Active Breaks Enhance Complex Processing Speed, Math Performance, and Physical Activity in Primary School Children: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
Participants
2.2. Procedures
2.2.1. Motorfit
- –
- Forward hopping on one foot (FHF-1): assesses balance, unilateral coordination, and lower-limb strength.
- –
- Lateral gallop (LG): measures agility, lateral coordination, and rhythm.
- –
- Alternating forward hopping on one foot (FHF-2): evaluates dynamic balance, inter-limb coordination, and rhythmic control.
- –
- Throwing a ball with one hand (TBH): assesses upper-limb coordination, strength, and object manipulation skills.
- –
- Catching a thrown ball (CB): evaluates hand–eye coordination and reaction time.
- –
- Hitting a ball with a tennis racket (HB): measures precision, coordination, and bimanual control.
- –
- 10 × 5 m shuttle run (VEL): assesses speed, agility, and ability to change direction.
- –
- Long jump from a standing start (LJ): evaluates explosive lower-body strength and bilateral coordination.
2.2.2. Test for the Assessment of Calculation and Problem-Solving Skills (AC-MT 6-11)
- –
- Operations (OPS): assesses fluency and accuracy in performing fundamental arithmetic operations, which serve as the basis for more-advanced mathematical competencies.
- –
- Numerical Judgment (NJ): evaluates intuitive numerical reasoning, essential for the development of mental number representation and estimation strategies.
- –
- Tens and Units Task (TU): measures understanding of place value, a critical construct for arithmetic proficiency and multidigit number manipulation.
- –
- Ordering Tasks (OTs): including both largest-to-smallest and smallest-to-largest sequences, assess visual working memory and serial ordering abilities for numerical information.
- –
- Mathematical Problems (MP): examine higher-order cognitive processes by requiring integration of executive functions, working memory, and numerical reasoning, thereby reflecting applied mathematical problem-solving in real-world contexts.
2.2.3. Reynolds Interference Task (RIT)
- –
- Object interference (OI = 60 s), which assesses semantic inhibition, perceptual–attentional control, verbal processing, and object recognition.
- –
- Color interference (CI = 90 s), which measures inhibitory control, selective attention, and processing speed.
2.2.4. Rate of Perceived Exertion (RPE)
2.3. Intervention
2.4. Statistical Analysis
3. Results
3.1. Physical Performance Results
3.2. Cognitive Performance Results
3.3. Mathematical Performance Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MVPA | Moderate-to-vigorous physical activity |
PE | Physical Education |
PA | Physical activity |
ABs | Active Breaks |
EGs | Experimental groups |
CON | Control group |
CRE | Creativity-based AB |
FIT | Fitness-based AB |
COM | Combined AB |
AC-MT 6-11 | Test for the Assessment of Calculation and Problem-Solving Skills |
RIT | Reynolds Interference Task test |
FHF-1 | Forward hopping on one foot |
LG | Lateral gallop |
FHF-2 | Alternating forward hopping on one foot |
TBH | Throwing a ball with one hand |
CB | Catching a thrown ball |
HB | Hitting a ball with a tennis racket |
VEL | 10 × 5 m shuttle run |
LJ | Long jump from a standing start |
OPS | Operations |
NJ | Numerical Judgment |
TU | Tens and Units Task |
OT | Ordering Tasks |
MP | Mathematical Problems |
TOTAL SCORE | Final score |
OI | Object interference |
CI | Color interference |
ITC | Index Total Correct |
E OI PO | Number of errors in object interference task |
T OI PO | Completion time of object interference task |
E CI PO | Number of errors in color interference task |
T CI PO | Completion time of color interference task |
RPE | Rating of Perceived Exertion |
References
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global Trends in Insufficient Physical Activity among Ado-lescents: A Pooled Analysis of 298 Population-Based Surveys with 1·6 Million Participants. Lancet 2020, 4, 23–35. [Google Scholar]
