Spine Kinematic Alterations in Nordic Walking Under Two Different Speeds of 3 and 5 km/h—A Pilot Study
Abstract
1. Introduction
- -
- Engagement of upper limb muscles [3];
- -
- Facilitated movement through reduced muscular effort and lower limb load;
- -
- Increased total body energy expenditure due to upper limb involvement;
- -
- Reduced mechanical load on lower extremities [4];
- -
- Enhanced overall endurance [5];
- -
- Decreased vertical ground reaction forces on the legs—NW promotes higher ground reaction force (GRF) and speed compared to RW [6];
- -
- Reduced stress on the knee and hip joints [3];
- -
- -
- Offer a potentially effective approach for reducing pain and fatigue in individuals living with chronic conditions [10];
- -
- Useful therapeutic intervention for improving the exercise capacity and gait technique in male ischemic heart disease patients [11];
- -
- The combination of NW training and time-restricted eating is a welltolerated intervention for individuals with an abnormal body composition [12].
- -
- Demonstrated notable enhancements in glycemic control and aerobic capacity in individuals with type 2 diabetes and a normal BMI [13];
- -
- 8.6 months of NW training is effective in preventing/delaying the sarcopenia among postmenopausal women with NAFLD and pre-diabetes [14];
- -
- -
- -
2. Materials and Methods
2.1. Participants and Measurements
- -
- RW at a speed of 3 km/h on a training track for 1 min;
- -
- NW at a speed of 3 km/h on a training trail for 1 min;
- -
- RW at a speed of 5 km/h on a training track for 1 min;
- -
- NW at a speed of 5 km/h on a treadmill for 1 min.
2.2. Data Models
3. Results
3.1. Upper Spine
3.2. Lower Spine
3.3. Thoracic
3.4. Lumbar
3.5. Pelvis
4. Discussion
4.1. Limitations of the Study
4.2. Hypothesis for Different Kinematic Response Under NW of Different Tested Segments of the Spine Under NW
- -
- the different correlation of these spine segments to the upper limbs and lower limbs movement;
- -
- the height and weight of the person and the length of the poles, respectively;
- -
- the health status of the person performing NW;
- -
- the speed of NW and the terrain on which it is performed;
- -
- the strictly individual gait of each person.
5. Conclusions
- -
- Significantly decrease the range of the stance and swing phases in the frontal plane.
- -
- Significantly increase the stance phase duration in all three planes of motion.
- -
- Significantly decrease the swing phase duration in all three planes.
- -
- Significantly increase stance phase velocity in all three planes.
- -
- Alter step kinematics, depending on walking speed.
Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, D.-J.; Lee, Y.-S.; Park, S.-K.; Kang, J.-I.; Lee, J.-H.; Kang, Y.-H. Biomechanical Analysis of Lower Limbs on Speed of Nordic Walking. Korean J. Sport Biomech. 2011, 21, 383–390. [Google Scholar] [CrossRef]
- Pérez-Soriano, P.; Encarnación-Martínez, A.; Aparicio-Aparicio, I.; Giménez, J.V.; Llana-Belloch, S. Nordic walking: A systematic review. Eur. J. Hum. Mov. 2014, 33, 26–45. [Google Scholar]
- Koizumi, T.; Tsujiuchi, N.; Takeda, M.; Murodate, Y. Physical motion analysis of Nordic walking. Eng. Sports 2008, 7, 379–385. [Google Scholar]
