.; Neves, I.L.I.; Neves, R.S.; Atik, E.; Santos, U.D.P. Peripheral oxygen saturation, heart rate, and blood pressure during dental treatment of children with cyanotic congenital heart disease. Clinics 2014, 69, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Lampier, L.C.; Valadão, C.T.; Silva, L.A.; Delisle-Rodríguez, D.; de Oliveira Caldeira, E.M.; Bastos-Filho, T.F. A deep learning approach to estimate pulse rate by remote photoplethysmography. Physiol. Meas. 2022, 43, 075012. [Google Scholar] [CrossRef]
- Rey-Mota, J.; Escribano-Colmena, G.; Navarro Jiménez, E.; Laborde-Cárdenas, C.C.; Yáñez-Sepúlveda, R.; Clemente-Suárez, V.J. Case Report: Potential benefits of a single functional neurology intervention in athletic rehabilitation and recovery: A case study. Front. Sports Act. Living 2025, 6, 1472948. [Google Scholar] [CrossRef] [PubMed]
- Rey-Mota, J.; Escribano-Colmena, G.; Dalamitros, A.A.; Yáñez-Sepúlveda, R.; Álvarez, D.M.-C.; Jimenez, E.N.; Clemente-Suárez, V.J. Acute Effect of a Single Functional Neurology Intervention on Muscular Trigger Point. Appl. Sci. 2025, 15, 2293. [Google Scholar] [CrossRef]
- Escribano-Colmena, G.; Rey-Mota, J.; Clemente-Suárez, V.J. Neuropsychophysiological Effects of a Single Functional Neurology Intervention on Semicircular Canals Stimuli Dysfunction. Behav. Sci. 2025, 15, 242. [Google Scholar] [CrossRef]
Group | Variable | Baseline | Post-Indicator Muscle Failure (Pre-Intervention) | Post-Functional Neurology Treatment | Post-Indicator Muscle Failure (Post-Intervention) | ANOVA p-Value |
---|---|---|---|---|---|---|
Experimental | Pressure Pain Threshold (kgf) | 27.49 ± 0.67 | 29.69 ± 0.38 | 30.11 ± 0.33 | 35.69 ± 0.60 | 0.029 * |
Hand Strength (N) | 20.41 ± 0.72 | 21.84 ± 0.39 | 23.15 ± 0.45 | 26.56 ± 0.52 | 0.012 * | |
Critical Flicker Fusion Threshold (Hz) | 32.24 ± 0.45 | 33.97 ± 0.53 | 37.38 ± 0.40 | 38.32 ± 0.60 | 0.003 * | |
Blood Oxygen Saturation (%) | 32.15 ± 0.33 | 35.05 ± 0.78 | 37.38 ± 0.45 | 35.74 ± 0.64 | 0.018 * | |
Heart Rate (bpm) | 22.44 ± 0.32 | 25.26 ± 0.43 | 27.09 ± 0.46 | 28.56 ± 0.57 | 0.008 * | |
Control | Pressure Pain Threshold (kgf) | 39.50 ± 0.76 | 39.83 ± 0.34 | 38.89 ± 0.44 | 38.60 ± 0.71 | 0.450 |
Hand Strength (N) | 25.05 ± 0.70 | 25.69 ± 0.34 | 25.91 ± 0.66 | 26.06 ± 0.69 | 0.252 | |
Critical Flicker Fusion Threshold (Hz) | 26.42 ± 0.33 | 27.72 ± 0.46 | 27.76 ± 0.62 | 26.72 ± 0.74 | 0.531 | |
Blood Oxygen Saturation (%) | 22.88 ± 0.58 | 22.79 ± 0.69 | 24.08 ± 0.51 | 21.93 ± 0.31 | 0.276 | |
Heart Rate (bpm) | 19.92 ± 0.55 | 21.15 ± 0.75 | 20.36 ± 0.68 | 19.88 ± 0.41 | 0.254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escribano-Colmena, G.; Rey-Mota, J.; Beltrán-Velasco, A.I.; Clemente-Suárez, V.J. Psychophysiological Acute Effects of Functional Neurology Intervention on Vestibulo-Ocular Reflex Dysfunction. J. Funct. Morphol. Kinesiol. 2025, 10, 146. https://doi.org/10.3390/jfmk10020146
Escribano-Colmena G, Rey-Mota J, Beltrán-Velasco AI, Clemente-Suárez VJ. Psychophysiological Acute Effects of Functional Neurology Intervention on Vestibulo-Ocular Reflex Dysfunction. Journal of Functional Morphology and Kinesiology. 2025; 10(2):146. https://doi.org/10.3390/jfmk10020146
Chicago/Turabian StyleEscribano-Colmena, Guillermo, Jorge Rey-Mota, Ana Isabel Beltrán-Velasco, and Vicente Javier Clemente-Suárez. 2025. "Psychophysiological Acute Effects of Functional Neurology Intervention on Vestibulo-Ocular Reflex Dysfunction" Journal of Functional Morphology and Kinesiology 10, no. 2: 146. https://doi.org/10.3390/jfmk10020146
APA StyleEscribano-Colmena, G., Rey-Mota, J., Beltrán-Velasco, A. I., & Clemente-Suárez, V. J. (2025). Psychophysiological Acute Effects of Functional Neurology Intervention on Vestibulo-Ocular Reflex Dysfunction. Journal of Functional Morphology and Kinesiology, 10(2), 146. https://doi.org/10.3390/jfmk10020146