- Eime, R.M.; Young, J.A.; Harvey, J.T.; Charity, M.J.; Payne, W.R. A Systematic Review of the Psychological and Social Benefits of Participation in Sport for Children and Adolescents: Informing Development of a Conceptual Model of Health through Sport. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Konstabel, K.; Veidebaum, T.; Verbestel, V.; Moreno, L.A.; Bammann, K.; Tornaritis, M.; Eiben, G.; Molnár, D.; Siani, A.; Sprengeler, O.; et al. Objectively Measured Physical Activity in European Children: The IDEFICS Study. Int. J. Obes. 2014, 38, S135–S143. [Google Scholar] [CrossRef] [PubMed]
- Longmuir, P.E.; Colley, R.C.; Wherley, V.A.; Tremblay, M.S. Canadian Society for Exercise Physiology Position Stand: Benefit and Risk for Promoting Childhood Physical Activity. Appl. Physiol. Nutr. Metab. 2014, 39, 1271–1279. [Google Scholar] [CrossRef]
- Whittle, R.; MacPhail, A. The PE school curriculum challenge: The shared construction, implementation and enactment of school physical education curriculum. In School Physical Education and Teacher Education; Routledge: London, UK; New York, NY, USA, 2020; pp. 103–115. [Google Scholar]
- Daly-Smith, A.J.; Zwolinsky, S.; McKenna, J.; Tomporowski, P.D.; Defeyter, M.A.; Manley, A. Systematic Review of Acute Physically Active Learning and Classroom Movement Breaks on Children’s Physical Activity, Cognition, Academic Performance and Classroom Behaviour: Understanding Critical Design Features. BMJ Open Sport. Exerc. Med. 2018, 4, e000341. [Google Scholar] [CrossRef]
- Masini, A.; Marini, S.; Gori, D.; Leoni, E.; Rochira, A.; Dallolio, L. Evaluation of School-Based Interventions of Active Breaks in Primary Schools: A Systematic Review and Meta-Analysis. J. Sci. Med. Sport. 2020, 23, 377–384. [Google Scholar] [CrossRef]
- Watson, A.; Timperio, A.; Brown, H.; Best, K.; Hesketh, K.D. Effect of Classroom-Based Physical Activity Interventions on Academic and Physical Activity Outcomes: A Systematic Review and Meta-Analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 114. [Google Scholar] [CrossRef]
- Infantes-Paniagua, Á.; Silva, A.F.; Ramirez-Campillo, R.; Sarmento, H.; González-Fernández, F.T.; González-Víllora, S.; Clemente, F.M. Active School Breaks and Students’ Attention: A Systematic Review with Meta-Analysis. Brain Sci. 2021, 11, 675. [Google Scholar] [CrossRef]
- Raiola, G.; D’Isanto, T.; Aliberti, S.; Merati, G.; D’Elia, F. Active Breaks to Promote Sustainable Cognitive Development in Primary School Children. Sustainability 2025, 17, 6616. [Google Scholar] [CrossRef]
- Fiorilli, G.; Buonsenso, A.; Di Martino, G.; Crova, C.; Centorbi, M.; Grazioli, E.; Tranchita, E.; Cerulli, C.; Quinzi, F.; Calcagno, G.; et al. Impact of Active Breaks in the Classroom on Mathematical Performance and Attention in Elementary School Children. Healthcare 2021, 9, 1689. [Google Scholar] [CrossRef]
- Melo, J.C.N.; Tejada, J.; Silva, E.C.M.; Ywgne, J.; Oliveira, D.N.; Gandarela, L.; Silva, D.R. Effects of Physically Active Lessons and Active Breaks on Cognitive Performance and Health Indicators in Elementary School Children: A Cluster Randomized Trial. Int. J. Behav. Nutr. Phys. Act. 2025, 22, 96. [Google Scholar] [CrossRef]
- Melguizo-Ibáñez, E.; Zurita-Ortega, F.; González-Valero, G.; Puertas-Molero, P.; Tadeu, P.; Ubago-Jiménez, J.L.; Alonso-Vargas, J.M. Active Break as a Tool for Improving Attention in the Educational Context. A Systematic Review and Meta-Analysis. Rev. Psicodidáct. 2024, 29, 147–157. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children: A Systematic Review. Med. Sci. Sports Exerc. 2016, 48, 197–1222. [Google Scholar] [CrossRef] [PubMed]
- Ziereis, S.; Jansen, P. Effects of Physical Activity on Executive Function and Motor Performance in Children with ADHD. Res. Dev. Disabil. 2015, 38, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Perotta, F.; Corona, F.; Cozzarelli, C. The efficacy of the project motorfit: Educational Actions through physical activity in schools. Sport. Sci. 2011, 4, 34–39. [Google Scholar]
- Test AC-MC 6-11; Test di Valutazione delle Abilità di Calcolo. Centro Studi Erickson: Trento, Italy, 2012.