- Strutzenberger, G.; Rasp, B.; Schwameder, H. Effect of walking speed and pole length on kinematics and dynamics in Nordic walking. In Proceedings of the International Symposium on Biomechanics in Sports, Ouro Preto, Brazil, 23–27 August 2007. [Google Scholar]
- Willson, J.; Torry, M.R.; Decker, M.J.; Kernozek, T.; Steadman, J.R. Effects of walking poles on lower extremity gait mechanics. Med. Sci. Sports Exerc. 2001, 33, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Encarnación-Martínez, A.; Catalá-Vilaplana, I.; Aparicio, I.; Sanchis-Sanchis, R.; Priego-Quesada, J.I.; Jimenez-Perez, I.; Perez-Soriano, P. Does Nordic Walking technique influence the ground reaction forces? Gait Posture 2023, 101, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Tschentscher, M.; Niederseer, D.; Niebauer, J. Health benefits of Nordic walking: A systematic review. Am. J. Prev. Med. 2013, 44, 76–84. [Google Scholar] [CrossRef]
- Laguarta-Val, S.; Varillas-Delgado, D.; Lizcano-Álvarez, Á.; Molero-Sánchez, A.; Melian-Ortiz, A.; Cano-de-la-Cuerda, R.; Jiménez-Antona, C. Effects of Aerobic Exercise Therapy through Nordic Walking Program in Lactate Concentrations, Fatigue and Quality-of-Life in Patients with Long-COVID Syndrome: A Non-Randomized Parallel Controlled Trial. J. Clin. Med. 2024, 13, 1035. [Google Scholar] [CrossRef]
- Lizcano-Álvarez, Á.; Varillas-Delgado, D.; Cano-de-la-Cuerda, R.; Jiménez-Antona, C.; Melián-Ortiz, A.; Molero-Sánchez, A.; Laguarta-Val, S. The Association of Genetic Markers Involved in Muscle Performance Responding to Lactate Levels during Physical Exercise Therapy by Nordic Walking in Patients with Long COVID Syndrome: A Nonrandomized Controlled Pilot Study. Int. J. Mol. Sci. 2024, 25, 8305. [Google Scholar] [CrossRef]
- González-Devesa, D.; Varela, S.; Sanchez-Lastra, M.A.; Ayán, C. Nordic Walking as a Non-Pharmacological Intervention for Chronic Pain and Fatigue: Systematic Review. Healthcare 2024, 12, 1167. [Google Scholar] [CrossRef]
- Szpala, A.; Winiarski, S.; Kołodziej, M.; Jasiński, R.; Lejczak, A.; Kałka, D.; Lorek, K.; Bałchanowski, J.; Sławomir, S.; Woźniewski, M.; et al. Effects of nordic walking training on gait and exercise tolerance in male ischemic heart disease patients. Sci. Rep. 2024, 14, 11249. [Google Scholar] [CrossRef]
- Czerwińska-Ledwig, O.; Kryst, J.; Ziemann, E.; Borkowska, A.; Reczkowicz, J.; Dzidek, A.; Rydzik, Ł.; Pałka, T.; Żychowska, M.; Kupczak, W.; et al. The Beneficial Effects of Nordic Walking Training Combined with Time-Restricted Eating 14/24 in Women with Abnormal Body Composition Depend on the Application Period. Nutrients 2024, 16, 1413. [Google Scholar] [CrossRef]
- Athwale, R.M.; Shukla, M.P. Effect of supervised nordic walking on glycemic control and maximal aerobic capacity in patients with type 2 diabetes mellitus: A randomized controlled trial. Eur. J. Physiother. 2024, 27, 106–111. [Google Scholar] [CrossRef]
- Du, X.; Gao, F.; Wang, X.; Lei, S.M.; Cheng, S.; Le, S. The benefits of Nordic walking training on parameters related to sarcopenia in postmenopausal women with non-alcohol fatty liver disease and pre-diabetes: Secondary analyses of a randomized controlled trial. Sci. Sports 2025, 40, 233–238. [Google Scholar] [CrossRef]
- Cokorilo, N.; Ruiz-Montero, P.J.; González-Fernández, F.T.; Martín-Moya, R. An intervention of 12 weeks of Nordic walking and recreational walking to improve cardiorespiratory capacity and fitness in older adult women. J. Clin. Med. 2022, 11, 2900. [Google Scholar] [CrossRef] [PubMed]