- Reynolds, C.R.; Kamphaus, R.W. Reynolds Interference Task; Psychological Assessment Resources, Inc.: Lutz, FL, USA, 2017. [Google Scholar]
- Robertson, R.J.; Goss, F.L.; Andreacci, J.L.; Dubé, J.J.; Rutkowski, J.J.; Snee, B.M.; Kowallis, R.A.; Crawford, K.; Aaron, D.J.; Metz, K.F. Validation of the Children’s OMNI RPE Scale for Stepping Exercise. Med. Sci. Sports Exerc. 2005, 37, 290–298. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Wollseiffen, P.; Vogt, T.; Strüder, H.K.; Schneider, S. Distraction versus Intensity: The Importance of Exercise Classes for Cognitive Performance in School. Med. Princ. Pract. 2018, 27, 61–65. [Google Scholar] [CrossRef]
- McDonough, D.J.; Liu, W.; Gao, Z. Effects of Physical Activity on Children’s Motor Skill Development: A Systematic Review of Randomized Controlled Trials. BioMed Res. Int. 2020, 2020, 8160756. [Google Scholar] [CrossRef]
- Moon, J.; Webster, C.A.; Stodden, D.F.; Brian, A.; Mulvey, K.L.; Beets, M.; Egan, C.A.; McIntosh, L.I.F.; Merica, C.B.; Russ, L. Systematic Review and Meta-Analysis of Physical Activity Interventions to Increase Elementary Children’s Motor Competence: A Comprehensive School Physical Activity Program Perspective. BMC Public Health 2024, 24, 826. [Google Scholar] [CrossRef]
- Kojić, F.; Arsenijević, R.; Grujić, G.; Toskić, L.; Šimenko, J. Effects of Structured Physical Activity on Motor Fitness in Preschool Children. Children 2024, 11, 433. [Google Scholar] [CrossRef]
- Bellacicco, R.; Capone, F.; Sorrentino, C.; Di Martino, V. The Role of Active Breaks and Curriculum-Based Active Breaks in Enhancing Executive Functions and Math Performance, and in Reducing Math Anxiety in Primary School Children: A Systematic Review. Educ. Sci. 2025, 15, 47. [Google Scholar] [CrossRef]
- Greco, F.; Quinzi, F.; Papaianni, M.C.; Cosco, L.F.; Segura-Garcia, C.; Pietro Emerenziani, G. Effects of School-Based Physical Activity on Volition in Exercise, Sleep Quality and Internet Addiction in Italian Adolescents. Heliyon 2024, 10, e32129. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.R.; Kamphaus, R.W. Reynolds Intellectual Scales (RIAS) and the Reynolds Intellectual Screening Test (RIST): Professional Manual, 3rd ed.; Psychological Assessment Resource, Inc.: Lutz, FL, USA, 2003; pp. 400–421. [Google Scholar]
- Zhang, W.; Zeng, S.; Nie, Y.; Xu, K.; Zhang, Q.; Qiu, Y.; Li, Y. Meta-Analysis of High-Intensity Interval Training Effects on Cognitive Function in Older Adults and Cognitively Impaired Patients. Front. Physiol. 2025, 16, 1543217. [Google Scholar] [CrossRef]