- Della Guardia, L.; Pellino, V.C.; Filipas, L.; Bonato, M.; Gallo, G.; Lovecchio, N.; Vandoni, M.; Codella, R. Nordic Walking Improves Cardiometabolic Parameters, Fitness Performance, and Quality of Life in Older Adults with Type 2 Diabetes. Endocr. Pract. 2023, 29, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Cugusi, L.; Manca, A.; Yeo, T.J.; Bassareo, P.P.; Mercuro, G.; Kaski, J.C. Nordic walking for individuals with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Prev. Cardiol. 2017, 24, 1938–1955. [Google Scholar] [CrossRef]
- Salse-Batán, J.; Sanchez-Lastra, M.A.; Suarez-Iglesias, D.; Varela, S.; Ayan, C. Effects of Nordic walking in people with Parkinson’s disease: A systematic review and meta-analysis. Health Soc. Care Community 2022, 30, e1505–e1520. [Google Scholar] [CrossRef]
- Saulicz, M.; Saulicz, A.; Myśliwiec, A.; Knapik, A.; Rottermund, J.; Saulicz, E. Effect of Nordic Walking Training on Physical Fitness and Self-Assessment of Health of People with Chronic Non-Specific Lower Back Pain. Int. J. Environ. Res. Public Health 2023, 20, 5720. [Google Scholar] [CrossRef]
- Huang, Y.H.; Fang, I.Y.; Kuo, Y.L. The influence of Nordic walking on spinal posture, physical function, and back pain in community-dwelling older adults: A pilot study. Healthcare 2021, 9, 1303. [Google Scholar] [CrossRef]
- Zoffoli, L.; Lucertini, F.; Federici, A.; Ditroilo, M. Trunk muscles activation during pole walking vs. walking performed at different speeds and grades. Gait Posture 2016, 46, 57–62. [Google Scholar] [CrossRef]
- Allet, L.; Leemann, B.; Guyen, E.; Murphy, L.; Monnin, D.; Herrmann, F.R.; Schnider, A. Effect of different walking aids on walking capacity of patients with poststroke hemiparesis. Arch. Phys. Med. Rehabil. 2009, 90, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Church, T.S.; Earnest, C.P.; Morss, G.M. Field testing of physiological responses associated with Nordic walking. Res. Q. Exerc. Sport 2002, 73, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, B.H.; Caldwell, B.; Kulling, F.A. Comparison of hiking stickuse on lateral stability while balancing with and without a load. Percept. Mot. Skills 1997, 85, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Figard-Fabre, H.; Fabre, N.; Leonardi, A.; Schena, F. Physiological and perceptual responses to Nordic walking in obese middle-aged women in comparison with the normal walk. Eur. J. Appl. Physiol. 2010, 108, 1141–1151. [Google Scholar] [CrossRef]
- Gram, B.; Christensen, R.; Christiansen, C.; Gram, J. Effects of nordic walking and exercise in type 2 diabetes mellitus: A randomized controlled trial. Clin. J. Sport Med. 2010, 20, 355–361. [Google Scholar]
- Mazumder, O.; Poduval, M.; Ghose, A.; Sinha, A. Walking Pole Gait to Reduce Joint Loading post Total Knee Athroplasty: Musculoskeletal modeling Approach. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico City, Mexico, 1–5 November 2021; IEEE: New York, NY, USA, 2021; pp. 4605–4610. [Google Scholar]
- Kemp, G.; Crossley, K.M.; Wrigley, T.V.; Metcalf, B.R.; Hinman, R.S. Reducing joint loading in medial knee osteoarthritis: Shoes and canes. Arthritis Rheum. 2008, 59, 609–614. [Google Scholar] [CrossRef]
- Mndermann, A.; Dyrby, C.; Hurwitz, D.E.; Sharma, L.; Andriacchi, T.P. Potential strategies to reduce medial compartment loading in patients with knee osteoarthritis of varying severity. Arthritis Rheum. 2004, 50, 1172–1178. [Google Scholar] [CrossRef]
- Szpala, A.; Winiarski, S.; Kołodziej, M.; Pietraszewski, B.; Jasinski, R.; Niebudek, T.; Lejczak, A.; Lorek, K.; Bałchanowski, J.; Wudarczyk, S.; et al. Comparative Analysis of Gait Kinematics in Older Adults: Free Walking vs. Nordic Walking with Classic and Mechatronic Poles. Appl. Sci. 2024, 14, 3057. [Google Scholar] [CrossRef]
- Russo, L.; Belli, G.; Di Blasio, A.; Lupu, E.; Larion, A.; Fischetti, F.; Montagnani, E.; Di Biase Arrivabene, P.; De Angelis, M. The Impact of NordicWalking Pole Length on Gait Kinematic Parameters. J. Funct. Morphol. Kinesiol. 2023, 8, 50. [Google Scholar] [CrossRef]
- Dziuba, A.K.; Zurek, G.; Garrard, I.; Wierzbicka-Damska, I. Biomechanical Parameters in Lower Limbs during Natural Walking and Nordic Walking at Different Speeds. Acta Bioeng. Biomech. 2015, 17, 95–101. [Google Scholar]
- Schwameder, H.; Roithner, R.; Müller, E.; Niessen, W.; Raschner, C. Knee Joint Forces during Downhill Walking with Hiking Poles. J. Sports Sci. 1999, 17, 969–978. [Google Scholar] [CrossRef]
- Jensen, S.B.; Henriksen, M.; Aaboe, J.; Hansen, L.; Simonsen, E.B.; Alkjær, T. Is It Possible to Reduce the Knee Joint Compression Force during Level Walking with Hiking Poles? Scand. J. Med. Sci. Sports 2011, 21, e195–e200. [Google Scholar] [CrossRef]
- Stief, F.; Kleindienst, F.I.; Wiemeyer, J.; Wedel, F.; Campe, S.; Krabbe, B. Inverse Dynamic Analysis of the Lower Extremities during Nordic Walking, Walking, and Running. J. Appl. Biomech. 2008, 24, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, T.; Knicker, A.; Hoffman, U.; Harwig, B.; Hollmann, W.; Strüder, H.K. Physiological Responses to Nordic Walking, Walking and Jogging. Eur. J. Appl. Physiol. 2006, 98, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Perrey, S.; Fabre, N. Exertion during uphill, level and downhill walking with and without hiking poles. J. Sports Sci. Med. 2008, 7, 32–38. [Google Scholar] [PubMed]
- Saunders, M.J.; Hipp, G.R.; Wenos, D.L.; Deaton, M.L. Trekking Poles Increase Physiological Responses to Hiking without Increased Perceived Exertion. J. Strength Cond. Res. 2008, 22, 1468–1474. [Google Scholar] [CrossRef]
- Hansen, E.A.; Smith, G. Energy Expenditure and Comfort during Nordic Walking with Different Pole Lengths. J. Strength Cond. Res. 2009, 23, 1187–1194. [Google Scholar] [CrossRef]
- Pellegrini, B.; Boccia, G.; Zoppirolli, C.; Rosa, R.; Stella, F.; Bortolan, L.; Rainoldi, A.; Schena, F. Muscular and metabolic responses to different Nordic walking techniques, when style matters. PLoS ONE 2018, 13, e0195438. [Google Scholar] [CrossRef]
- Pellegrini, B.; Peyre-Tartaruga, L.A.; Zoppirolli, C.; Bortolan, L.; Bacchi, E.; Figard-Fabre, H.; Schena, F. Exploring Muscle Activation during Nordic Walking: A Comparison between Conventional and Uphill Walking. PLoS ONE 2015, 10, e0138906. [Google Scholar] [CrossRef]