- Pesce, C.; Mazzoli, E.; Martins, C.; Stodden, D. Physical Activity Meets Creativity: A “CreActive” Motor Development and Learning Perspective. J. Mot. Learn. Dev. 2025, 13, 109–119. [Google Scholar] [CrossRef]
- Schmidt, M.; Egger, F.; Benzing, V.; Jäger, K.; Conzelmann, A.; Roebers, C.M.; Pesce, C. Disentangling the Relationship between Children’s Motor Ability, Executive Function and Academic Achievement. PLoS ONE 2017, 12, e0182845. [Google Scholar] [CrossRef]
- Melo, J.C.N.; Tejada, J.; Silva, E.C.M.; do Nascimento, J.Y.V.; Oliveira, D.N.; Gandarela, L.; da Silva, D.R.P. Effects of Physically Active Lessons and Active Breaks on Cognitive Performance and Health Indicators in Elementary School Children: A Cluster Randomized Trial. preprints 2025. [Google Scholar] [CrossRef]
- Gallotta, M.C.; Bonavolontà, V.; Zimatore, G.; Curzi, D.; Falcioni, L.; Migliaccio, S.; Baldari, C. Academic achievement and healthy lifestyle habits in primary school children: An interventional study. Front. Psychol. 2024, 15, 1412266. [Google Scholar] [CrossRef]
- Howie, E.K.; Schatz, J.; Pate, R.R. Acute effects of classroom exercise breaks on executive function and math performance: A dose–response study. RQES 2015, 86, 217–224. [Google Scholar] [CrossRef]
- Mavilidi, M.F.; Vazou, S. Classroom-based physical activity and math performance: Integrated physical activity or not? Acta Paediatr. 2021, 110, 2149–2156. [Google Scholar] [CrossRef]
- Latino, F.; De Candia, M.; Morano, M.; Carvutto, R. The Impact of an Extracurricular Outdoor Physical Activity Program on Long-Term Memory in Adolescent during COVID-19 Pandemic. J. Hum. Sport. Exerc. 2021, 16, S1114–S1125. [Google Scholar] [CrossRef]
CRE | FIT | COM | CON | |
---|---|---|---|---|
N | 20 | 20 | 20 | 20 |
Male | 8 | 10 | 11 | 7 |
Female | 12 | 10 | 9 | 13 |
Age | 7.97 ± 0.18 | 7.93 ± 0.26 | 7.97 ± 0.18 | 7.42 ± 0.49 |
Weight | 31.38 ± 6.75 | 27.19 ± 3.81 | 31.77 ± 8.19 | 31.02 ± 6.48 |
Height | 1.30 ± 0.04 | 1.27 ± 0.05 | 1.30 ± 0.06 | 1.28 ± 0.07 |
BMI | 20.01 ± 3.59 | 16.74 ± 1.76 | 19.38 ± 4.24 | 18.31 ± 2.64 |
FHF-1 (Score) | FHF-2 (Score) | LG (Score) | CB (Score) | TBH (Score) | HB (Score) | VEL (s) | LJ (m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | |
FIT | 3.0 (0.8) | 3.8 (0.5) * | 3.1 (0.7) | 3.9 (0.3) * | 3.3 (0.5) | 3.3 (0.9) | 2.9 (0.8) | 3.5 (0.8) | 2.4 (0.5) | 3.0 (0.6) | 3.0 (0.7) | 3.4 (0.7) | 27.8 (2.9) | 24.4 (3.3) * | 98.6 (23.5) | 117.2 (23.5) * |
CRE | 3.1 (0.7) | 3.6 (0.6) * | 3.3 (0.8) | 3.8 (0.6) * | 3.2 (0.6) | 3.6 (0.7) | 3.2 (0.8) | 3.2 (0.8) | 2.5 (0.7) | 2.7 (0.5) | 2.7 (0.8) | 3.4 (0.7) * | 26.3 (2.8) | 25.5 (4.1) | 97.9 (16.7) | 104.5 (17.8) |
COM | 3.3 (0.9) | 3.7 (0.6) * | 3.2 (0.9) | 3.8 (0.4) * | 3.2 (0.6) | 3.0 (0.9) | 2.8 (0.8) | 3.3 (0.8) | 2.6 (0.5) | 2.7 (0.7) | 2.7 (0.6) | 3.4 (0.6) * | 27.2 (2.5) | 25.2 (3.5) * | 108.7 (21.9) | 122.1 (20.8) * |
CON | 2.9 (0.7) | 2.4 (0.7) § | 3.0 (0.8) | 2.5 (1.0) § | 3.1 (0.6) | 3.3 (0.9) | 2.8 (0.7) | 2.7 (0.8) | 2.5 (0.5) | 1.8 (0.9) | 2.6 (0.6) | 1.9 (0.6) § | 27.2 (2.7) | 26.2 (2.8) | 103.1 (14.9) | 103.7 (13.8) |
EFFECT | ||||||||||||||||
Time F(1,76) | F = 11.613 p = 0.001 * η2p= 0.133 | F = 10.830 p = 0.002 * η2p = 0.125 | F = 0.441 p = 0.509 η2p = 0.006 | F = 3.470 p = 0.066 η2p = 0.044 | F = 0.765 p = 0.385 η2p = 0.010 | F = 6.832 p = 0.011 * η2p = 0.082 | F = 25.971 p < 0.001 * η2p = 0.255 | F = 17.189 p < 0.001 * η2p = 0.184 | ||||||||
Interaction F(3,76) | F = 8.360 p < 0.001 * η2p = 0.248 | F = 8.690 p < 0.001 * η2p = 0.255 | F = 1.324 p = 0.273 η2p = 0.050 | F = 2.071 p = 0.111 η2p = 0.076 | F = 7.301 p < 0.001 * η2p = 0.224 | F = 10.032 p < 0.001 * η2p = 0.284 | F = 2.738 p = 0.049 * η2p = 0.098 | F = 2.749 p = 0.049 η2p = 0.098 | ||||||||
Intervention group F(3,76) | F = 8.665 p < 0.001 # η2p = 0.255 | F = 9.691 p < 0.001 # η2p = 0.277 | F = 1.121 p = 0.364 η2p = 0.042 | F = 2.266 p = 0.088 η2p = 0.082 | F = 5.842 p = 0.001 # η2p = 0.187 | F = 14.645 p < 0.001 # η2p = 0.366 | F = 0.305 p = 0.822 η2p = 0.012 | F = 2.961 p = 0.037 # η2p = 0.105 | ||||||||
POST-HOC | ||||||||||||||||
FIT vs. CRE | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | ||||||||
FIT vs. COM | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 0.895 | ||||||||
FIT vs. CON | p = 0.001 # | p< 0.001 # | p = 1.000 | p = 0.162 | p= 0.003 # | p < 0.001 # | p = 1.000 | p = 1.000 | ||||||||
CRE vs. COM | p = 1.000 | p = 1.000 | p = 0.527 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 0.044 # | ||||||||
CRE vs. CON | p = 0.002 # | p < 0.001 # | p = 1.000 | p = 0.162 | p = 0.013 # | p< 0.001 # | p = 1.000 | p = 1.000 | ||||||||
COM vs. CON | p < 0.001 # | p < 0.001 # | p = 1.000 | p = 0.693 | p = 0.008 # | p < 0.001 # | p = 1.000 | p = 0.135 |
ITC (Score) | E OI PO (Score) | T OI PO (s) | E CI PO (Score) | T CI PO (s) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | |
FIT | 92.9 (5.2) | 97.6 (5.2) * | 1.1 (1.1) | 0.2 (0.4) * | 78.8 (18.3) | 69.6 (16.4) * | 2.5 (1.8) | 0.7 (1.0) * | 226.2 (46.2) | 204.8 (54.6) * |
CRE | 91.7 (5.1) | 98.6 (3.4) * | 1.2 (1.4) | 0.2 (0.4) * | 77.9 (20.1) | 64.9 (13.4) * | 2.1 (1.8) | 0.8 (1.2) * | 224.3 (28.7) | 183.2 (40.0) * |