- Porcari, J.P.; Hendrickson, T.L.; Walter, P.R.; Terry, L.; Walsko, G. The physiological responses to walking with and without Power Poles on treadmill exercise. Res. Q. Exerc. Sport 1997, 68, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Wiacek, M.; Natora, J.; Zubrzycki, I.Z.; Tomasiuk, R. Physiological Responses Associated with Nordic-Walking and Walking in Middle-age Women. Int. J. Sports Med. 2023, 44, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Hanuszkiewicz, J.; Woźniewski, M.; Malicka, I. The influence of Nordic walking on isokinetic trunk muscle endurance and sagittal spinal curvatures in women after breast cancer treatment: Age-specific indicators. Int. J. Environ. Res. Public Health 2021, 18, 2409. [Google Scholar] [CrossRef] [PubMed]
- Peyré-Tartaruga, L.A.; Boccia, G.; Martins, V.F.; Zoppirolli, C.; Bortolan, L.; Pellegrini, B. Margins of stability and trunk coordination during Nordic walking. J. Biomech. 2022, 134, 111001. [Google Scholar] [CrossRef] [PubMed]
- Gertheiss, J.; Rügamer, D.; Liew, B.X.W.; Greven, S. Functional Data Analysis: An Introduction and Recent Developments. Biom. J. 2024, 66, e202300363. [Google Scholar] [CrossRef]
- Ramsay, J.O.; Silverman, B.W. Applied Functional Data Analysis: Methods and Case Studies; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Górecki, T.; Smaga, Ł. fdANOVA: An r Software Package for Analysis of Variance for Univariate and Multivariate Functional Data. Comput. Stat. 2019, 34, 571–597. [Google Scholar] [CrossRef]
- Zhang, J. Analysis of Variance for Functional Data; Monographs on Statistics and Applied Probability, 127, Band 127; Chapman & Hall/CRC: Boca Raton, FL, USA, 2014. [Google Scholar]
- Smaga, Ł. A Note on Repeated Measures Analysis for Functional Data. AStA Adv. Stat. Anal. 2020, 104, 117–139. [Google Scholar] [CrossRef]
- Martínez-Camblor, P.; Norberto, C. Repeated Measures Analysis for Functional Data. Comput. Stat. Data Anal. 2011, 55, 3244–3256. [Google Scholar] [CrossRef]
- Kuryło, K.; Smaga, Ł. Functional repeated measures analysis of variance and its application. Stat. Transit. New Ser. 2024, 25, 185–204. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 9 July 2025).
- Ko, J.B.; Kim, K.B.; Shin, Y.S.; Han, H.; Han, S.K.; Jung, D.Y.; Hong, J.S. Predicting sarcopenia of female elderly from physical activity performance measurement using machine learning classifiers. Clin. Interv. Aging 2021, 16, 1723–1733. [Google Scholar] [CrossRef]
- Tudor, G.S.J.; Bernstein, D.; Riley, S.; Rimmer, Y.; Thomas, S.J.; Van Herk, M.; Webster, A. Geometric Uncertainties in Daily Online IGRT: Refining the CTV-PTV Margin for Contemporary Photon Radiotherapy; British Institute of Radiology: London, UK, 2020. [Google Scholar]
- Dalton, C.; Nantel, J. Nordic walking improves postural alignment and leads to a more normal gait pattern following weeks of training: A pilot study. J. Aging Phys. Act. 2016, 24, 575–582. [Google Scholar] [CrossRef]
- Gougeon, M.A.; Zhou, L.; Nantel, J. Nordic Walking improves trunk stability and gait spatial-temporal characteristics in people with Parkinson disease. NeuroRehabilitation 2017, 41, 205–210. [Google Scholar] [CrossRef]
Normal 3 km/h—Nordic 3 km/h | Normal 5 km/h—Nordic 5 km/h | |||
---|---|---|---|---|
Statistic Protocol | Dn(t) (p-Value) | En(t) (p-Value) | Dn(t) (p-Value) | En(t) (p-Value) |
Upper spine course | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** |
Upper spine pitch | 0.001 ** | 0.000 ** | 0.000 ** | 0.001 ** |
Upper spine roll | 0.01 ** | 0.007 * | 0.000 ** | 0.000 ** |
Lower spine course | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** |
Lower spine pitch | 0.107 | 0.047 * | 0.020 * | 0.010 ** |
Lower spine roll | 0.000 ** | 0.000 ** | 0.006 ** | 0.026 * |
Thoracic axial | 0.209 | 0.129 | 0.009 ** | 0.011 * |
Thoracic flexion | 0.011 * | 0.008 * | 0.004 ** | 0.006 * |
Thoracic lateral | 0.188 | 0.073 | 0.004 ** | 0.000 ** |
Lumbar axial | 0.000 ** | 0.001 ** | 0.000 ** | 0.000 ** |
Lumbar flexion | 0.033 * | 0.030 * | 0.707 | 0.567 |
Lumbar lateral | 0.006 ** | 0.002 ** | 0.161 | 0.068 |
Pelvis course | 0.000 ** | 0.000 ** | 0.006 ** | 0.016 * |
Pelvis pitch | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** |
Pelvis roll | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** |
Upper Spine Course 3 km/h | Upper Spine Course 5 km/h | Upper Spine Pitch 3 km/h | Upper Spine Pitch 5 km/h | Upper Spine Roll 3 km/h | Upper Spine Roll 5 km/h |
---|---|---|---|---|---|
Stance phase range 0.0068 * − | Stance phase range 0.0762 − | Stance phase range 0.2627 − | Stance phase range 0.4222 − | Stance phase range 0.0419 * − | Stance phase range 0.0095 * − |
Swing phase range 0.0002 ** − | Swing phase range 0.0569 − | Swing phase range 0.2111 − | Swing phase range 0.695 − | Swing phase range 0.0027 ** − | Swing phase range 0.0012 ** − |
Stance phase Duration 0.0062 * + | Stance phase Duration 0.0061 * + | Stance phase Duration 0.0055 * + | Stance phase Duration 0.0061 * + | Stance phase 0.0062 * + | Stance phase 0.0061 * + |
Swing phase Duration 0.0079 * − | Swing phase Duration 0.0045 ** − | Swing phase Duration 0.007 * − | Swing phase Duration 0.0045 ** − | Swing phase Duration 0.0079 * − | Swing phase Duration 0.0045 ** − |
Stance phase Velocity 0.0196 * + | Stance phase Velocity 0.0594 + | Stance phase Velocity 0.0217 * + | Stance phase Velocity 0.013 * + | Stance phase Velocity 0.0196 * + | Stance phase Velocity 0.0054 * + |
Swing phase Velocity 0.0145 * − | Swing phase Velocity 0.0594 − | Swing phase Velocity 0.1044 | Swing phase Velocity 0.0239 * | Swing phase Velocity 0.0239 * | Swing phase Velocity 0.0095 * − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, I.; Tchorbajieff, A.; Hristov, O.; Peev, P.; Gutev, G.; Ivanova, S. Spine Kinematic Alterations in Nordic Walking Under Two Different Speeds of 3 and 5 km/h—A Pilot Study. J. Funct. Morphol. Kinesiol. 2025, 10, 330. https://doi.org/10.3390/jfmk10030330
Ivanov I, Tchorbajieff A, Hristov O, Peev P, Gutev G, Ivanova S. Spine Kinematic Alterations in Nordic Walking Under Two Different Speeds of 3 and 5 km/h—A Pilot Study. Journal of Functional Morphology and Kinesiology. 2025; 10(3):330. https://doi.org/10.3390/jfmk10030330
Chicago/Turabian StyleIvanov, Ivan, Assen Tchorbajieff, Oleg Hristov, Petar Peev, Grigor Gutev, and Stela Ivanova. 2025. "Spine Kinematic Alterations in Nordic Walking Under Two Different Speeds of 3 and 5 km/h—A Pilot Study" Journal of Functional Morphology and Kinesiology 10, no. 3: 330. https://doi.org/10.3390/jfmk10030330
APA StyleIvanov, I., Tchorbajieff, A., Hristov, O., Peev, P., Gutev, G., & Ivanova, S. (2025). Spine Kinematic Alterations in Nordic Walking Under Two Different Speeds of 3 and 5 km/h—A Pilot Study. Journal of Functional Morphology and Kinesiology, 10(3), 330. https://doi.org/10.3390/jfmk10030330