COM | 93.2 (4.5) | 100.1 (4.0) * | 1.0 (0.7) | 0.05 (0.2) * | 78.0 (14.7) | 65.9 (13.4) * | 2.3 (1.2) | 0.5 (1.2) * | 209.9 (51.4) | 181.4 (45.9) * |
CON | 92.6 (5.5) | 92.5 (5.5) | 1.0 (0.9) | 0.8 (1.0) | 78.1 (20.8) | 77.5 (20.8) | 2.3 (1.7) | 2.0 (1.5) | 216.4 (46.0) | 222.1 (48.7) |
EFFECT | ||||||||||
Time F(1,76) | F = 112.310 p < 0.001 * η2p = 0.596 | F = 39.125 p < 0.001 * η2p = 0.340 | F = 35.430 p < 0.001 * η2p = 0.318 | F = 43.884 p < 0.001 * η2p = 0.366 | F = 22.605 p < 0.001 * η2p = 0.229 | |||||
Interaction F(3,76) | F = 14.721 p < 0.001 * η2p = 0.368 | F = 2.842 p = 0.043 * η2p = 0.101 | F = 3.709 p = 0.015 * η2p = 0.128 | F = 3.275 p = 0.026 * η2p = 0.114 | F = 4.859 p = 0.004 * η2p = 0.161 | |||||
Intervention group F(3,76) | F = 2.865 p = 0.042 # η2p = 0.102 | F = 1.069 p = 0.367 η2p = 0.040 | F = 0.644 p = 0.589 η2p = 0.025 | F = 1.947 p = 0.129 η2p = 0.071 | F = 1.387 p = 0.253 η2p = 0.052 | |||||
POST-HOC | ||||||||||
FIT vs. CRE | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | |||||
FIT vs. COM | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 0.789 | |||||
FIT vs. CON | p = 0.356 | p = 1.000 | p = 1.000 | p = 0.692 | p = 1.000 | |||||
CRE vs. COM | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | |||||
CRE vs. CON | p = 0.430 | p = 1.000 | p = 1.000 | p = 0.289 | p = 1.000 | |||||
COM vs. CON | p = 0.032 # | p = 0.481 | p = 1.000 | p = 0.210 | p = 0.441 |
OPS (Score) | NJ (Score) | TU (Score) | OT (Score) | MP (Score) | TS (Score) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | |
FIT | 3.3 (1.9) | 4.5 (1.6) * | 5.5 (1.2) | 5.9 (0.2) | 5.3 (1.2) | 5.6 (0.7) | 8.6 (2.7) | 9.2 (1.4) | 4.0 (1.5) | 5.2 (1.3) * | 26.9 (6.1) | 30.3 (2.9) * |
CRE | 3.0 (1.4) | 4.6 (1.3) * | 5.8 (4.5) | 5.9 (0.2) | 5.3 (1.7) | 5.6 (0.6) | 8.8 (1.8) | 9.1 (1.3) | 3.9 (1.2) | 5.2 (1.1) * | 26.9 (3.6) | 30.6 (2.4) * |
COM | 3.3 (1.9) | 5.2 (0.8) * | 5.6 (1.0) | 5.9 (0.2) | 5.1 (1.5) | 5.3 (1.5) | 8.7 (2.0) | 9.3 (1.2) | 3.9 (1.5) | 5.8 (0.9) * | 26.7 (5.5) | 31.4 (3.1) * |
CON | 3.0 (1.3) | 3.1 (1.4) | 5.2 (1.4) | 5.0 (2.0) | 4.4 (1.9) | 4.7 (2.0) | 8.7 (2.0) | 8.7 (1.8) | 3.8 (1.4) | 3.8 (1.2) | 25.3 (4.1) | 25.1 (5.1) |
EFFECT | ||||||||||||
Time F(1,76) | F = 43.912 p < 0.001 * η2p = 0.366 | F = 1.021 p = 0.316 η2p = 0.013 | F = 2.807 p = 0.098 η2p = 0.036 | F = 2.981 p = 0.088 η2p = 0.038 | F = 75.970 p < 0.001 * η2p = 0.500 | F = 43.610 p < 0.001 * η2p = 0.365 | ||||||
Interaction F(3,76) | F = 5.312 p = 0.002 * η2p = 0.173 | F = 0.794 p = 0.501 η2p = 0.030 | F = 0.023 p = 0.995 η2p = 0.001 | F = 0.488 p = 0.692 η2p = 0.019 | F = 11.171 p < 0.001 * η2p = 0.306 | F = 6.151 p = 0.001 * η2p = 0.195 | ||||||
Intervention group F(3,76) | F = 3.256 p = 0.026 # η2p = 0.114 | F = 3.407 p = 0.022 # η2p = 0.119 | F = 2.114 p = 0.105 η2p = 0.077 | F = 0.154 p = 0.927 η2p = 0.006 | F = 3.088 p = 0.032 # η2p = 0.117 | F = 4.387 p = 0.007 # η2p = 0.148 | ||||||
POST-HOC | ||||||||||||
FIT vs. CRE | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | ||||||
FIT vs. COM | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | ||||||
FIT vs. CON | p = 0.208 | p = 0.142 | p = 0.195 | p = 1.000 | p = 0.191 | p = 0.042 # | ||||||
CRE vs. COM | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | p = 1.000 | ||||||
CRE vs CON | p = 0.423 | p = 0.087 | p = 0.195 | p = 1.000 | p = 0.225 | p = 0.030 # | ||||||
COM vs. CON | p = 0.020 # | p = 0.030 # | p = 0.720 | p = 1.000 | p = 0.032 # | p = 0.013 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorilli, G.; Di Claudio, G.; Di Fonza, D.; Baralla, F.; Aquino, G.; Di Martino, G.; Della Valle, C.; Centorbi, M.; Calcagno, G.; Buonsenso, A.; et al. Active Breaks Enhance Complex Processing Speed, Math Performance, and Physical Activity in Primary School Children: A Randomized Controlled Trial. J. Funct. Morphol. Kinesiol. 2025, 10, 376. https://doi.org/10.3390/jfmk10040376
Fiorilli G, Di Claudio G, Di Fonza D, Baralla F, Aquino G, Di Martino G, Della Valle C, Centorbi M, Calcagno G, Buonsenso A, et al. Active Breaks Enhance Complex Processing Speed, Math Performance, and Physical Activity in Primary School Children: A Randomized Controlled Trial. Journal of Functional Morphology and Kinesiology. 2025; 10(4):376. https://doi.org/10.3390/jfmk10040376
Chicago/Turabian StyleFiorilli, Giovanni, Gloria Di Claudio, Domenico Di Fonza, Francesca Baralla, Giovanna Aquino, Giulia Di Martino, Carlo Della Valle, Marco Centorbi, Giuseppe Calcagno, Andrea Buonsenso, and et al. 2025. "Active Breaks Enhance Complex Processing Speed, Math Performance, and Physical Activity in Primary School Children: A Randomized Controlled Trial" Journal of Functional Morphology and Kinesiology 10, no. 4: 376. https://doi.org/10.3390/jfmk10040376
APA StyleFiorilli, G., Di Claudio, G., Di Fonza, D., Baralla, F., Aquino, G., Di Martino, G., Della Valle, C., Centorbi, M., Calcagno, G., Buonsenso, A., & di Cagno, A. (2025). Active Breaks Enhance Complex Processing Speed, Math Performance, and Physical Activity in Primary School Children: A Randomized Controlled Trial. Journal of Functional Morphology and Kinesiology, 10(4), 376. https://doi.org/10.3390/jfmk10040376